
A PERFORMANCE PORTABLE, FULLY IMPLICIT LANDAU
COLLISION OPERATOR WITH BATCHED LINEAR SOLVERS

MARK F. ADAMS∗, PENG WANG† , JACOB MERSON‡ , KEVIN HUCK§ , AND

MATTHEW G. KNEPLEY¶

In fond memory of Ravindra Samtaney

Abstract. Modern accelerators use hierarchical parallel programming models that enable mas-
sive multithreading within a processing element (PE), with multiple PEs per device driven by tradi-
tional processes. Batching is a technique for exposing PE-level parallelism in algorithms that have
traditionally run on MPI processes or multiple threads within a single process. Opportunities for
batching arise in, for example, kinetic discretizations of magnetized plasmas where collisions are
advanced in velocity space at each spatial point independently.

This paper builds on previous work on a high-performance, fully nonlinear, Landau collision
operator by batching the linear solver, as well as batching the spatial point problems and adding
new support for multiple grids for multiscale, multi-species problems. An anisotropic relaxation
verification test that agrees well with previous published results and analytical models is presented.
The performance results from NVIDIA A100 and AMD MI250X nodes are presented with hardware
utilization analysis for each architecture. The entire implicit Landau operator time advance is im-
plemented in Kokkos for performance portability, running entirely on the device and is available in
the PETSc numerical library.

Key words. Batch solvers, Landau collision operator, GPU finite elements, kinetic methods

MSC codes. 76X05, 68N01, 65F10, 65F50, 65Y20, 65Z05

1. Introduction. The programming model used for modern accelerator hard-
ware, introduced in the CUDA programming language, is now supported in several
languages and libraries, such as Kokkos [9]. This model supports massive multithread-
ing within a processing element (PE) and encourages vector processing with C/C++
syntax, in addition to traditional MPI processes for coarse-grain parallelism. The
Kokkos programming model supports accelerator languages, such as SYCL, HIP and
CUDA, as well as OpenMP.

High-dimensional applications with tensor product structures, such as combustion
with chemistry [3], kinetic methods with collision operators [10, 12], ensemble prob-
lems in uncertainty quantification [17, 18], and others [5, 19] run many small problems
independently. These problems have traditionally been run in MPI processes or with
small-scale thread parallelism within a process. However, these solves may be small
enough to run effectively on a single PE. Techniques known as batching are designed
to explicitly expose this PE-level parallelism to the accelerator.

Phase space problems, from 2D to 6D are used to accurately model many prob-
lems in computational physics. Magnetized plasmas are one such application. Plasmas
are governed by the symplectic Vlasov-Maxwell system [26], coupled with a metric
or dissipative collision operator. This work focuses on Fokker-Planck collisions in
Landau form, which is the gold standard for small-angle collision-dominated plasmas
[16], using discretizations that preserve the geometric structure of this system in the
metriplectic formalism [12, 15]. The evolution of the collision operator is computed

∗Lawrence Berkeley National Laboratory, Berkeley, CA (mfadams@lbl.gov).
†NVIDIA Corporation, Santa Clara, CA.
‡Rensselaer Polytechnic Institute, Troy, NY.
§University of Oregon, Eugene, OR.
¶University of Buffalo, Buffalo, NY.

1

ar
X

iv
:2

20
9.

03
22

8v
13

 [
ph

ys
ic

s.
pl

as
m

-p
h]

 2
5

Se
p

20
24

at each spatial point independently and is well-suited to batch processing, including
the linear solver in a nonlinear solver used in implicit time integrators.

This paper builds on previous work on a high-performance, portable, structure-
preserving, grid-based, Landau collision operator with high-order accurate finite ele-
ment discretizations and block-structured adaptive mesh refinement (AMR) [12, 2, 1].
Background from previous work is presented in §2 followed by new material:

• multiple grids and batching of the collision operator (§3),
• performance with a ten species test on NVIDIA and AMD device nodes (§4),
• unstructured adaptive meshing for collision operators (§5),
• an anisotropic relaxation verification test (§6),
• and performance data on NVIDIA A100 and AMD MI250X nodes (§7),
• MI250X and A100 hardware utilization analysis (§8),

and §9 concludes the paper. All codes are available in PETSc. Data, plotting scripts
and reproducibility instructions are publicly available (Appendix A).

2. Landau collisions for magnetized plasmas. This section reviews previous
work on structure preserving methods for the time evolution of the Landau collision
operator [12, 2, 1]. The density of each species α, fα (t, v⃗), evolves, in velocity space
v⃗ ∈ R3, from collisional effects with each species β according to dfα

dt =
∑

β C [fα, fβ]αβ ,
with

(2.1) C [fα, fβ]αβ = ναβ
m0

mα
∇ ·

∫
Ω̄

dv̄ U(v⃗, v̄) ·
(
m0

mα
f̄β∇fα −

m0

mβ
fα∇̄f̄β

)
,

a collision frequency ναβ = e2αe
2
β ln Λαβ/8πm

2
0ε

2
0, the Coulomb logarithm lnΛαβ , an

arbitrary reference mass m0, the vacuum permittivity ε0 and the effective charges eα
of each species. U(v⃗, v̄) is the Landau tensor [16, 12]. Overbar terms are evaluated
on the grid for the domain Ω̄ of species β and v̄ ≡ ⃗̄v for clarity.

This inner integration over all domains, Ω̄, results in an O(N2) work complexity
algorithm, where N is the sum of the number of species times the number of integra-
tion points on each species’ grid. This coupling between species is only through the
inner integral and results in the property that each species can use a separate grid,
which is common in physics codes [10].

2.0.1. Nondimensionalization and Landau structure. The system (2.1) is
nondimensionalized with a reference speed v0, such as the thermal speed of electrons,
to define a velocity coordinate x⃗ = v⃗/v0, not to be confused with the spatial coor-
dinate. The distribution function variable is normalized with f̃α = fαv

3
0/n0 with a

number density n0. The electrons are used to set v0 and m0 in this work. Time and
the collision frequency are nondimensionalized with

(2.2) t0 =
8πm2

0ε
2
0v

3
0

e4 ln (Λee)n0
, ν̃αβ =

t0n0

v30
ναβ ,

with elementary charge e. Further, dx⃗ = v−3
0 dv⃗, U(x⃗, x̄) = v0U(v⃗, v̄) and ∂

∂x⃗ = v0
∂
∂v⃗ .

2.1. Discretizations. The time evolution of the collisional dynamics of the den-
sity of each species f (x⃗) with that of all species β, after nondimensionalization and
assuming all species are identical for clarity, can be written as

(2.3)
df

dt
=

∑
β

∇ ·
∫
Ω̄

dx̄ U(x⃗, x̄) ·
(
f̄β∇f − f∇̄f̄β

)
= (∇ ·D (x⃗)∇−∇ ·K (x⃗)) f,

2

with tensor D (x⃗) ≡
∑

β

∫̄
Ω

dx̄ U(x⃗, x̄) · f̄β and vector K (x⃗) ≡
∑

β

∫̄
Ω

dx̄ U(x⃗, x̄) · ∇̄f̄β .

This system is evolved in time with a “solver stack” of time integrators, nonlinear
and linear algebraic solvers, and discretizations. The fully implicit time integrators
in this paper, backward Euler or a three stage adaptive Runge-Kutta method, are
sufficient for energy conservation but do not result in an entropy stable, or monotonic
in entropy, method. A discrete gradient time integrator can be entropy stable [15]
and is under development.

