Accelerating Large-Scale Excited-State Studies in Materials Science

International Conference for High Performance Computing, Networking, Storage, and Analysis 2020 Charlene Yang Application Performance Specialist Nov 10, 2020

Outline

- M. Del Ben, C. Yang, Z. Li, F. H. da Jornada, S. G. Louie and J. Deslippe, "Accelerating Large-Scale Excited-State GW Calculations on Leadership HPC Systems", ACM Gordon Bell Finalist 2020
- Performance: **105.9 PFLOP/s** in double precision on full Summit
- Optimization: Roofline analysis, Nsight Compute/Systems

Center for Computational Study of Excited-State Phenomena in Energy Materials

GW Calculations

- **G** for Green's function, **W** for screened Coulomb interaction
- Used to study excited-state properties of electronic structures
- More accurate than DFT (density-functional theory) methods

3

BerkeleyGW

- A massively parallel package for GW calculations
- Sits on top of DFT codes such as Quantum Espresso
- 4 modules: Epsilon, Sigma, Kernel, and Absorption
 - BerkeleyGW

- Computational characteristics:
 - o dense linear algebra
 - FFTs
 - o large low-rank reductions
 - eigenvalue problems
 - matrix inversion

https://berkeleygw.org

General Plasmon Pole (GPP) Kernel

Sigma module calculates self-energy matrix elements

$$\Sigma_{n} = \sum_{n' \in \mathbf{GG}} M_{n'n'}^{*}(-\mathbf{G}) M_{n'n'}(-\mathbf{G}') \frac{\Omega_{\mathbf{GG}'}^{2}}{\widetilde{\omega}_{\mathbf{GG}'}(E - E_{n'}) - \widetilde{\omega}_{\mathbf{GG}'}} v(\mathbf{G}')$$

GPP kernel

- dominating kernel in Sigma
- 1000s of invocations per GPU

for band = 1, nbands # 0(1,000)
for igp = 1, ngpown # 0(10,000)
for ig = 1, ncouls # 0(100,000)
for iw = 1, nw # small, <10
 complex arithmetic, divs, sqrts...
reduction to arrays[iw]</pre>

Benchmark System

Parameters	Si-214	Si-510	Si-998	SiC-998	Si-2742
$N_{\sf spin}$	1	1	1	2 (†/↓)	1
N_G^ψ	31,463	74,653	145,837	422,789	363,477
N_G	11,075	26,529	51,627	149,397	141,505
N_b	6,397	15,045	29,346	16,153	80,694
N_v	428	1,020	1,996	1,997/1,995	5,484
N_c	5,969	14,025	27,350	14,156/14,158	75,210
N_{Σ}		Varia	able, up to	o 128 per spin	
Epsilon PFLOPs	2.5	80.5	1164	10,091	66,070
Epsilon Memory (TB)	0.45	6.07	45.1	135	934
Sigma PFLOPs	0.127	1.71	12.6	58.2	260.7
Sigma Memory (GB)	6.19	34.3	133.8	791.4	1006

Silicon or silicon carbide systems with divacancy defects used for prototyping quantum information devices

6

- Si-2742 with ~11k electrons
- For each quasi-particle
 - o compute: 260 PFLOPs
 - memory: 1 TB
- Our Gordon Bell results:
 - 256 quasi-particles
- This talk:
 - 1 quasi-particle
 - 108 GPUs on Summit

Office of

Science

Computational Characteristics

Tensor contraction

o low arithmetic intensity, bandwidth bound

- Complex double data type, long kernel
 - $_{\circ}$ high register and shared memory usage, low occupancy

Mixed memory access pattern

multiple 2D/3D arrays

hard to ensure coalesced or contiguous access for all

Computational Characteristics

- Long-latency instructions
 - o complex number arithmetic, divides, square roots
- FMA ratio at 51%
 - measured with Nsight Compute, FMA/total FP64 instructions
- Low-rank global reductions
 - low effective usage of threads
 - warp level (bisection), thread block level (thread 0 in each warp)
 - synchronization barriers

