
9781138197541_C014 2017/10/13 17:09 Page 307 #1

14 Scalable Structured Adaptive
Mesh Re�nement with
Complex Geometry

Brian Van Straalen, David Trebotich,
Andrey Ovsyannikov, and Daniel T. Graves

CONTENTS

14.1 Introduction ..307
14.2 Distributed Geometry ...308

14.2.1 EBIndexSpace Generation ...308
14.2.2 Local Geometry Caching ...309

14.3 Feedback-Based Load Balancing ...310
14.4 Aggregated Stencils..310
14.5 Sparse Plot File...311
14.6 Covered Box Pruning ...312
14.7 Hybrid MPI+OpenMP Refactoring..312
14.8 Evaluated Platforms ...313
14.9 Chombo-Crunch: Production Supercomputing..313
14.10 Burst Buffer and In-Transit Data Processing Work�ow...315
14.11 Conclusions and Future Work ..317
Acknowledgments ...317
References ...317

14.1 INTRODUCTION

Cartesian structured adaptive mesh re�nement (AMR) methods have become an increasingly popular
modeling approach to solving partial differential equations (PDEs) in complex or irregular geome-
tries. Though there are several Cartesian grid approaches (e.g., immersed boundary, immersed inter-
face, and ghost �uid), we focus on the cut-cell, embedded boundary (EB) approach of [1], and,
speci�cally, as it pertains to unsteady �ow problems where the arrangement of mesh re�nement
is not expressible a priori. In the EB cut cell approach, �nite volume approximations are used to
discretize the solution in the cut cells that result from intersecting the irregular boundary with a
structured Cartesian grid. Conservative numerical approximations to the solution can be found from
discrete integration over the nonrectangular control volumes with �uxes located at centroids of the
edges or faces of a control volume [1].

Block structured AMR is a technique to add grid resolution ef�ciently and dynamically in areas
of interest while leaving the rest of the domain at a coarser resolution. Effectively, grid resolution
is added where and when it is needed in a simulation depending on a re�nement criterion such as
gradients in the data. AMR was originally applied to �nite difference methods for inviscid shock

307

9781138197541_C014 2017/10/13 17:09 Page 308 #2

308 Exascale Scienti�c Applications: Scalability and Performance Portability

hydrodynamics [2] and has been extended to inviscid, incompressible �ow [3], and viscous �ow
[4,5] in rectangular domains.

The goal of the EB-AMR approach is to maintain the high-performance computing (HPC) advan-
tages of Cartesian structured AMR methods while permitting a wider range of applications requiring
complex boundary representation. Building on top of the Chombo package (chombo.lbl.gov), we
have extended the Single Program Multiple Data (SPMD) parallelism model to include alteration of
the �nite-volume stencils in the region adjacent to an irregular boundary.

In this chapter, we describe the primary framework optimizations that enable scalable simulations
(Sections 14.2 through 14.6). The application code Chombo-Crunch is presented as an example of
production scale computing with the EB-AMR approach (Section 14.9).

14.2 DISTRIBUTED GEOMETRY

The regions of the domain requiring highly re�ned �nite volumes will be changing over the course of
the simulation. For regular structured AMR, this leads to the familiar tag-regrid-advance modeling
loop. For the EB-AMR approach, this basic cycle needs to be augmented with geometric moments
from the constructive solid geometry implicit function [6].

The alteration to control volumes that interact with the EB does not interact directly with the
implicit function. Instead, the implicit function is �rst preprocessed into the EB index space object,
referred to as the EBIndexSpace. The EBIndexSpace contains the preprocessed geometric moments
of an implicit function restricted to the intersection with a Cartesian grid. The formalism for this con-
struct is described in [6]. For any implicit function geometric representation and a speci�ed minimal
grid spacing, the EBIndexSpace is a preprocessing step. It can be done in line with the �uid simu-
lation calculation, or it can be done off line as a preprocessing calculation and read in from a �le.
While the algorithm is automatic and robust, it is a nontrivial amount of computation and is too large
to be replicated across processing elements. Hence, EBIndexSpace generation must be computed in
parallel and stored in a distributed fashion.