A finite element discretization of (2.1) that conserves moments up to the order
of the polynomial that can be represented exactly by the finite element space was
developed by Hirvijoki and Adams [12]. For example quadratic elements, P2 or Q2,
conserves up to the second moment, which is energy and is of particular interest to
physicists. The spatial discretization enforces weak equivalence by multiplying (2.3)
with a test function ϕi in a set of basis vectors and integrating over the domain in a
standard finite element process with the solution expressed as a weighted sum of the
same set of basis vectors. After integrating by parts, the ith equation is

(2.4)

∫
Ω

dx⃗ ϕi
df (x⃗)

dt
= −

∫
Ω

dx⃗ ∇ϕi · (∇ ·D (x⃗)∇−∇ ·K (x⃗)) f (x⃗) .

The exact Jacobian of the system is dense, however an approximation that ignores
linearizing the inner integrals is sparse. That is, at each point x⃗ one integrates over all
domains to compute D (x⃗) and K (x⃗) and then discretizes ∇ ·D (x⃗)∇ and ∇ ·K (x⃗).

2.2. Data and work partitioning model. In matrix form, with S species
and letting u = [f1, f2, ..., fS]

T
, the system can be written as an S × S block matrix,

A, defined by A [u] (α, β) ≡ C [fα, fβ]αβ from (2.1). An implicit time integrator,

backward Euler for example, evolves a state uk at time t to the state uk+1 at time
t + ∆t according to uk+1 ←− uk + ∆tA

[
uk+1

]
uk+1, which requires a nonlinear solve

of
(
I −∆tA

[
uk+1

])
uk+1 = uk for uk+1. The finite element discretization results in

the nonlinear algebraic system (Mh +∆tAh [uh])u
k+1
h = uk

h, with the finite element
mass matrix Mh (see §III in [12] for details). The mass matrix is added in a separate
kernel due to the PETSc time stepper interface design.

A Newton iteration first computes the residual with the current solution u, r ←−
uk−Ah [u]u, then solves for the correction δ in (M +∆tAh [u]) δ = r and updates the
solution u←− u+ δ. Figure 1 diagrams a backward Euler time step with the nonlinear

Fig. 1: Diagram of one time step on a generic accelerator

solver, batched matrix construction and linear solver with two spatial vertices, a two

3

species plasma, a three cell electrons (e) and two cell ions (i) mesh on a generic
accelerator with asynchronous scheduler (S). All work and data remain on the device
throughout the full collision time advance.

2.2.1. Jacobian and mass matrix construction. The algorithm for comput-
ing the Jacobian matrix of (2.1) can be expressed as six nested loops (Algorithm 1,
[2]), and implemented with a naive kernel (Algorithm 3, [2]) and optimized by com-
puting sub-expressions and loop hoisting (Algorithm 1, [1]). The data structures are
optimized for vector processing (Algorithm 2, [2]). Our strategy for partitioning data
and work is to compute each element’s matrix with one Kokkos thread group, or PE,
and assemble the global Jacobian matrix on the device with the COO interface in
PETSc [20], as illustrated in Figure 1.

The finite element mass matrix is linear and does not change during the simula-
tion because the basis functions on different grids are trivially orthogonal. One can
compute the mass matrix once, on the CPU for convenience, copy it to the GPU and
add it to the shifted Jacobian matrix. We found that while this approach was a bit
faster with small number of batches the memory bandwidth demands with large batch
sizes resulted in poor performance and recomputing the mass term on-the-fly on the
GPU was faster and used less memory.

2.2.2. Shared memory. The batch solvers offer the opportunity to place data
into shared memory explicitly instead of relying on the cache system to pull data from
global memory. Shared memory tends to be partitioned into a user managed partition
and a system cache partition. PETSc, like the Kokkos Kernels batch solvers, fills the
user shared memory space with as many Krylov work vectors as will fit, prioritizing
vectors appropriately, and relying on the system to manage the rest. We observe that
the cache system is effective, with only a small performance increase from explicit
use of shared memory. The matrix construction also explicitly places data in shared
memory, such as the accumulation of integrals for D and K in (2.3), as is described
in §III.D and §III.E of [1] .

2.3. Coordinate systems. The Landau integral is inherently three dimen-
sional, but in a strong magnetic guide field, a gyrokinetic approximation allows for
the use of cylindrical coordinates, x⃗ = (r, z), to reduce the 3D problem to a 2D com-
putation, or in velocity space 2V , and (2.3) is modified accordingly (§III.A [1]). The
z coordinate is aligned with the magnetic field and is referred to as v∥. Likewise r
is referred to as v⊥. Both the 2V and full 3V models are investigated in this report.
The 3V model is required for extension to relativistic regimes [4, 6, 23], but 2V is the
focus of performance optimization and is currently practical [10].

2.4. The Vlasov-Maxwell-Landau system. While the collision operator in
this paper can be used as-is, it is intended for use within a fully kinetic model, such as
the Vlasov-Maxwell-Landau system, the fundamental model of magnetized plasmas
[26, 16]. The density for each species is evolved in phase space, using x⃗ for the spatial
coordinate and v⃗ for the velocity coordinate, with up to three configuration space
dimensions and three velocity space dimensions (6D or 3X + 3V) according to

dfα
dt
≡ ∂fα

∂t
+

∂x⃗

∂t
· ∇xfα +

∂v⃗

∂t
· ∇vfα =

∑
β

C [fα, fβ]αβ .

Maxwell’s equations provide electro-magnetic acceleration forces in the ∂v⃗/∂t term.
The evolution of the system is split between a global symplectic time evolution of

4

the Vlasov-Maxwell system and a velocity space evolution of the collision operator.
This paper focuses on the performance and verification of the collision operator. Our
test problems, which are examples in PETSc, assume ∇x = 0 and ∂v⃗/∂t = a = 0.
However ∂v⃗/∂t terms are folded into the collision operator for a plasma resistivity
verification test where a constant electric field is applied, inducing a current that is
measured and the effective resistivity compared to the NRL Plasma Formulary [1].

3. Multiple grids and batching. Separate grids for each species simplify
meshing because only a single scale needs to be resolved for the near-Maxwellian
distributions common in plasmas, and adaptive meshing is less critical than if a single
grid is used [2]. Additionally, species with similar thermal speeds, such as with many
ionization states of impurities, can share a grid and amortize the cost of the Landau
tensor [12], which is substantial in 2V (see Appendix in [12]).

Figure 2 shows three block-structured AMR grids used for the 10 species example
in §4, with an electron grid, a light ion and heavy ion grid, plotted with a Maxwellian
distributions in the axisymmetric coordinate system. Note the different scales on each
of the grids, otherwise the images are identical.

(a) electrons (b) Deutarium (c) Tungsten

Fig. 2: Three grid example with Maxwellian distributions with scales for each species
group. (Linear interpolation in Visit results in visualization artifacts)

3.1. Batching and aggregation. Kinetic applications commonly use operator
split time integrators, where the symplectic Vlasov system evolves the full phase space
distribution and the metric collision operator evolves the velocity space distribution
separately at each spatial grid point. This algorithm has a high degree of parallelism
and is well-suited to modern hardware with large numbers of simple processing ele-
ments (PEs). Batching refers to writing algorithms in a single, or a few, kernels that
run asynchronously on PEs so as to fully exploit available parallelism in the algorithm.
In the Landau operator the computation and assembly of element “stiffness” matrices
and the subsequent linear solve are amenable to batching.