	Optimization Path	Time (s)	Speedup
v1	baseline *with retrospectively optimized parameters	1557	1
v2	replace divides with reciprocals	1389	1.12x
v3	replace square roots with power of 2	1061	1.47x
v4	replace divides and square roots	943	1.65x
v5	loop reordering to gain arithmetic intensity	671	2.32x
v6	further increase occupancy	600	2.60x
v7	cache blocking	571	2732
v8	cache more arrays in shared memory	549	2.84x
RSC	9 BERKEL	EY LAB 🔞 🖥	S. DEPORTMENT OF NERGY Office Science

Bringing Science Solutions to the World

	Optimization Path	Time (s)	Speedup
v1	baseline *with retrospectively optimized parameters	1557	1
v2	replace divides with reciprocals	1389	1.12x
v3	replace square roots with power of 2	1061	1.47x
v4	replace divides and square roots	943	1.65x
v5	loop reordering to gain arithmetic intensity	671	2.32x
v6	further increase occupancy	600	2.60x
v7	cache blocking	571	2.73x
v8	cache more arrays in shared memory	549	2.84x

Office of Science

	Optimization Path	Time (s)	Speedup
v1	baseline *with retrospectively optimized parameters	1557	1
v2	replace divides with reciprocals	1389	1.12x
v3	replace square roots with power of 2	1061	1.47x
v4	replace divides and square roots	943	1.65x
v5	loop reordering to gain arithmetic intensity	671	2.32x
v6	further increase occupancy	600	2.60x
v7	cache blocking	571	2.73x
v8	cache more arrays in shared memory	549	2.84x

Office of Science

	Optimization Path	Time (s)	Speedup
v1	baseline *with retrospectively optimized parameters	1557	1
v2	replace divides with reciprocals	1389	1.12x
v3	replace square roots with power of 2	1061	1.47x
v4	replace divides and square roots	943	1.65x
v5	loop reordering to gain arithmetic intensity	671	2.32x
v6	further increase occupancy	600	2.60x
v7	cache blocking	571	2.73x
v8	cache more arrays in shared memory	549	2.84x

LAB

Reduce Execution Latency (v1 - v4)

Reduce Execution Latency (v1 - v4)

Replace complex divides by reciprocals

 $(a+bi)/(c+di) = ((ac+bd)+(bc-ad)i)/(c^2+d^2)$

- Replace abs(a+bi)>c by $(a^2+b^2)>c^2$
- High warp stalls:
 - waiting on a fixed latency execution dependency

https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#statistical-sampler

Reduce Execution Latency (v1 - v4)

After this optimization:

Sampling Data (All) Sampling Data (No	t Issued)
766,290 44	83,883
18.316	7,207
Total Sample Count: 766290 Dispatch Stall: 6038 (0.8%)	5,623
Imc Miss: 64 (0.0%)	0
Lg Throttle: 8 (0.0%) Long Scoreboard: 680515 (88.8%)	1,359
Math Pipe Throttle: 7032 (0.9%)	6,033
Misc: 157 (0.0%)	0
No Instructions: 28 (0.0%)	9,432
Selected: 20120 (3.4%)	.5,831
Wait: 39124 (5.1%)	ø

Bringing Science Solutions to the World


```
\# before (v4)
for band = 1, nbands \# 0(1,000)
  for igp = 1, ngpown \# O(10,000)
    for iq = 1, ncouls \# O(100,000) \# threads
    ...
# after (v5)
for igp = 1, ngpown \# O(10,000)
  for iq = 1, ncouls \# O(100,000)  \# threads
    for band = 1, nbands \# O(1,000)
```


...

Less data movement -> higher arithmetic intensity

• 6.7 TFLOP/s vs 7.8 TFLOP/s

 $80 \times 32 \times 2 \times 1312e6 = 6.7$ TFLOP/s

Confirmed with Nsight Compute!