14.2.1 EBIndexSpace Generation

EBIndexSpace generation takes the implicit function as input. The active simulation domain is
de�ned as all the space where the implicit function is greater than zero. While the EBIndexSpace
might be a larger distributed data structure, the implicit data itself can be extremely compact. We �rst
cover the case where the implicit function has compact representation and can be replicated across
all processing elements.

EBIndexSpace generation is parallelized with domain decomposition. We employ the simple
domainsplit or the more involved recursive bisection:

∙ Domainsplit segments the Cartesian box global domain that encloses the simulation vol-
ume into equal-sized subdomains. Within each subdomain, a processing element executes
the moment generation algorithm and stores on its local memory its portion of the EBIndex-
Space. While domainsplit is simple to understand, explain, and implement, it only executes
in a load-balanced fashion for problems that have equal distribution of geometric complex-
ity throughout the domain.

A number of applications fall into this category (e.g., subsurface �ow and transport at
the pore scale). The geometric information for the micron scale pore geometry demon-
strates self-similarity and produces geometric information that evenly spreads throughout

9781138197541_C014 2017/10/13 17:09 Page 309 #3

Scalable Structured Adaptive Mesh Re�nement with Complex Geometry 309

the domain. Other examples from both nature and engineering also have these properties
(e.g., coral, battery electrodes, paper manufacturing).

∙ Recursive bisection is an alternative domain decomposition technique. Starting with base
domain and minimal grid spacing, the implicit function is queried as to the amount of geo-
metric material that is contained within that volume. If larger than a desired threshold, the
domain is split in its longest dimension and each subdomain is then queried in a similar
fashion. The recursive algorithm is repeated redundantly across each processing element
until an acceptable threshold for geometric complexity within a subvolume is reached. The
threshold is determined experimentally.

This recursive bisection tiling of the simulation domain is then partitioned across the
processing elements using a space-�lling curve. The EBIndexSpace is computed in parallel
as was done in the domainsplit algorithm. While having a higher upfront cost, the recur-
sive bisection algorithm can result in a better distribution of the EBIndexSpace across the
compute platform.

14.2.2 Local Geometry Caching

PDE simulations on a structure-adaptive mesh have their own mapping of processing elements to
computational regions. An adaptive mesh computation with subcycling represents a different com-
putational pattern than the computational geometry problem. This requires a separate parallelization
strategy and load-balancing technique.

In the standard subcycled AMR compute pattern, the advance step advances the solution one time
step at a level. If a regrid interval is reached, then a new collection of Boxs called a BoxLayout are
generated and then initialized. New stencils for the EB cut cells need to be generated. Although on a
speci�c Box, there might be more than a dozen different stencils generated for any given �nite volume
based on the type of operator being discretized, they will all need to access the same underlying
geometric moments.

EBISLayout EBIndexSpace::fillEBISLayout(const ProblemDomain\& p, const
BoxLayout\& b, int ghostCells) is the Chombo operation that creates a local view of the
EBIndexSpace for each speci�c patch. In this way, processing elements never need to know about
the entire simulation process domain or about the EBIndexSpace. In this model, the pair [p,b,
ghostCells] serves two roles: (1) indicates where geometric moments need to be communicated
(what level of the re�nement hierarchy and which patches are local to this processing element) and
(2) provides a key into a caching map. EBISLayout is a refcounted object. In this way, we minimize
how often the EBIndexSpace needs to be interrogated. The effects of local geometry caching for a
high-�delity incompressible viscous �ow computation in a pore-scale geometry of packed spheres
are shown in Table 14.1.

TABLE 14.1
Local Geometry Caching Effects

Total Runtime (s) Peak Memory Usage per Rank (MB)

Single-level, no caching 65 105

Single-level, caching 57 89

Adaptive mesh 2-levels, no caching 653 760

Adaptive mesh 2-levels, caching 348 413

9781138197541_C014 2017/10/13 17:09 Page 310 #4

310 Exascale Scienti�c Applications: Scalability and Performance Portability

14.3 FEEDBACK-BASED LOAD BALANCING

AMR modeling techniques pose a signi�cant challenge to load balancing on distribute memory com-
pute platforms. These algorithms have succeeded to the degree in which the compute load experi-
enced by a processing element over a single patch of data is predictable. One can typically use the
number of cells within a patch as a proxy for the expected compute load on a patch [7]. While not
perfect, this approach has served well for AMR applications. Given a predictable compute load, vari-
ous methods for distributing a load across processing elements like Knapsack and space-�lling curve
have been widely employed [8,9].

