
1

Accelerating Large-Scale
Excited-State Studies in
Materials Science

International Conference for High Performance
Computing, Networking, Storage, and Analysis 2020

Charlene Yang
Application Performance Specialist

Nov 10, 2020

2

Outline
• M. Del Ben, C. Yang, Z. Li, F. H. da Jornada, S. G. Louie and J. Deslippe,

“Accelerating Large-Scale Excited-State GW Calculations on Leadership
HPC Systems”, ACM Gordon Bell Finalist 2020

• Performance: 105.9 PFLOP/s in double precision on full Summit
• Optimization: Roofline analysis, Nsight Compute/Systems

Center for Computational Study of Excited-
State Phenomena in Energy Materials

3

GW Calculations

• G for Green’s function, W for screened Coulomb interaction
• Used to study excited-state properties of electronic structures
• More accurate than DFT (density-functional theory) methods

4

BerkeleyGW
• A massively parallel package for

GW calculations

• Sits on top of DFT codes such
as Quantum Espresso

• 4 modules: Epsilon, Sigma,
Kernel, and Absorption

• Computational characteristics:
o dense linear algebra
o FFTs
o large low-rank reductions
o eigenvalue problems
o matrix inversion

https://berkeleygw.org

5

General Plasmon Pole (GPP) Kernel
• Sigma module calculates self-energy matrix elements

• GPP kernel
o dominating kernel in Sigma
o 1000s of invocations per GPU

for band = 1, nbands # O(1,000)

for igp = 1, ngpown # O(10,000)

for ig = 1, ncouls # O(100,000)

for iw = 1, nw # small, <10

complex arithmetic, divs, sqrts…

reduction to arrays[iw]

6

Benchmark System
• Si-2742 with ~11k electrons
• For each quasi-particle

o compute: 260 PFLOPs
o memory: 1 TB

• Our Gordon Bell results:
o 256 quasi-particles

• This talk:
o 1 quasi-particle
o 108 GPUs on Summit

Silicon or silicon carbide systems with divacancy defects used for
prototyping quantum information devices

7

Computational Characteristics

• Tensor contraction
o low arithmetic intensity, bandwidth bound

• Complex double data type, long kernel
o high register and shared memory usage, low occupancy

• Mixed memory access pattern
o multiple 2D/3D arrays
o hard to ensure coalesced or contiguous access for all

8

Computational Characteristics

• Long-latency instructions
o complex number arithmetic, divides, square roots

• FMA ratio at 51%
o measured with Nsight Compute, FMA/total FP64 instructions

• Low-rank global reductions
o low effective usage of threads
o warp level (bisection), thread block level (thread 0 in each warp)
o synchronization barriers

9

Optimization of GPP
Optimization Path Time (s) Speedup

v1 baseline
*with retrospectively optimized parameters 1557 1

v2 replace divides with reciprocals 1389 1.12x
v3 replace square roots with power of 2 1061 1.47x
v4 replace divides and square roots 943 1.65x
v5 loop reordering to gain arithmetic intensity 671 2.32x
v6 further increase occupancy 600 2.60x
v7 cache blocking 571 2.73x
v8 cache more arrays in shared memory 549 2.84x

10

Optimization of GPP
Optimization Path Time (s) Speedup

v1 baseline
*with retrospectively optimized parameters 1557 1

v2 replace divides with reciprocals 1389 1.12x
v3 replace square roots with power of 2 1061 1.47x
v4 replace divides and square roots 943 1.65x
v5 loop reordering to gain arithmetic intensity 671 2.32x
v6 further increase occupancy 600 2.60x
v7 cache blocking 571 2.73x
v8 cache more arrays in shared memory 549 2.84x

11

Optimization of GPP
Optimization Path Time (s) Speedup

v1 baseline
*with retrospectively optimized parameters 1557 1

v2 replace divides with reciprocals 1389 1.12x
v3 replace square roots with power of 2 1061 1.47x
v4 replace divides and square roots 943 1.65x
v5 loop reordering to gain arithmetic intensity 671 2.32x
v6 further increase occupancy 600 2.60x
v7 cache blocking 571 2.73x
v8 cache more arrays in shared memory 549 2.84x

12

Optimization of GPP
Optimization Path Time (s) Speedup

v1 baseline
*with retrospectively optimized parameters 1557 1

v2 replace divides with reciprocals 1389 1.12x
v3 replace square roots with power of 2 1061 1.47x
v4 replace divides and square roots 943 1.65x
v5 loop reordering to gain arithmetic intensity 671 2.32x
v6 further increase occupancy 600 2.60x
v7 cache blocking 571 2.73x
v8 cache more arrays in shared memory 549 2.84x

Reduce Execution Latency (v1 - v4)

14

Reduce Execution Latency (v1 - v4)

• Replace complex divides by reciprocals
(a+bi)/(c+di) = ((ac+bd)+(bc-ad)i)/(c2+d2)

• Replace abs(a+bi)>c by (a2+b2)>c2

• High warp stalls:
• waiting on a fixed latency execution

dependency

https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#statistical-sampler

15

Reduce Execution Latency (v1 - v4)

