
From hardware counters

From benchmarking/Guide

Understanding potential performance issues using resource-based alongside time models
Nan Ding1, Victor W Lee2, Wei Xue3, Weimin Zheng3

1. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 2. Intel Corporation, Santa Clara, CA 95054, USA 3. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

The gap between actual and the expected performance is increasingly
widened due to the growing complexities of both machines and
scientific applications. To bridge the gap, performance analysis has
been considered as a necessary step, and performance analysis tools
are becoming one of the most critical component in today’s HPC
systems. Performance modeling, the core technology to identify key
performance characteristics and predict potential performance
bottlenecks, is becoming an indispensable tool to understand the
performance behaviors and guide performance optimizations of HPC
applications.

Motivation Kernel Identification

Resource-based Alongside Time Model Construction

Model Diagnosis

Contributions

• Hardware counter-assisted profiling to identify the key kernels
and non-scalable kernels in the application

• Resource-based Alongside Time (RAT) model
• understanding the potential performance issues
• predicting performance in the regimes of interest to

developers and performance analysts
• Easy-to-use performance modeling tools for scientists and

performance analytics

Peak performance of the fastest machine on Top500 list
Peak performance of the ACM Gordon Bell Price winner

0

20

40

60

80

100

120

140

2010 2011 2012 2013 2014 2015 2016 2017

Pe
ta

Fl
op

s

Year

Performance profiling Kernel Identification Performance Modeling

f ! = # ∗ %&'(! + *

for each event:
Model diagnosis

+,-- = +./0- + 12./00*+./00++/34567

+./0- =8
9:;

<

(
#?@AB ∗ C!D./65E

2 ∗ !
+ 12050E

∗ +050E
)

+./00 = +-G-++HIJJ

12050E
=

#AB#%%K/,L9 + #AB#%%73/659
⁄∑0:O;

P50 #Q&RA9S ∗ T0 (2 ∗ !)

+-G- = a ∗ V(+ c

+./KK = a ∗ log P + b ∗ S + c

Comparison:

Total runtime (+,--) equals to the accumulation of computation time (+./0-), non-overlapped
communication time (12./00*+./00) and the initialization/finalization time (+/34567).

How is the model item derived?

#?@AB

#AB#%%K/,L #AB#%%73/65

#Q&RA

T0 F (CPU frequency)

P (number of processes)

C!D./65E

C!D = C!D./65E +8
0:O;

P50
#k?AA Q&RA9S ∗ T0

waiting time for memory

execution time for instructions

NPB:
SP has a relatively bad memory behavior than BT. By looking
into the SP code, it has some non-continuous memory
accesses. Similar for the LU.

From PMPI interface

User-defined
S (communication volume)

Profiling processes: P=[p0, p1, p2, …, pn]

a) time proportion is larger than the
user-defined threshold

b) consumed time do not decrease in
the profiling runs (non-scalable)

c) merge the test function as one kernel

Study case: HOMME:
Users focus on optimizing the performance of kernel
compute_rhs and euler_step. However, kernel edgevunpack
should be taken into account when conducting large
scale runs.

Take the following functions as kernels:
CICE:
Limited_gradient (L) and transport_integrals (T) have similar
CPIs. However, L has a higher BFmem than T which indicts
that L suffers from a lower memory traffic.

BF
m

em

Number of processes

Number of processes Number of processes

M
od

el
 E

rr
or

model based on Amdahl's law
RAT model