However, with the presence of the EB the number of cells on a patch is a poor proxy for com-
pute load. Scaling tends to top out at 10X speedup. The �rst improvement to the cell count balanc-
ing is to apply a heuristic where irregular cells incur a larger penalty. This is meant to re�ect the
increased computation for irregular computation and the nonunit stride data access patterns. This
heuristic model can become increasingly sophisticated, including the effects of cut cells crossing
course-�ne AMR interfaces, domain boundaries, and localized nonlinear physics. Though promis-
ing, this approach has not produced desired results. A performance model combining compile and
run-time information with a tool like ExaSat [10,11] may illuminate better parameterizations than
can be managed manually.

An alternative is to use a feedback-based load-balancing scheme. Each patch can construct a
simple EB operator (e.g., Poisson). One step of a multigrid relaxation is computed and for each patch
the actual compute time is measured. While the computational result is discarded, the compute time
serves as the stand-in for the load-balance cost for that patch. This can be input into the existing load-
balance algorithms, the operators are then reconstructed with the new distribution, and the simulation
is allowed to advance (Table 14.2).

14.4 AGGREGATED STENCILS

The formalism described in [6] provides a powerful generalization of high-order �nite volume meth-
ods for PDEs in arbitrary geometry. This expressive syntax is re�ected in the EB-AMR class library
in Chombo (EBChombo). While this powerful extraction layer is desirable in a framework that must
target many application domains, it does come at a cost. The C++ abstractions for expressing arbi-
trary control volume discretizations imposes an unreasonable computational burden. While there are
known techniques for faster execution of C++ abstractions, like template metaprogramming [12],
these require knowledge of the stencil shape at compile-time. High-order EB stencils are produced
from a least-squares algorithm at runtime based on the geometric moments and current mesh hier-
archy. Therefore, EB stencil classes are passed through a run-time trace when they are bound to
their target data structures. This process involves iterating through the abstract representation of a

TABLE 14.2
Different Load Balancers

Total runtime (s) Compute (%)/Commun. (%)

Standard, no ordering 41.60 45.83/54.17

Standard, Morton ordering 46.08 41.32/58.68

Feedback-based, no ordering 39.51 48.37/51.63

Feedback-based, Morton ordering 43.12 45.62/54.38

Note: Statistics are averaged over 10 iterations and �ve separate runs.

9781138197541_C014 2017/10/13 17:09 Page 311 #5

Scalable Structured Adaptive Mesh Re�nement with Complex Geometry 311

TABLE 14.3
Total Runtime Spent in AMR V-Cycle of Elliptic Solver: AggStencil
versus EBStencil

EBStencil (s) AggStencil (s) Speedup (s)

128× 128× 128 mesh

Dual-socket Ivy Bridge node 3.00 1.99 1.50

Dual-socket Haswell node 2.22 1.62 1.37

KNL node (DDR) 5.71 3.54 1.61

KNL node (HBM) 5.27 2.88 1.83

Note: Runtime is averaged over eight iterations and �ve separate runs.

complex stencil one time and recording the �nal �oating-point data deference locations and caching
these offsets in the AggStencil (Table 14.3).

These AggStencil objects can be reused throughout multiple PDE operators across multiple time
steps and only need to be reconstructed at the same time that the AMR level is regridded. The Agg-
Stencil represents a compromise between compilation ef�ciency and the need to have runtime data
dependency integrated. AggStencil construction cannot be done as an of�ine processing step since
it represents the combination of the preprocessed EBIndexSpace and the run-time processing of the
AMR grid hierarchy.

14.5 SPARSE PLOT FILE

In the same way that the AggStencil object represents the object of a preprocessed geometry database
and a runtime adaptive mesh hierarchy, the plot �le has to capture this combination of static and
dynamic data structures. In our initial implementation of plot �le generation, the geometric moments
were turned into self-centered state variables and output with the rest of the simulation data. We
referred to this as the dense output. The problem with this approach is that for a relatively simple
PDE like compressible Navier–Stokes, you might have �ve state variables (rho, X-momentum, Y-
momentum, Z-momentum, and energy.) You can easily have twice that number of geometric moment
information (e.g., volume fraction, area fractions, area centroids, and volume centroids) for even a
second-order algorithm. For most cells, this data is trivial because they are not participating in a cut
cell.