An alternative to batching is to aggregate the many small systems into a single
system that can use sparse linear algebra operators in vendor libraries or higher level
libraries like PETSc. Aggregation requires block diagonal matrices as illustrated in
Figure 1. The aggregated methods use separate kernel launches for each primitive
operation such as a matrix-vector product. The time integrators use high-level op-
erations that are not compute intensive, are not iterative, and with adaptive time

5

stepping require global synchronization, and therefore aggregation is appropriate.
Nonlinear solvers also use high-level operations and can be aggregated effectively,
but the asynchronous processing of batching would benefit problems with nonhomo-
geneous vertex problems. We currently use PETSc’s (aggregated) nonlinear solvers –
batching is the subject of future work.

3.2. Linear solvers and batching. Iterative solvers lend themselves to both
aggregated and batched solvers. The sparse matrix-vector product kernels in iterative
solvers are amenable to vector processing, and with few data dependencies they are
well-suited to modern accelerators. Aggregation solvers compute residuals, solve linear
systems, and update solutions with traditional high-level sparse linear algebra on
systems composed of aggregated small systems. Batch solvers require writing the
entire solver and preconditioner in device kernel code. Batch solvers have several
advantages in both performance and accuracy: the entire solve requires a single kernel
launch, each solve can run asynchronously, exiting the kernel as soon as it converges to
be immediately replaced with another solve by the scheduler, and (unwanted) global
synchronization is avoided. Aggregate solvers merge the systems together with a
single (L2 norm) convergence test, which obscures the residual of each system. Batch
solvers maintain the semantics of the Krylov method for each system. Batched sparse
solvers are available in the PETSc, Kokkos Kernels and Ginkgo libraries [18, 14].

In addition to code reuse, the aggregation approach has the advantage of being
able to run effectively on a larger range of problem sizes because an individual linear
system can run on just part of a PE or multiple PEs, transparently. Note, Kokkos
Kernels and Ginkgo batch solvers support scaling down with multiple problems per
thread group, but the PETSc batch solver does not. For scaling up, NVIDIA provides
cooperative groups since CUDA-9 and the new Hopper architecture introduces hard-
ware support for inter-PE communication called a thread block cluster that should
allow for Kokkos to increase the size of its thread groups to use 16 SMs in the future.
The 3V solves in §4.1.2 can be seen to suffer from this scaling up problem.

4. Landau time advance performance. The vast majority of the time in the
full Landau time advance is spent in matrix construction and linear solves (e.g., Table
5), and the high-level timings in this section, and §7, focuses on these two phases. §8
analyzes low-level hardware utilization. This section uses a 10 species model prob-
lem to investigate throughput with respect to batch size and 2V vs 3V in §4.1, and
component times with batched and aggregate linear solves in §4.2. §7 investigates
component times with a two species anisotropic relaxation test with respect to order
of the finite space with tensor and simplex elements. The test harness replicates the
model problem to create a batch of problems in each MPI process, to mimic an appli-
cation. Each NVIDIA GPU or AMD GCD on a compute node is driven by one MPI
process.

A 10 species model problem. The model problem is a deuterium plasma with the
addition of eight species of tungsten with different ionization states. This resembles
a fusion energy science benchmark for plasma models with impurities. The electrons
and deuterium each have a dedicated grid and the tungsten species share one grid, for
a total of three block-structured AMR grids as shown in Figure 2. One level of AMR
refinement about the origin is used with a 4 × 2 and a 4 × 4 × 4 initial grid, in 2V
and 3V respectively, resulting in 14 (Q3 elements) in 2V and 120 (Q2 elements) in
3V . We have observed that these grids are sufficient to converge a plasma resistivity
test to within about 1% of the fully converged state [1]. Each problem has 10 linear
systems, one for each species, with 142 equations and 22.2 average non-zeros per row,

6

in 2V , and 1,045 equations with an average of 54.0 non-zeros per row in 3V . Each
distribution is initialized with a Maxwellian with a given thermal temperature. An
implicit backward Euler time integrator with electron temperature initialized to twice
that of the ions is run toward equilibrium for ten time steps.

4.1. Throughput experiment. This section analyzes the throughput of the
entire Landau time advance as well as that of the linear solvers, with respect to batch
size for both the 2V and full 3V , and for batched and aggregate solvers. Newton
throughput is defined as the number of Newton iterations in the entire simulation
times the batch size per device times the number of devices per node, divided by the
total run time, which includes the Jacobian and mass matrix construction, the linear
solve, and some linear algebra in the control logic of the time integrator and nonlinear
solver, with a (CPU) setup phase that is amortized by the solve phase. Given that all
tests use the same Landau solver with a slightly different linear solver, one could use
many quantities of interest, such as flop rate, but Newton iterations is chosen because
it is relevant to application scientists. Solver throughput is defined similarly, with the
number of linear solves (with 10− 15 per nonlinear solve) divided by the time spent
in the linear solve phase only.

Each of these problems requires a linear solve per species, resulting in ten batched
linear solves for each problem in the batch. Two linear solvers are considered: a
batched TFQMR solver in PETSc, written in Kokkos, and an aggregated TFQMR
solver that uses Kokkos Kernels linear algebra primitives within the PETSc frame-
work. Jacobi preconditioning is used throughout. Two architectures are examined:

• one node with four NVIDIA A100 Tensor Core GPUs with 256GB of memory,
the Perlmutter machine at NERSC and,

• one node with four AMD MI250Xs, each with 2 Graphics Compute Dies
(GCDs), with ROCm 5.1, the Crusher machine at ORNL.

4.1.1. Newton iteration throughput. Table 1 shows the 2V Newton iteration
throughput, and Table 2 shows the 3V data, as a function of batch size with the batch
linear solver and aggregated linear solver for the A100 and MI250X.

Table 1: 2V Newton throughput: NVIDIA A100 (left) and AMD MI250X (right)

The next section investigates the linear solver throughput, but this data shows
that the A100 is more than 2x faster than the MI250X in 2V and about 50% faster
in 3V. Note that the GPU is pretty well saturated with a batch size of 128 in 2V and
16 in 3V , and this corresponds to 57,344 and 42,240 integration points per GPU, and
thus 2V and 3V saturate with a similar number of total integration points.

7

Table 2: 3V Newton throughput: NVIDIA A100 (left) and AMD MI250X (right)

4.1.2. Linear solver throughput. Table 3 shows the 2V linear solver through-
put, and Table 4 shows the 3V throughput data, as a function of batch size with the
batch linear solver and aggregated linear solver for the A100 (left) and MI250X (right).

Table 3: 2V Linear solver throughput: NVIDIA A100 (left) and AMD MI250X (right)

Table 4: 3V Linear solver throughput: NVIDIA A100 (left) and AMD MI250X (right)

This data shows that the batched TFQMR solver over 20x faster than the aggre-
gated solver in 2V and the MI250X and over 2x faster on the A100, and that the two
batch solvers have similar performance. The A100 batch solver is almost 2x faster in

8

3V , but the aggregated solver is faster than the batch solver on the A100. The batch
solver is 3.5x faster than the aggregate solver on the MI250X. This under-performance
of the batched solver in 3V illustrates the difficulty in fitting the problem to a fixed
hardware resources as discussed in §3.2. The linear solver also does not saturate as
clearly as the Jacobian dominated Newton iteration throughput.

4.2. Component times. Tables 5 and 6 show the component times on the A100
in 2V and 3V , respectively, including mass matrix (“Mass”), Landau Jacobian (“Ja-
cobian”), linear solver (“Solve”), the total time and the sum of the Krylov iterations
for the aggregate solver and the sum of the maximum number of iterations of any sys-
tem for the batch solver (see §4.2.1 for the batch solver iteration count distribution).
Tables 7 and 8 show the same data on the MI250X in 2V and 3V , respectively.