- Less data movement -> higher arithmetic intensity
- Increased SM utilization and decreased memory utilization

19

Office of

Science

Hide Memory Latency (v6 - v8)

More Compute Resources

- GPU computing is all about latency hiding !
- Adjust kernel launch parameters
- Experiment with maxregcount
 - trade register spill for higher occupancy

V100 GPU:

- 88 registers per threads
 -> 16 warps per SM
- 84 registers per threads
 -> 24 warps per SM
- do this when the code is stable (register usage might change)

More Compute Resources (v6)

Both SM and memory utilization are increased !

Reduce Memory Latency

- Squeezing more threads onto the SM has helped
- But can we do more?
 - $_{\circ}\,$ We have a lot of 'long scoreboard' warp stalls

v5

Reduce Memory Latency (v7 - v8)

v7. cache blocking

careful design and selection of block sizes

- v8. move more arrays into shared memory
 - limited resource, only store the most impactful arrays

v7

Reduce Memory Latency (v7 - v8)

• HBM data movement has dramatically reduced !

Reduce Memory Latency (v7 - v8)

• HBM data movement has dramatically reduced !

- Overall, we have achieved a 3.9 TFLOP/s performance in double precision
- Compared to the theoretical peak 6.7 TFLOP/s, we are at 58.4% !

Final Results for GPP

Final Results for GPP

 Given our FMA ratio, the more customized attainable peak is 5.1 TFLOP/s ^[1]

$$\frac{2\alpha + 1 - \alpha}{2} = 76\%$$

 $76\% \times 6.7$ TFLOP/s = 5.1 TFLOP/s

We are at 76.9% of that peak!

[1] C. Yang, T. Kurth, and S. Williams, "Hierarchical Roofline Analysis for GPUs: Accelerating Performance Optimization for the NERSC-9 Perlmutter System", *Concurrency and Computation: Practice and Experience, DOI: 10.1002/cpe.5547*

Office of

Science

For this complex scientific kernel: 3.9 TFLOP/s !

29

	Time (s)	Speedup
v1	1557	1
v2	1389	1.12x
v3	1061	1.47x
v4	943	1.65x
v5	671	2.32x
v6	600	2.60x
v7	571	2.73x
v8	549	2.84x

For this complex scientific application, **105.9 PFLOP/s !!**

Application	BerkeleyGW	
Benchmark	Si-2742	
# of GPUs	27,648	nalysis!
Compute Time	592 s	tine Arthic.
I/O Time	39 s	200fth othe
Throughput	105.9 PFLOP/s (double precision)	210
% of R_{max}	71.3% of 148.60 PFLOP/s	
% of R _{peak}	52.7% of 200.79 PFLOP/s	

30

Acknowledgement

- This research used resources at the National Energy Research Scientific Computing Center (NERSC), which is supported by the U.S. Department of Energy Office of Science under contract DE-AC02-05CH11231.
- This research used resources at the Oak Ridge Leadership Computing Facility (OLCF) through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, which is supported by the U.S. Department of Energy Office of Science under Contract No. DE-AC05-00OR22725.
- This work was supported by the Center for Computational Study of Excited-State Phenomena in Energy Materials (C2SEPEM), funded by the U.S. Department of Energy Office of Science under Contract No. DEAC02-05CH11231.

References

- S. Williams, A. Waterman, and D. Patterson, "Roofline: An Insightful Visual Performance Model for Multicore Architectures," *Commun. ACM*, vol. 52, no. 4, 2009.
- C. Yang, T. Kurth, and S. Williams, "Hierarchical Roofline Analysis for GPUs: Accelerating Performance Optimization for the NERSC-9 Perlmutter System", *Concurrency and Computation: Practice and Experience, DOI: 10.1002/cpe.5547*
- <u>https://gitlab.com/NERSC/roofline-on-nvidia-gpus</u>
- https://docs.nvidia.com/nsight-compute/2020.1/ProfilingGuide/index.html#roofline

Thank You!