The bene�t is that the visualization and data analytics pipeline in the visit analytics program
could utilize moment geometric information for more complex postprocessing. In particular, the
visualization postprocessor could reconstruct the geometric information and projections of state data
onto the boundary manifold. The drawback for this approach is a tremendously large �le that takes
a long time to write and store and move. The alternative is to only write out nontrivial geometric
moments. We call this the sparse format.

The sparse format creates an additional dataset next to the state data dataset in the HDF5 �le that
represents an unstructured graph embedded in the structured AMR grid hierarchy. This is very much
like a vertex-edge data structure you �nd in traditional unstructured grid methods except we exploit
the fact that the nodes in this graph are embedded in a Cartesian index space. Finite volume faces
are the analog to edges. The edges will only pass along one cardinal access. Volumes correspond
to vertices. The graph still must be written out to the data �le in a parallel write operation into a

9781138197541_C014 2017/10/13 17:09 Page 312 #6

312 Exascale Scienti�c Applications: Scalability and Performance Portability

collective HDF5 dataset and thus requires at least one invocation of a parallel pre�x sum to compute
unique processing element offsets.

In practice, there is not one clear choice between these two approaches. For geometrically dense
problem de�nitions, the sparse �le format has little savings in terms of �nal storage and it incurs
the collective communication burden of creating the pre�x sum. The two options are available in
Chombo, and users can experiment to suit their application (Table 14.4).

14.6 COVERED BOX PRUNING

The runtime mesh generation algorithm is free to construct patches anywhere within the computa-
tional domain. It is oblivious to the geometric implicit function or the EBIndexSpace itself. After a
regrid phase, it is not impossible to have patches that have fallen completely outside of the region
of positive implicit function. While EBChombo will not expend computational work executing the
�nite volume method within these boxes and hence no payment of a runtime penalty, Chombo will
still generate attendant data structures and storage for these patches as if the state variable extended
into these regions.

It might seem like a rare case for this to happen, but by the quirk of how domain boundary
conditions are speci�ed in most legacy Chombo application examples, it is assumed that Level 0
extends throughout the entire extent of the Cartesian computational domain. In fact, the original
Berger–Rigoutsos mesh segmentation algorithm takes that as an axiom. For applications that use
shallow grid hierarchies, a signi�cant amount of the computational �nite volumes can fall outside of
the intersection of the active domain and the Cartesian computational domain. A simple improvement
is called pruning where boxes are visited prior to load-balancing, and if they have fallen completely
outside of the active simulation domain, then they are removed from that level’s patches (Table 14.5).

14.7 HYBRID MPI+OPENMP REFACTORING

Our previously published work for scalable EB calculations has relied upon a pure message-passing
interface (MPI) 1.1 Application program interface (API) (e.g., [1,13]). The result of this reliance is
that redundant meta-data used to optimize the communication phase of our calculations stressed the
limited memory availability per processing element. On Knights Landing (KNL), there are 16 GB

TABLE 14.4
Plot File Size and Averaged Write Time to Lustre PFS: Dense Plot
Format versus Sparse Plot Format

Cores File Size (GB) Write time (s)

Dense Sparse Dense Sparse

512 7.37 1.85 6.00 15.99

1,024 14.75 3.81 6.45 18.55

2,048 29.5 7.72 12.75 21.47

4,096 59 10.53 16.41 30.38

8,192 118 21.54 25.63 63.02

16,384 236 43.5 32.52 76.53

32,768 472 67.1 46.74 82.27

9781138197541_C014 2017/10/13 17:09 Page 313 #7

Scalable Structured Adaptive Mesh Re�nement with Complex Geometry 313

TABLE 14.5
Effect of Pruning of Covered Boxes on Plot File Size, Checkpoint File Size, and Total System
Memory Usage

Boxes # Covered Boxes Plot�le (GB) Checkpoint (GB) Memory (GB)