Table 5: 2V Component times (batch size = 256), NVIDIA-A100

Component Jacobian Mass Solve Total Krylov iterations

Batch TFQMR 1.57 0.22 0.58 2.44 3,648
Aggregated TFQMR 1.57 0.22 1.76 3.69 4,015

Table 6: 3V Component times (batch size = 32), NVIDIA-A100

Component Jacobian Mass Solve Total Krylov iterations

Batch TFQMR 29.69 3.00 2.33 35.08 2,785
Aggregated TFQMR 29.67 3.00 1.51 34.31 2,326

Table 7: 2V Component times (batch size = 128), AMD-MI250X-GCD

Component Jacobian Mass Solve Total Krylov its

Batch TFQMR 4.28 0.29 0.49 5.08 3,642
Aggregated TFQMR 4.31 0.29 9.54 14.10 4,011

Table 8: 3V Component times (batch size = 64), AMD-MI250X

Component Jacobian Mass Solve Total Krylov iterations

Batch TFQMR 168.16 18.07 11.28 196.81 2,796
Aggregated TFQMR 168.62 18.06 39.51 210.84 2,326

The balance of time between the Jacobian and linear solver is skewed toward the
Jacobian construction on the AMD relative to the NVIDIA data. This is partially
due to the AMD accelerator outperforming the NVIDIA node in the linear solver, but
the MI250X node underperforms in the matrix construction.

4.2.1. Batch solver iteration distributions. The Krylov iteration counts for
the batched solvers in Tables 5, 6, 7 and 8 obscures the distribution of iterations
within the 10 linear species solve. Table 9 shows average iterations per linear solve for

9

aggregate (Agg.) and batch (Bat.) solvers in 2V and 3V , with batch solver iteration
count averages for each species 1-10, with one time step of the test problem. The 2V
batch size is 256 and the batch size in 3V is 32.

Table 9: Average linear solver iteration counts: aggreate, batched and each of ten
species in the batched solve

V Agg. Bat. 1 2 3 4 5 6 7 8 9 10

2 23.9 11.8 23.6 10.0 11.2 11.2 10.1 10.1 9.9 11.0 10.0 9.2
3 16.6 14.8 14.0 15.9 17.0 16.2 15.8 15.3 15.4 15.5 15.1 14.8

In 2V the electrons (first species) have a much higher iteration count, likely due
to the higher speed of electrons (see Figure 2) and other implicit Landau solvers have
noticed this phenomenon [14]. The 3V data, however, does not exhibit this behavior,
which is not understood.

5. Unstructured mesh generation with simplex and tensor elements.
The finite element formulation and implementation in this work supports unstructured
simplex (triangles) and tensor cell (quadrilaterals and hexahedra) meshes as well
as the block-structured AMR meshes used in §4. This section focuses on simplex
mesh generation and presents the unstructured quadrilateral meshes newly available.
Simplex meshes are read from a file and quadrilateral mesh can be similarly input,
but the solver provide simple quadrilateral mesh generation (§5.2).

5.1. Simplex mesh generation. The simplex meshes are constructed on a
semicircle centered at (0, 0) with a radius of one. They are scaled within the solver
to obtain the final dimensions. Unstructured meshes have been generated using
simmetrix-simmodsuite version 18.0-220913 [24].

Table 10: Mesh quality metrics for each of the unstructured meshes.

Aspect Ratio Skew
cells P Max Median Max Median

144 2 2.618 1.512 0.552 0.161
68 3 2.926 1.762 0.650 0.246
24 4 2.801 1.304 0.254 0.097

Each model is partitioned at z = 0 which promotes a more symmetric mesh
construction. Additionally, the model is partitioned at r = 0.45. We found that high
aspect ratio elements near the boundary of the Maxwellian distribution caused a loss
in accuracy. Mesh construction required a balance between the number of elements
in the outer region (r > 0.45), largely controlled by gradation rate, and aspect ratio
of these elements. We found that prioritizing the aspect ratio criteria over other
element shape metrics during the mesh optimization and smoothing phases improved
the overall mesh quality and solution accuracy. The shape quality metrics for the
meshes used herein (Fig. 3) are given in table 10, where the aspect ratio is the ratio
of the length of the longest triangle edge to the shortest triangle edge and the skew
is defined as

(5.1) Skew =
Aopt −A

Aopt
.

10

For 2D simplices the optimal area Aopt = 3
√
3/4R2 where R is the circumcircle

radius corresponds to the equilateral triangle. The skew ranges from 0 (equilateral) –
1 (degenerate), where quality meshes of complex geometries typically have values of
Skew < 0.8.

These meshes are read into the solver from a file. The three meshes used for the
anisotropic relaxation model (§6) with the initial electron distribution is shown in
Figure 3.

(a) P2 grid (b) P3 grid (c) P4 grid

Fig. 3: Semi-circular grids for the three orders of finite elements (P2, P3 and P4)
tested with Maxwellian distribution of electrons in units of the thermal speed (Linear
interpolation in Visit results in visualization artifacts)

5.2. Unstructured quadrilateral meshes. Tensor cell meshes have the ad-
vantage that our non-conforming AMR package, p4est, can accommodate unstruc-
tured tensor cells, quadrilaterals and hexahedra, but not simplicies. Nonconforming
meshes can coarsen faster while maintaining well-shaped elements for better accu-
racy, which helps to reduce the number of cells required for a given level of accuracy.
The disadvantage of tensor cells is that mesh generation is much less automated.
Velocity space distributions are, however, relatively simple in many cases with near-
Maxwellian distributions. The same adaptivity strategies developed for the block
structured meshes apply to unstructured tensor cell meshes, such as refinement about
the origin (eg, Figures 6f) and the parallel axis (eg, Figures 6a-6e). Figure 4 shows
an example of a quadrilateral mesh used in the verification test in §7.2.

6. Anisotropic relaxation verification test. A plasma resistivity test was
presented in previous work to verify the Landau collision operator and place con-
straints on the mesh sizes (§IV.B in [1]). Plasma resistivity does not test the collision
rate, the ναβ term in (2.1), nor does it include anisotropic distribution functions. An
anisotropic relaxation test, where each species of a deuterium plasma is initialized
with different parallel and perpendicular temperatures, was reported by Hager et al.
[10] and is the basis of this test.

11

(a) Q2 (b) Q3 (c) Q4

Fig. 4: Semi-circular grids for electrons with tensor elements, from the Q2, Q3, Q4
test in §7 (linear interpolation in Visit results in visualization artifacts).

6.1. Model problem. A deuterium plasma is initialized with an anisotropic
distribution with respect to mean parallel and perpendicular speed within each species
and between the two species, and evolved to equilibrium. The modified Maxwellian
distribution is defined with an anisotropic parameter α (α = 1.3 herein) as

(6.1) fs
(
v∥, v⊥

)
=

ns

α

(
1

πθ

)3/2

exp[−
(v∥ − us)

2 + v2⊥/α

θ
],

with θ = 2kbTs/msv
2
0 where ns is the number density of species s (ns = 1020 herein)

and for the shifted case the shift us = −1.5 · sgn(s) ·m0/ms with sgn(s) = −1 for
electrons and sgn(s) = 1 for ions, which results in zero net parallel momentum and a
significant shift of the electrons.