• After this optimization:

Gain Arithmetic Intensity (v5)

17

Gain Arithmetic Intensity (v5)
before (v4)

for band = 1, nbands # O(1,000)

for igp = 1, ngpown # O(10,000)

for ig = 1, ncouls # O(100,000) # threads

…

after (v5)

for igp = 1, ngpown # O(10,000)

for ig = 1, ncouls # O(100,000) # threads

for band = 1, nbands # O(1,000)

…

18

Gain Arithmetic Intensity (v5)

• Less data movement -> higher arithmetic intensity

V100 GPU

• 6.7 TFLOP/s vs 7.8 TFLOP/s
• 1312 MHz vs 1530 MHz

80×32×2×1312e6 = 6.7	TFLOP/s

Confirmed with Nsight Compute!

19

Gain Arithmetic Intensity (v5)

• Less data movement -> higher arithmetic intensity
• Increased SM utilization and decreased memory utilization

Hide Memory Latency (v6 - v8)

21

More Compute Resources

• GPU computing is all about latency hiding !

• Adjust kernel launch parameters

• Experiment with maxregcount
o trade register spill for higher occupancy
o do this when the code is stable (register usage might change)

V100 GPU:
• 88 registers per threads

-> 16 warps per SM
• 84 registers per threads

-> 24 warps per SM

22

More Compute Resources (v6)

• Both SM and memory utilization are increased !

23

Reduce Memory Latency

• Squeezing more threads onto the SM has helped
• But can we do more?

o We have a lot of ‘long scoreboard’ warp stalls

v5 v6

24

Reduce Memory Latency (v7 - v8)

• v7. cache blocking
o careful design and selection of block sizes

• v8. move more arrays into shared memory
o limited resource, only store the most impactful arrays

v7 v8

25

Reduce Memory Latency (v7 - v8)

• HBM data movement has dramatically reduced !

v6

v5

v7

v8

26

Reduce Memory Latency (v7 - v8)

• HBM data movement has dramatically reduced !

• Overall, we have achieved a
3.9 TFLOP/s performance in
double precision

• Compared to the theoretical
peak 6.7 TFLOP/s, we are at
58.4% !

27

• Measured with Nsight Compute,
our FMA ratio is

𝛼 =
FP64	FMA	instructions
FP64	instructions

= 51.9%

Final Results for GPP

28

Final Results for GPP
• Given our FMA ratio, the more

customized attainable peak is
5.1 TFLOP/s [1]

2𝛼 + 1 − 𝛼
2

= 76%

76%×6.7	TFLOP/s = 5.1	TFLOP/s

• We are at 76.9% of that peak!

[1] C. Yang, T. Kurth, and S. Williams, "Hierarchical Roofline Analysis for
GPUs: Accelerating Performance Optimization for the NERSC-9
Perlmutter System", Concurrency and Computation: Practice and
Experience, DOI: 10.1002/cpe.5547

29

Summary
For this complex scientific kernel: 3.9 TFLOP/s !

Time (s) Speedup
v1 1557 1

v2 1389 1.12x

v3 1061 1.47x

v4 943 1.65x

v5 671 2.32x

v6 600 2.60x

v7 571 2.73x

v8 549 2.84x

30

Summary
For this complex scientific application, 105.9 PFLOP/s !!

Application BerkeleyGW
Benchmark Si-2742
of GPUs 27,648

Compute Time 592 s
I/O Time 39 s

Throughput 105.9 PFLOP/s (double precision)
% of Rmax 71.3% of 148.60 PFLOP/s
% of Rpeak 52.7% of 200.79 PFLOP/s

31

Acknowledgement
• This research used resources at the National Energy Research Scientific Computing

Center (NERSC), which is supported by the U.S. Department of Energy Office of Science
under contract DE-AC02-05CH11231.

• This research used resources at the Oak Ridge Leadership Computing Facility (OLCF)
through the Innovative and Novel Computational Impact on Theory and Experiment
(INCITE) program, which is supported by the U.S. Department of Energy Office of Science
under Contract No. DE-AC05-00OR22725.

• This work was supported by the Center for Computational Study of Excited-State
Phenomena in Energy Materials (C2SEPEM), funded by the U.S. Department of Energy
Office of Science under Contract No. DEAC02-05CH11231.

32

References
• S. Williams, A. Waterman, and D. Patterson, “Roofline: An Insightful Visual Performance

Model for Multicore Architectures,” Commun. ACM, vol. 52, no. 4, 2009.

• C. Yang, T. Kurth, and S. Williams, "Hierarchical Roofline Analysis for GPUs: Accelerating
Performance Optimization for the NERSC-9 Perlmutter System", Concurrency and
Computation: Practice and Experience, DOI: 10.1002/cpe.5547

• https://gitlab.com/NERSC/roofline-on-nvidia-gpus
• https://docs.nvidia.com/nsight-compute/2020.1/ProfilingGuide/index.html#roofline

Thank You!