Original Pruning Original Pruning Original Pruning

512 32 (6.25%) 7.37 6.91 6.01 5.63 216.5 210.1

4,096 512 (12.5%) 59 51.62 48.09 42.08 1,459 1,369

32,768 6,862 (20.9%) 472 373.8 384.75 304.7 11,211 9,699

of high bandwidth memory available, which is approximately �ve times less than traditional DRAM
capacities on current X86 processors such as Ivy Bridge or Haswell. In order to take advantage
of this high bandwidth memory, which is �ve times faster than traditional memory, and keep the
same memory footprint, we have moved to a hybrid MPI+OpenMP model. The logical change to
the software would be for compute elements to share common metadata. Our options are to adopt
an MPI-3 remote memory access API, or a hybrid MPI+OpenMP programming model. For complex
dynamic memory-intensive algorithms written in C++, it can be dif�cult to utilize the shared memory
semantics of MPI-3. The metadata in Chombo AMR makes signi�cant use of the operating system’s
free store mechanisms. To use MPI-3, we would need to replicate a heap manager within our user-
space MPI windows.

We have chosen to use MPI+OpenMP. It is a programming model that is recommended from ven-
dors and National Energy Research Scienti�c Computing Center (NERSC). In course-grained hybrid
OpenMP, threads take the place of MPI ranks but maintain the SPMD programming model. While
we don’t anticipate this to result in speed improvements in the code, we observe signi�cant improve-
ments in the total memory usage in our simulations. As an example, we solve the incompressible
Navier–Stokes �ow equations. On Edison, the memory usage for �at MPI (24 ranks) is a Resident
Set Size of 2,880 MB/node. With Hybrid MPI+OpenMP this total drops to 1,672 MB/node.

14.8 EVALUATED PLATFORMS

Edison is a Cray XC30 MPP at NERSC. Each node contains two 2.6 GHz 12-core Xeon Ivy Bridge
chips each with four DDR3-1600 memory controllers and a 30 MB cache. Each core implements the
four-way AVX SIMD instruction set and includes both a 32 KB L1 and a 256B L2 cache.

Cori Phase 1 is a Cray XC40 MPP at NERSC. Each node contains two 2.3 GHz 16-core Xeon
Haswell chips and four DDR4-2133 memory controllers and 80 MB of L3 cache (Table 14.6) [14].

14.9 CHOMBO-CRUNCH: PRODUCTION SUPERCOMPUTING

Chombo-Crunch is a high-performance simulation code used to model pore scale reactive transport
processes associated with subsurface problems including carbon sequestration. It is based on adap-
tive, �nite volume methods developed in the Chombo framework [1] and, thus, relies heavily on the
EB infrastructure for treatment of very complex geometries. In particular, the cut cell approach allows
for explicit resolution of reactive surface area between mineral and pore. Reactions are treated with
the geochemistry module of CrunchFlow [15], which performs point-by-point computations, and
thus scales ideally with Chombo solvers. The code makes use of a novel interface between Chombo

9781138197541_C014 2017/10/13 17:09 Page 314 #8

314 Exascale Scienti�c Applications: Scalability and Performance Portability

TABLE 14.6
Overview of Evaluated Platforms

Intel Intel

Core Architecture Ivy Bridge Haswell

Clock (GHz) 2.40 2.3

DP (GFlop/s) 19.2 (17.1) 36.8 (26.2)

Data cache (KB) 32+256 64+512

Intel AMD

Chip Architecture Xeon E5-2695v2 Opteron 6172

Cores 12 6

Last-level cache 30 MB 5 MB

DP (GFlop/s) 230.4 50.4

STREAM bandwidth 45 GB/s 12 GB/s

Memory capacity 32 GB 8 GB

Cray XC30 Cray XC40

System (Edison) (Cori Phase 1)

CPUs/node 2 4

Compiler icc 14.0.0 icc 13.1.3

Source: Y. J. Lo et al., International Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems, Springer, 2014.