The total temperature is defined as Ts = (2 · T⊥ + T∥)/3 and, in a finite element
context, is computed with

Ts

(
v∥, v⊥

)
≡

msv
2
0

∫
dvfs

(
v⊥, v∥

)
· v⊥ ·

((
v∥ − us

)2
+ v2⊥

)
3
∫
dvfs

(
v⊥, v∥

)
· v⊥

.

These temperatures are evaluated in MKS units in the code and scale by ∼ 6.24e×1018
to convert from Joules to electron volts (eV). Likewise the parallel and perpendicular
temperatures are computed according to

Ts,⊥
(
v∥, v⊥

)
≡

msv
2
0

∫
dvfs

(
v⊥, v∥

)
· v⊥ · v2⊥

2
∫
dvfs

(
v⊥, v∥

)
· v⊥

and

Ts,∥
(
v∥, v⊥

)
≡

msv
2
0

∫
dvfs

(
v⊥, v∥

)
· v⊥ ·

(
v∥ − us

)2∫
dvfs

(
v⊥, v∥

)
· v⊥

.

These definitions generate an electron parallel temperature Te,∥ = 300 eV, perpen-
dicular temperature Te,⊥ = 390 eV, and ion parallel temperature Ti,∥ = 200 eV,

12

perpendicular temperature Ti,⊥ = 260 eV, as reported by Hager et al. [10], and as
can be seen at t = 0 in the plots in Figure 5. Two cases of anisotropic initial condi-
tions are investigated: 1) non-shifted us = 0 and 2) shifted ue = 1.5, ui = 1.5(me/mi),
me/mi ≈ 1/3, 671.

6.2. Comparison with analytical results. The NRL Plasma Formulary pro-
vides formulas for inter and intra-species thermalization rates (Appendix B) that
generate analytical temperature histories for comparison with the computed results.
The Plasma Formulary also provides formulas for Coulomb logarithms, which are
used for both the computed and analytical temperature histories. All three relevant
Coulomb logarithms are between 6.8 and 7.5 in this study.

Figure 5a shows the temperatures as a function of time and the electron-electron
collision period t0 in the non-shifted cases, with P3 elements. The discrepancy be-
tween the computed and NRL results is due to the fact that the NRL rates are based
on Maxwellian distributions. While this test thermalizes to a Maxwellian distribution,
the plasma is significantly non-Maxwellian during the evolution. Our results are in
line with other published results [10, 27, 21].

(a) P3, 34 cell per species semi-circular mesh (b) Shifted Bi-Maxwellian case

Fig. 5: Anisotropic relaxation test temperature vs. time of the P3 element case,
plotted with an analytical NRL results for the non-shifted case (left), and the shifted
Maxwellian case with a block-structured AMR grid and Q2 elements (right)

6.3. Qualitative observation of the shifted Maxwellian dynamics. Figure
5b shows a solution to the shifted Maxwellian case, illustrated in Figure 6, where the
kinetic energy from the parallel flow is first transmitted to the parallel temperature
of the electrons via collisions, followed by the isotropization of the electrons, and
then the ion isotropization and the complete thermalization of the plasma. Note, the
kinetic energy in the parallel flow or drift velocity is not used in the temperature
calculation, resulting in an increase temperature as this case thermalizes.

The dynamics of the shifted Maxwellian thermalization is of interest in developing
an intuitive understanding of the physics of collisions. Figure 6 shows a detail of
the electron distribution function for several early times in the thermalization of the
shifted problem on a highly refined mesh using block-structured mesh adaptivity.
Figures 6a-6c show the initial thermalization of electrons, followed by the shift of the
bulk of the electrons to eventual (near) thermalization in Figures 6d-6e. Figure 6f
shows the initial ion distribution (note, electron and ion grids have different topology
and scaling). The times of each figure refers to the temperature histories, normalized

13

with t0, shown in Figure 5b.

(a) t = 0 electrons (b) t = 0.33τe (c) t = 1.37τe, bi-modal

(d) t = 2.49τe electrons (e) t = 23.1τe (f) t = 0, ions

Fig. 6: Detail of the electron distributions, shifted Maxwellian deuterium plasma, ions
near origin: (a) initial condition, (b) penumbra in shift and early Maxwellian popula-
tion, (c) bi-modal distribution, (d) mid-thermalization, (e) near full thermalization,
(e) initial condition of ions

7. Performance results for the anisotropic relaxation test. This section
investigates the performance of the anisotropic relaxation test with the two single node
configurations in §4, using the unstructured grids shown in Figure 3, with P2 − P4
triangle elements, and the quadrilateral meshes in Figure 4 with Q2 − Q4 elements.
The domain radius is optimized by hand for the P2 grid and uses a domain size of
5.5, but otherwise a radius of 5.0 is used. The quadrilateral meshes are optimized to
some extent, although Q2 elements are not served well with the current meshing.

A scalar error metric is desired to understand costs versus accuracy and to con-

14

strain the degree of mesh refinement. To this end, error is defined as the difference
in any of the four measured temperatures from the correct value of 300 eV at the
converged state: error ≡ maxs∈[e,i],d∈[∥,⊥]|Ts,d − 300|, and is listed in Tables 11, 12
and 13. This is not a rigorous metric because the two species grids are nondimension-
alized with the initial parallel thermal speed of the single species on the grid, which
are different. While both species have the same thermal speed and (Maxwellian)
distribution at equilibrium, different computational domains results in different dis-
cretization errors in the temperature integrals. We observe decent correlation of this
metric and refinement, but these results should be verified with a qualitative assess-
ment of the temperature histories compared to the NRL data (see Appendix C). We
observe a decent correlation between this metric and the qualitative assessment of the
temperature histories.

7.1. Solver stack. An adaptive three-stage Runge-Kutta time integrator with
an initial time step of 0.001, in units of the electron-electron collision time τe, is
used to capture the early dynamics accurately. The time step quickly increases to an
imposed maximum value of 1.0 as the plasma reaches equilibrium. Each of the three
stages uses a nonlinear solve with a relative residual tolerance of 10−14 and all three
moments of interest, density, parallel momentum, and energy, are conserved to this
scale in each time step. The total simulation (T = 14, 000τe and > 14, 000 time steps)
conserves energy to about 12 digits.

7.2. Anisotropic relaxation test performance data. The AMD MI250X re-
sults use ROCm 5.2 and on the Frontier machine and the NVIDIA A100 results use
the Perlmutter machine. Both CUDA and HIP allow for specifying launch bounds
at compile time, defined as <maxThreadsPerBlock, minBlocksPerMultiprocessor>

and <maxThreadsPerBlock, minWarpsPerEU> respectively. We found the default
launch bounds of < 1024, 1 > were not ideal, especially for the MI250X. We found
that < 256, 1 > was reasonable for the MI250X and that < 256, 2 > was reasonable
for the A100. A batch size of 128 on AMD with 8 MPI processes and 256 on NVIDIA
with 4 MPI processes is used, resulting in 1,024 full anisotropic relaxation problems
running simultaneously. These 1,024 problems are identical and mimic an application
setting where multiple spatial points are processed simultaneously.

Three simplex cases are investigated, P2, P3 and P4 elements with the grids
shown in Figure 3, as well as three quadrilateral cases, Q2, Q3 and Q4 elements with
the grids in Figure 4. Tables 11, 12 and 13 list the number of cells, the number of
integration points (IPs), the number of equations in the matrix for each problem (with
two species, each linear system is one half this size), the average number of non-zeros
per row, the order P or Q of the finite elements, the matrix construction and linear
solver times, the total run time, and the percent error.