25

Ti
m

e (
s)

20

15

10

5

0
512 1,024 2,048 4,096 8,192 16,384 32,768 65,536

Standard EB [1, 16]
Optimized EB

131,072 N

FIGURE 14.1 Weak scaling study of Chombo-Crunch on Cray XC30 NERSC Edison system.

and PETSc for access to algebraic multigrid solvers that do not possess the inherent shortcomings
of geometric coarsening for very complex geometries [16]. Altogether, Chombo-Crunch is able to
perform direct numerical simulation of real rock samples from image data at full-machine scale
on DOE supercomputers. It has been validated by reactive transport experiments involving CO2
injection [17,18].

Chombo-Crunch scales to full machine capability on NERSC supercomputers Edison [1], Cori
Haswell, and now Cori KNL. The optimization work described in this chapter has improved that per-
formance by 10%–15% and reduced the memory footprint of the application code by approximately
75% in order to �t into the high bandwidth memory on Cori KNL. Figure 14.1 shows the results of

9781138197541_C014 2017/10/13 17:09 Page 315 #9

Scalable Structured Adaptive Mesh Re�nement with Complex Geometry 315

(a)

(b)

1.541
1.060
0.5790
0.09812
–0.3828

Max: 1.541
Min: –0.3828

Y

X Z

Y

X Z

Y

X Z

Pseudocolor
Var: velocity2

Pseudocolor
Var: pressure

1.541
1.060
0.5790
0.09812
–0.3828

Max: 1.541
Min: –0.3828

Pseudocolor
Var: velocity2

4000.
2750.
1500.

250.0
–1000.

Max: 5156.
Min: –2618.

FIGURE 14.2 (See color insert.) Direct numerical simulation from image data of fractured shale with prun-
ing. (From D. Trebotich and D. Graves. Comm. App. Math. Comp. Sci., 10, 43–82, 2015.) (a) Velocity data
mapped to surface and data slice. Pruned boxes are shown as white space. (b) Pressure mapped onto the mineral
surface with side views. The simulation has been performed on NERSC Edison using 40,000 cores.

weak scaling on Edison. Comparison of the performance of standard EB from [1] and [16] versus
optimized EB is provided.

As an example of Chombo-Crunch production capability, we perform direct numerical simulation
of �ow in the fractured shale example in [1] using the aforementioned optimizations. The compu-
tational domain has been discretized using nearly 2 billion grid points (1, 920× 1, 600× 640) and
a resolution of 48 nanometers. Figure 14.2 shows velocity and pressure plots. Pruning of covered
boxes, shown as white space, has resulted in a reduction of at least one third of both the total boxes
and computational cores in [1]. (The memory bandwidth sweet spot for Chombo-Crunch due to
domain decomposition and load balancing is 323 grid cells per box, one box per core on current Intel
architectures Ivy Bridge and Haswell.)

14.10 BURST BUFFER AND IN-TRANSIT DATA PROCESSING WORKFLOW

Emerging exascale supercomputers have the ability to accelerate the time-to-discovery for scien-
ti�c work�ows. However, the I/O systems have not kept the same pace as computational systems:
technology trends show a growing gap in performance of computational systems versus I/O sys-
tems. Moving forward exascale systems and the anticipated increase in the size of scienti�c datasets,
the I/O constraint will become more critical. To address this problem, advanced memory hierarchies,
such as burst buffers, have been recently proposed as intermediate layers between the compute nodes

9781138197541_C014 2017/10/13 17:09 Page 316 #10

316 Exascale Scienti�c Applications: Scalability and Performance Portability

and the parallel �le system. Recently, the Cray DataWarp Burst Buffer [19] has been deployed on
NERSC’s Cori Phase 1 system. It consists of 144 I/O nodes with overall more than 900 TB of non-
volatile RAM (NVRAM). Keeping data in burst buffer, close to a processing element, allows a sim-
ulation to accelerate the checkpoint/restart process. We utilize Cray DataWarp burst buffer coupled
with in-transit processing mechanisms, to demonstrate the advantages of advanced memory hier-
archies in preserving traditional coupled scienti�c work�ows. Figure 14.3 shows the schematic of
in-transit work�ow [20], which couples simulation (Chombo-Crunch) with on-the-�y visualization
(VisIt). The burst buffer is used as a �le-based coordination mechanism between work�ow compo-
nents. Figure 14.4 shows the amount of I/O in total simulation-visualization work�ow runtime. The
comparison of total I/O time in two cases when the Lustre �le system and DataWarp burst buffer
are used to store and exchange data between work�ow components. Results are provided for differ-
ent I/O intensities. As seen in Figure 14.4, the burst buffer provides a de�nite I/O improvement to
the Chombo-Crunch+VisIt work�ow at high-I/O intensity when a plot�le is written and processed

Local DRAM

Input
configuration

Per tim
e step

n timesteps

O(100) GB
.chk

DataWarp SW
Stage out

Multiple
.png files

Movie encoder
Wait for N .pngs, encode,

place results in DRAM, at end,
concatenate movies

Intermediate
.ts Movies

LEGEND
Input data / program flow Software File
SW output / data out

1 + per .plt file

“frame” for movie

may be >1 movie

DataW
arp SW

Stage out

.chk

Final
Movie
.mp4

PFS
Lustre

Burst buffer

Img File
.png

.plt
VISUALIZATION

VisIt

user
config via

python
script

1/
10

 ts

1/1
00

 ts

Main simulation
Chombo-Crunch

Chkpt manager
Detects large .chk

Issues asynch stage out

FIGURE 14.3 Chombo-Crunch and VisIt integrated burst buffer work�ow diagram.

9781138197541_C014 2017/10/13 17:09 Page 317 #11

Scalable Structured Adaptive Mesh Re�nement with Complex Geometry 317

Chombo-Crunch I/O time
Chombo-Crunch compute time

I/O pattern (a)

N
or

m
al

iz
ed

 ru
n

tim
e

61%

Lustre Lustre LustreBB BB BB

13.5% 13.6% 1.5% 1.8% 0.2%

I/O pattern (b) I/O pattern (c)

FIGURE 14.4 Summary on compute and I/O time for in-transit simulation-visualization work�ow for differ-
ent I/O intensities.

at every time step: 61% of I/O time for Lustre �le system versus 13.5% of I/O time for for burst
buffer; and medium I/O intensity when plot �le is written and processed every 10 timesteps: 13.6%
for Lustre �le system and 1.5% of I/O time for burst buffer.

14.11 CONCLUSIONS AND FUTURE WORK

The combination of AMR and EB cut cell methods provides a powerful tool for multiscale, multi-
physics simulation of PDEs in complex geometries. Mesh generation from arbitrary image data is not
only tractable but even �exible in this approach. In order to scale to larger simulation domains and
experimental time scales, however, we will need to alter our underlying software to accommodate
new architectures on the path to exascale computing. A number of optimizations have been discussed
in this chapter toward this end of distributed memory computing. Optimal mixture of these optimiza-
tions will be platform-dependent and will require further codesign with computer center experts and
vendor support. We will be able to make use of a number of optimizations and features of these new
machines. For example, off-chip NVRAM can be used for multicode coupling and more advanced
work�ows.

ACKNOWLEDGMENTS
This chapter is based upon work supported by the U.S. Department of Energy, Of�ce of Science,
Of�ce of Advanced Scienti�c Computing Research, and in part by the Of�ce of Basic Energy
Sciences Energy Frontier Research Centers, and used resources of the National Energy Research
Scienti�c Computing Center, all under contract number DE-AC02-05CH11231.

REFERENCES
1. D. Trebotich and D. Graves. An adaptive �nite volume method for the incompressible Navier–Stokes

equations in complex geometries.Communications in AppliedMathematics and Computational Science,
10(1):43–82, 2015.

9781138197541_C014 2017/10/13 17:09 Page 318 #12

318 Exascale Scienti�c Applications: Scalability and Performance Portability

2. M. J. Berger and P. Colella. Local adaptive mesh re�nement for shock hydrodynamics. Journal of Com-
putational Physics, 82(1):64–84, 23 May 1989.

3. D. Martin and P. Colella. A cell-centered adaptive projection method for the incompressible Euler equa-
tions. Journal of Computational Physics, 163(2):271–312, 2000.

4. A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. J. Welcome. A conservative adaptive projec-
tion method for the variable density incompressible Navier-Stokes equations. Journal of Computational
Physics, 142(1):1–46, May 1998.

5. D. F. Martin, P. Colella, and D. T. Graves. A cell-centered adaptive projection method for the incompress-
ible Navier-Stokes equations in three dimensions. Journal of Computational Physics, 227:1863–1886,
2008.