Table 11: Anisotropic thermalization timings (seconds) on 4 NVIDIA A100 GPUs

cells # IPs # eqs nnz/row P Jacobian Solve Total time error (%)

144 864 318 10.8 2 4,930 424 5,424 0.67
68 816 350 15.5 3 4,785 495 5,352 0.18
24 384 226 20.8 4 1,376 544 2,009 0.84

This data shows that the A100 and MI250X performance is comparable with the
solver running faster on the A100 and the matrix construction running faster on the

15

Table 12: Anisotropic thermalization timings (seconds) on 8 AMD MI250X GCDs

cells # IPs # eqs nnz/row P Jacobian Solve Total time error (%)

144 864 318 10.8 2 3,948 660 4,746 0.67
68 816 350 15.5 3 3,510 826 4,421 0.18
24 384 226 20.8 4 959 943 1,982 0.84

Table 13: Anisotropic times (seconds) using tensor elements on the NVIDIA node

cells # IPs # eqs nnz/row Q Jacobian Solve Total time error (%)

36 324 154 14.3 2 1,189 236 1,543 2.83
24 384 236 22.7 3 1,447 328 1,897 0.77
12 300 226 31.4 4 1,375 456 1,953 0.64

MI250X node. These times correlate with the accuracy with P4 being the fastest, by
far, and P3 being the most accurate on the simplex grids, and the quadrilateral grids
being a bit more efficient than the simplex grids with the exception of the Q2 case.

8. Hardware utilization. This section analyses the efficacy of the hardware
utilization in the results in §4 and §7. The throughput performance study in §4 is
analysed on the A100 with NVIDIA’s Nsight Systems in §8.1 and the anisotropic
relaxation test in §7 is analysed on the AMD MI250X with the TAU performance
tools in §8.2 [22]. One of the four A100 GPUs and one of the eight MI205X GCDs
are used with one MPI process on our nodes for analysis.

PETSc supports the use of these two architectures with both CUDA and HIP
back-ends as well as a Kokkos Kernels back-end that supports both architectures.
The Kokkos Kernels back-end, using the built-in Kokkos numerical kernels, is used
for all performance results herein. The codes used for these tests are examples in
PETSc. Instructions for reproducing these results, the raw data, and the scripts that
generate the plots are publicly available (Appendix A).

The NVIDIA’s Nsight Systems data in §4 shows that 97% of the total run time is
spent on the GPU and 100% flops in the full collision time advance are executed on the
device, after the grid setup phase. The linear solver and Jacobian construction kernels
are written in Kokkos, the nonlinear solver and time integrator use the appropriate
Kokkos Kernels sparse matrix a vector back-ends.

8.1. NVIDIA hardware utilization. The analysis of the hardware utilization
in the A100 kernel is divided into the analysis of the Jacobian matrix and the mass
matrix construction, and the batch solver in 2V and 3V on the experiments in §4.
The NVIDIA Nsight Compute tool is used to gather several hardware metrics from
the largest batch size in Tables 5 and 6. Table 14 presents some of the raw Nsight
Compute data.

Some points can be seen in this data.
• The Jacobian kernel, with a high arithmetic intensity (AI) of 55.8 with respect
to DRAM memory movement in 2V , is not a simple loop of fused multiply
add (FMA) instructions as can be seen from lines 4-6 with only 62% of the
flops in FMA instructions. This limits the achievable percent of theoretical
peak for this algorithm.

• The flop rate (line 7) is about 2x higher in 2V than 3V . This is at least

16

Table 14: Nsight Compute data: Jacobian (Jac), Mass (M), Solver (Sol)

Data Jac-2V M-2V Sol-2V Jac-3V M-3V Sol-3V

DRAM (GB/s) 75.80 1230 28.18 38.33 946 538
L1 (TB/s) 1.92 3.58 1.43 1.92 2.39 1.59
L2 (GB/s) 747 4010 881 266 2810 1870
dadd/cycle 163 155 156 76.20 91.80 35.12
dfma/cycle 1155 0 168 546 0 36.11
dmul/cycle 526 329 64.50 305 198 3.14
TFlop/sec 4.23 0.68 0.89 2.06 0.41 0.16
AI-L1 2.20 0.19 0.50 1.07 0.17 0.10
Roofline-L1 % 43.60 18.27 9.18 21.27 12.19 8.11
AI-L2 5.66 0.17 0.72 7.75 0.15 0.08
Roofline-L2 % 43.60 54.20 16.70 21.27 38 25.30
AI-DRAM 55.80 0.56 23.60 53.80 0.43 0.29
R.F.-DRAM % 43.60 63.60 9.18 21.30 48.90 27.80

partially due to the Landau kernel U in (2.1) being more complex with a
higher AI in 2V , but this requires futher investigation.

• There are few flops and no FMAs in the mass matrix as this is essentially all
assembly.

• The solver AI-DRAM is very high in 2V (23.6) and low in 3V (0.29). The
theoretical AI of the solver (no cache) is about 1

6 . This data indicates that
the solves are fitting in cache well in 2V but not at all in 3V .

Tables 15 and 16 tabulate conclusions and notes from the Nsight Compute data.

Table 15: Nsight Compute Bottlenecks

Jacobian-2V Mass-2V Solve-2V

FP64 pipe (57%) L2 (70%), L1 and instruction latency bound: FP64 pipe (31%),
DRAM (64%) L1 (43%) instruction issue (39%) L1 (24%)

Table 16: Nsight Compute Notes

Jacobian-2V Mass-2V Jacobian-3V

Roofline lower than low roofline peak b/c 1) low pipe Low pipe utilization
FP64 pipe utilization utilization due to being L1 latency due to L1 latency
b/c DFMA instruction is bound. 2) instruction dominated by bound
62% of all FP64 instructions branch and integers. FP64 instructions

≈ 10% of total instructions

8.2. AMD hardware utilization. The analysis of the hardware utilization of
the AMD MI250X uses the anisotropic relaxation test in §7, which has two grids with
one species each (S = 1, 1), as opposed to ten species and three grids (S = 1, 1, 8) in
NVIDIA model problems. These two tests have different complexity profiles in the
Jacobian kernel (Algorithm 1, [1]), with the the substantial work complexity and low
memory complexity, in 2V , of the Landau tensor ([12], Appendix A) being amortized

17

in multi-species per grid problem. The inner loop accesses data proportional to S, for
the field and gradient field data, imposing more register pressure in the eight species
per grid case, and the arithmetic intensity is nominally higher in the eight species case
with reuse of this field data. The individual grids are slightly larger in the anisotropic
relaxation test used for the AMD studies, resulting in lower batch size requirements to
saturate the hardware. Both studies increase the batch size to observe the saturation
of the hardware.

Table 17: Rocprof / TAU data: Jacobian (Jac), Mass (M), Solver (Sol).

Data Jac-2V M-2V Sol-2V

Workgroups 256 256 256
LDS usage 512 16896 512
Scratch usage 248 176 0
Vector registers used 120 56 48
Scalar registers used 120 120 112

Effective LDS BW GB/s 744 764 1638
Effective vL1D BW GB/s 3814 4640 2761
Effective L2 BW GB/s 216 722 393
Effective HBM BW GB/s 107 622 188

AI-vL1D < 0.005 < 0.005 < 0.005
AI-L2 0.03 < 0.005 < 0.005
AI-HBM 0.07 < 0.005 < 0.005
TFLOP/s 3.85 0.50 0.40

L2 Cache Hit % 77.07 57.22 74.32
vL1D Cache Hit % 94.33 84.83 85.77

Vector Inst. % 74.63 52.96 55.56
Scalar Inst. % 14.82 22.61 18.49
Branch Inst. % 2.05 4.34 7.28
Vector Memory Inst. % 4.33 10.83 4.15
LDS Inst. % 1.22 2.20 5.15

Avg. Dependency Wait Cycles % 55.22 72.8 81.86
Avg. Issue Wait Cycles % 10.60 14.66 1.77
Avg. Active Issue Cycles % 37.18 12.54 16.37
Avg. Active Wavefronts 58.07 55.78 55.82

The AMD nodes have eight GCDs, each with 110 Compute Units that are each
similar to the 108 Streaming Multiprocessors on NVIDIA A100. As with the A100, the
analysis of the hardware utilization in the MI250X kernel is divided into the analysis
of the Jacobian matrix and the mass matrix construction. The TAU Performance
System and Rocprof tools are used to gather several hardware metrics from the P4
test in Table 12 and a batch size of 64. Table 17 presents some of the raw Rocprof
data, post-processed with a Python script written with guidance from AMD engineers
for interpreting the metrics.

Because the set of available AMD metrics differ from that provided by NVIDIA,
different points can be seen in this data, but it is still a useful comparison.

• Both as an absolute value and relative to the A100 results, the Jacobian
kernel has low arithmetic intensity (AI-HBM, computed as total FLOP /
effective bandwidth) of 0.07 with respect to DRAM memory movement in
2V . The kernel is apparently suffering from the cost of the relatively smaller
L1 cache of the MI250X, relatively low L2 hit rate, and register spilling to
scratch despite the application of launch bounds. This limits the achievable

18

performance for this algorithm.
• Despite the lower algorithmic intensity, the flop rate (TFLOP/s) for all three
kernels is still comparable to the performance on the A100, although slightly
lower.

• The solver AI-DRAM is low in 2V (< 0.005) relative to the A100 data.
This indicates that the solves are not fitting in cache in 2V . The number of
nonzeros in each of the linear systems is similar in this P4 unstructured test
and the Q3 semi-structured grids of the NVIDIA test data.

• All three kernels are suffering from relatively low L2 cache hit rate, while the
Mass and Solver kernels are suffering from a relatively low L1 cache rate.

9. Conclusion. This report concludes a series of papers on a grid-based struc-
ture preserving Landau collision operator with advanced numerical methods and a
performance portable implementation in the PETSc numerical library [12, 2, 1]. This
Landau solver supports multiple independent grids to efficiently resolve the domain of
each species group, with multiple species per grid for species with like velocity profiles,
and high-order accurate finite element discretizations with static, fully unstructured
and block-structured, adaptive mesh refinement. A new batch solver has been intro-
duced and experiments with a well optimized code on an NVIDIA A100 and an AMD
MI250X node is presented. A new anisotropic relaxation test is presented that shows
good agreement with analytical models and other published results.

The entire implicit time advance, after an initial setup phase, is written in the
Kokkos programming language, and good hardware utilization is demonstrate, espe-
cially given the relative complexity of the kernel. We observe 57% FP64 pipe utiliza-
tion (i.e., theoretical peak flop rate) on the NVIDIA A100 in the main computational
kernel, the 2V Jacobian matrix construction, and comparable overall performance on
the AMD MI250X. Many expressions in the Landau kernel have three or four multiply
operands resulting in only 62% of the flops being in fused multiple add instructions
on the A100. Thus, the 57% theoretical peak is about 70% of the theoretical peak for
this algorithm on this hardware.

Both the Landau time advance and batched linear solvers are publicly available
in the PETSc (Portable Extensible Toolkit for Scientific Computing) numerical li-
brary, and the two performance test codes are examples in PETSc (Appendix A).
This grid-based method complements new full 3V particle-based Landau operators
currently under development [27, 11, 21], and this grid-based method can be used with
PIC codes with new conservative translation operators between particle and grid rep-
resentations of distribution functions [21]. Future work involves understanding the
entropy generation of this translation method, which is a type of coarse-graining used
to add numerical entropy [7, 8, 25].

Acknowledgments. This work was supported in part by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific
Discovery through Advanced Computing (SciDAC) program through the FASTMath
Institute under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National
Laboratory.

Appendix A. Artifact description and reproducibility.
PETSc output files with all data, provenance information, and reproducibility in-

structions for all tables and plots can be obtained from git@gitlab.com:markadams4/

batch_paper_data.git. This includes the python scrips that generates the plots
and run scripts, makefiles and PETSc resource files used to generate the data. The

19

landau_throughput_nsight directory has throughput and NVIDIA hardware utiliza-
tion data, and landau_anisotropic_shift has verification test data and AMD hard-
ware utilization data. The exact PETSc versions (SHA1) are in the data files, with the
provenance data, and any PETSc version from v3.19 should suffice to reproduce this
data. The two driver codes are in src/ts/utils/dmplexlandau/tutorials, ex1.c
(anisotropic temperature relaxation §7) and ex2.c (throughput studies in §4).

Appendix B. NRL Plasma Formulary isotropization rates.
The NRL Plasma Formulary provides relaxation evolution equations for inter and

intra-species thermalization [13], according to

dT⊥

dt
= −1

2

dT∥

dt
= −vαT (T⊥ − T∥),

where if A ≡ T⊥/T∥ − 1 > 0,

vαT =
2
√
πe2nα ln Λαα

m
1/2
α (kT∥)3/2

A−2

[
−3 + (A+ 3)

tan−1
(
A1/2

)
A1/2

]
.

The two species thermal equilibrium evolution equation is

dTα

dt
= v̄ (Tα − Tβ) ,

and

v̄ = 1.8× 10−19

√
memin0 ln Λei

(meTi +miTe)
3/2

sec−1.

Appendix C. Additional anisotropic relaxation test data.
Figure 7 shows anisotropic relaxation test data from the non-shifted Maxwellian

case with P2 and P4 elements, where inaccuracies are visible. Figure 8 shows aniso-

Fig. 7: Anisotropic relaxation test data from the P2 element case (left) and the P4
elements (right), plotted with analytical NRL model data

tropic relaxation test data on the semicircle quadrilateral mesh where the poor quality
of the Q2 mesh is clearly visible.

REFERENCES

20

Fig. 8: Temperature vs. time with unstructured quadrilateral meshes and Q2 element
case (left) and the Q4 elements (right), plotted with analytical NRL model data

[1] M. F. Adams, D. P. Brennan, M. G. Knepley, and P. Wang, Landau collision operator in the
CUDA programming model applied to thermal quench plasmas, in 2022 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2022, pp. 115–123, https://doi.
org/10.1109/IPDPS53621.2022.00020.

[2] M. F. Adams, E. Hirvijoki, M. G. Knepley, J. Brown, T. Isaac, and R. T. Mills,
Landau collision integral solver with adaptive mesh refinement on emerging architec-
tures, SIAM Journal on Scientific Computing, 39 (2017), pp. C452–C465, https://doi.
org/10.1137/17M1118828, http://epubs.siam.org/doi/abs/10.1137/17M1118828, https://
arxiv.org/abs/1702.08880.

[3] I. Aggarwal, A. Kashi, P. Nayak, C. J. Balos, C. S. Woodward, and H. Anzt, Batched
sparse iterative solvers for computational chemistry simulations on GPUs, in 2021 12th
Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA),
2021, pp. 35–43, https://doi.org/10.1109/ScalA54577.2021.00010.