6. P. Schwartz, J. Percelay, T. J. Ligocki, H. Johansen, D. T. Graves, D. Devendran, P. Colella, and E.
Ateljevich. High-accuracy embedded boundary grid generation using the divergence theorem. Commu-
nications in Applied Mathematics and Computational Science, 10(1):83–96, 2015.

7. B. Van Straalen, P. Colella, D. Graves, and N. Keen. Petascale block-structured AMR applications with-
out distributed meta-data. Euro-Par 2011 Parallel Processing, pp. 377–386, Bordeaux, France: Springer,
2011.

8. A. Dubey and B. Van Straalen. Experiences from software engineering of large scale AMR multiphysics
code frameworks. arXiv preprint arXiv:1309.1781, 2013.

9. A. Dubey, A. Almgren, J. Bell, M. Berzins, S. Brandt, G. Bryan, P. Colella, D. Graves, M. Lijewski, F.
Löf�er et al. A survey of high level frameworks in block-structured adaptive mesh re�nement packages.
Journal of Parallel and Distributed Computing, 74(12):3217–3227, 2014.

10. C. Chan, D. Unat, M. Lijewski, W. Zhang, J. Bell, and J. Shalf. Software design space exploration for
exascale combustion co-design. In J. M Kunkel, T. Ludwig, and H. W. Meuer (eds.), Supercomputing,
pp. 196–212. New York, NY: Springer, 2013.

11. D. Unat, C. Chan,W. Zhang, S. Williams, J. Bachan, J. Bell, and J. Shalf. Exasat: An exascale co-design
tool for performance modeling. International Journal of High Performance Computing Applications,
29(2):209–232, 2015.

12. S. W Haney, P. F. Dubois. Beating the abstraction penalty in c++ using expression templates.Computers
in Physics, 10(6):552–557, 1996.

13. D. Trebotich, B.Van Straalen, D. T. Graves, and P. Colella. Performance of embedded boundary methods
for CFD with complex geometry. Journal of Physics: Conference Series, 125:012083, 2008.

14. Y. J. Lo, S. Williams, B. Van Straalen, T. J. Ligocki, M. J. Cordery, N. J. Wright, M. W. Hall, and L.
Oliker. Roo�ine model toolkit: A practical tool for architectural and program analysis. In International
Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer
Systems, pp. 129–148. Springer, 2014.

15. C. I. Steefel. New directions in hydrogeochemical transport modeling: Incorporating multiple kinetic
and equilibrium reaction pathways. In L.R. Bentley, J. F. Sykes, C. A. Brebbia, W. G. Gray, and G.F.
Pinder (eds.), Computational Methods in Water Resources XIII, Rotterdam: A. A. Balkema, 2000.

16. D. Trebotich, M. F. Adams, S. Molins, C. I. Steefel, and C. Shen. High-resolution simulation of pore-
scale reactive transport processes associated with carbon sequestration. Computing in Science and Engi-
neering, 16(6):22–31, 2014.

17. S. Molins, D. Trebotich, C. I. Steefel, and C. Shen. An investigation of the effect of pore scale �ow
on average geochemical reaction rates using direct numerical simulation. Water Resources Research,
48:W03527, 2012.

18. S. Molins, D. Trebotich, L. Yang, J. B. Ajo-Franklin, T. J. Ligocki, C. Shen, and C. I. Steefel. Pore-scale
controls on calcite dissolution rates from �ow-through laboratory and numerical experiments. Environ-
mental Science and Technology, 48(13):7453–7460, 2014. PMID: 24865463.

19. W. Bhimji, D. Bard, D. Paul, M. Romanus, A. Ovsyannikov, B. Friesen, M. Bryson, J. Correa, G. Lock-
wood, V. Tsulaia et al. Accelerating science with the NERSC burst buffer early user program. Annual
Cray User Group Meeting, 2016.

20. A. Ovsyannikov, M. Romanus, B. Van Straalen, G. Weber, and D. Trebotich. Scienti�c Work�ows at
DataWarp-Speed: Accelerated Data-Intensive Science Using NERSC’s Burst Buffer. PDSW-DISCS, to
appear, 2016.