[4] S. T. Beliaev and G. I. Budker, The Relativistic Kinetic Equation, Soviet Physics Doklady,
1 (1956), pp. 218–222.

[5] W. H. Boukaram, G. Turkiyyah, H. Ltaief, and D. E. Keyes, Batched QR and SVD
algorithms on GPUs with applications in hierarchical matrix compression, Parallel Com-
puting, 74 (2018), pp. 19–33, https://doi.org/https://doi.org/10.1016/j.parco.2017.09.001,
https://www.sciencedirect.com/science/article/pii/S0167819117301461. Parallel Matrix
Algorithms and Applications (PMAA’16).

[6] B. J. Braams and C. F. F. Karney, Differential form of the collision integral for a relativis-
tic plasma, Physical Review Letters, 59 (1987), pp. 1817–1820, https://doi.org/10.1103/
PhysRevLett.59.1817, https://arxiv.org/abs/physics/0501067.

[7] S. Brunner, E. Valeo, and J. A. Krommes, Collisional delta-f scheme with evolving back-
ground for transport time scale simulations, Physics of Plasmas, 6 (1999), pp. 4504–4521.

[8] Y. Chen and S. E. Parker, Coarse-graining phase space in δf particle-in-cell simulations,
Physics of Plasmas, 14 (2007), p. 082301, https://doi.org/10.1063/1.2751603, https://doi.
org/10.1063/1.2751603, https://arxiv.org/abs/https://doi.org/10.1063/1.2751603.

[9] H. C. Edwards, C. R. Trott, and D. Sunderland, Kokkos: Enabling manycore performance
portability through polymorphic memory access patterns, Journal of Parallel and Distrib-
uted Computing, 74 (2014), pp. 3202 – 3216, https://doi.org/https://doi.org/10.1016/
j.jpdc.2014.07.003, http://www.sciencedirect.com/science/article/pii/S0743731514001257.
Domain-Specific Languages and High-Level Frameworks for High-Performance Computing.

[10] R. Hager, E. Yoon, S.-H. Ku, E. F. D’Azevedo, P. H. Worley, and C.-S. Chang, A fully
non-linear multi-species Fokker–Planck–Landau collision operator for simulation of fusion
plasma, Journal of Computational Physics, 315 (2016), pp. 644–660, https://doi.org/10.
1016/j.jcp.2016.03.064, http://dx.doi.org/10.1016/j.jcp.2016.03.064.

[11] E. Hirvijoki, Structure-preserving marker-particle discretizations of Coulomb collisions for
particle-in-cell codes, Plasma Physics and Controlled Fusion, 63 (2021), p. 044003, https:
//doi.org/10.1088/1361-6587/abe884, https://doi.org/10.1088/1361-6587/abe884.

[12] E. Hirvijoki and M. F. Adams, Conservative discretization of the Landau collision integral,
Physics of Plasmas, 24 (2017), p. 032121, https://doi.org/10.1063/1.4979122, http://dx.
doi.org/10.1063/1.4979122, https://arxiv.org/abs/http://dx.doi.org/10.1063/1.4979122.

21

[13] J. D. Huba, NRL PLASMA FORMULARY Supported by The Office of Naval Research, Naval
Research Laboratory, Washington, DC, 2013, http://wwwppd.nrl.navy.mil/nrlformulary.

[14] A. Kashi, P. Nayak, D. Kulkarni, A. Scheinberg, P. Lin, and H. Anzt, Batched sparse iter-
ative solvers on gpu for the collision operator for fusion plasma simulations, in 2022 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 2022, pp. 157–167,
https://doi.org/10.1109/IPDPS53621.2022.00024.

[15] M. Kraus and E. Hirvijoki, Metriplectic integrators for the Landau collision operator, Physics
of Plasmas, 24 (2017), https://doi.org/10.1063/1.4998610.

[16] L. D. Landau, Kinetic equation for the Coulomb effect, Phys. Z. Sowjetunion, 10 (1936), p. 154.
[17] K. Liegeois, R. Boman, E. T. Phipps, T. A. Wiesner, and M. Arnst, GMRES with embedded

ensemble propagation for the efficient solution of parametric linear systems in uncertainty
quantification of computational models, Computer Methods in Applied Mechanics and
Engineering, 369 (2020), p. 113188, https://doi.org/https://doi.org/10.1016/j.cma.2020.
113188, https://www.sciencedirect.com/science/article/pii/S004578252030373X.

[18] K. Liegeois, S. Rajamanickam, and L. Berger-Vergiat, Performance portable batched
sparse linear solvers, IEEE Transactions on Parallel and Distributed Systems, 34 (2023),
pp. 1524–1535, https://doi.org/10.1109/TPDS.2023.3249110.

[19] J. Merson and M. S. Shephard, Using hierarchical parallelism to accelerate the solution of
many small partial differential equations, 2023, https://arxiv.org/abs/2305.07030.

[20] R. T. Mills, M. Adams, S. Balay, J. Brown, J. Faibussowitsch, T. Isaac, M. Knepley,
T. Munson, H. Suh, S. Zampini, H. Zhang, and J. Zhang, Petsc/tao developments for
early exascale systems, 2024, https://arxiv.org/abs/2406.08646.

[21] J. V. Pusztay, M. G. Knepley, and M. F. Adams, Conservative projection between finite
element and particle bases, SIAM Journal on Scientific Computing, 44 (2022), pp. C310–
C319, https://doi.org/10.1137/21M1454079, https://doi.org/10.1137/21M1454079, https:
//arxiv.org/abs/https://doi.org/10.1137/21M1454079.

[22] S. S. Shende and A. D. Malony, The tau parallel performance system, Int. J. High Perform.
Comput. Appl., 20 (2006), p. 287–311, https://doi.org/10.1177/1094342006064482, https:
//doi.org/10.1177/1094342006064482.

[23] T. Shiroto and Y. Sentoku, Structure-preserving strategy for conservative simula-
tion of the relativistic nonlinear landau-fokker-planck equation, Phys. Rev. E, 99
(2019), p. 053309, https://doi.org/10.1103/PhysRevE.99.053309, https://link.aps.org/doi/
10.1103/PhysRevE.99.053309.

[24] Simulation modeling suite, 2023, http://www.simmetrix.com/index.php/
simulation-modeling-suite (accessed 2023-05-05).

[25] T. Vernay, S. Brunner, L. Villard, B. F. McMillan, S. Jolliet, T. M. Tran, A. Bot-
tino, and J. P. Graves, Neoclassical equilibria as starting point for global gyrokinetic
microturbulence simulations, Physics of Plasmas, 17 (2010), p. 122301, https://doi.org/
10.1063/1.3519513, https://doi.org/10.1063/1.3519513, https://arxiv.org/abs/https://doi.
org/10.1063/1.3519513.

[26] A. A. Vlasov, The vibrational properties of an electron gas, Soviet Physics Uspekhi, 10
(1968), pp. 721–733, https://doi.org/10.1070/pu1968v010n06abeh003709, http://dx.doi.
org/10.1070/PU1968v010n06ABEH003709.

[27] F. Zonta, J. V. Pusztay, and E. Hirvijoki, Multispecies structure-preserving particle dis-
cretization of the Landau collision operator, Physics of Plasmas, 29 (2022), p. 123906,
https://doi.org/10.1063/5.0105182, https://doi.org/10.1063/5.0105182, https://arxiv.org/
abs/https://doi.org/10.1063/5.0105182.

22

