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Abstract—Tighter integration of computational resources
can foster superior application performance by mitigating
communication bottlenecks. Unfortunately, not every application
can use every compute or accelerator all the time. As a result, co-
locating resources often leads to under-utilization of resources. To
mitigate this challenge, architects have proposed disaggregation
and ad hoc pooling of computational resources. In the next five
years, HPC system architects will be presented with a spectrum of
accelerated solutions ranging from tightly coupled, single package
APUs to a sea of disaggregated GPUs interconnected by a global
network. In this paper, we detail NEthing, our methodology
and tool for evaluating the potential performance implications
of such diverse architectural paradigms. We demonstrate our
methodology on today’s and projected 2026 technologies for
three distinct workloads: a compute-intensive kernel, a tightly-
coupled HPC simulation, and an ensemble of loosely-coupled
HPC simulations. Our results leverage NEthing to quantify the
increased utilization disaggregated systems must achieve in order
to match superior performance of APUs and on-board GPUs.

Index Terms—Modeling of computer architecture,
Performance evaluation, On-chip interconnection networks,
Super (very large) computers, Cost/performance

I. INTRODUCTION

GPU accelerators are now commonplace in all of the
largest U.S. and European HPC systems, and a variety of
options are emerging regarding the degree of CPU-GPU
coupling. Determining which GPU accelerator to leverage and
how tightly coupled it should be to the host CPU is a huge
challenge for system designers – as different design point
make trade-offs between peak throughput, power, and CPU-
to-GPU transfer speeds and monetary cost. There is a growing
breadth of complex applications to analyze, and even when
considering an individual application, there can be a spectrum
of architectural preferences dependent on the problem
configuration and input. This creates a need for more advanced
models and tools to project the benefits of future hardware.

In this paper, we develop a methodology for analyzing the
benefits and pitfalls between tighter and looser system-level
integration of GPU accelerators. To that end, we begin with
a review of technology architectural trends leading to a
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heterogeneous landscape. We then develop an intuition and a
simple acceleration offload model. We show how it may be
used to project the benefits of a modern GPU architecture.
We then consider how the application landscape has increased
in complexity and requires additional profiling and tools to
analyze performance. To address these complexities we extend
a set of modern profiling tools and introduce NEthing [1]
(pronounced “anything”) which provides additional
capabilities to analyze complex application behavior,
such as communication/computation overlap and parameterize
models of data transfer. We then demonstrate the utility of
NEthing via detailed analysis of the modern QCD application
MILC [2]. Following this, for a range of kernels, we leverage
NEthing’s profiling to project the performance of four future
architecture design points: APU (integrated CPUs and GPUs),
on-board, tightly-coupled CPU/GPU, Discrete PCIe-attached
GPU, and disaggregated GPU. Overall, our work presents a
methodology to gain insight into the complex tradeoffs of
application requirements and accelerator integration design.

II. BACKGROUND AND RELATED WORK

As system designers look for opportunities for greater
performance in the future, specialization and heterogeneity
have emerged as viable solutions. However, having greater
choice in the selection of architectures does not benefit all
applications equally as different architectures will focus on a
subset of performance characteristics (e.g. how tightly coupled
CPU and GPU are, memory capacity, memory bandwidth,
degree of parallelism, etc). In this work, we examine four
design points for future accelerators, namely, APU, On-board
GPU, Discrete GPU and Disaggregated GPU. Each of these
vary by how tightly coupled the CPU and GPU are and the
number of memory domains.

APU: An Accelerated Processing Unit or APU combines
a CPU and GPU onto a single die or package. Examples
include the Apple M1 and AMD Fusion line [3], [4]. Whereas
a typical GPU contains two separate physical memories,
the APU has the benefit of a single physical memory. This
eliminates transfers between host and device memories. In
many ways this targets the applications that would not have
performed well on traditional GPUs where frequent data
transfers dominate GPU execution time.

On-board GPU: The on-board GPU is motivated by
the past IBM’s NVLink-connected Power9 processor [5]



and the more recent NVIDIA H100 [6]. In this work the
distinguishing feature between the APU and On-board GPU
is that the On-board GPU contains two separate memories,
one for the CPU and one for the GPU. These two memory
regions are connected by a interconnect that allows for
bandwidth equal to the CPU memory bandwidth (∼450GBps
unidirectional for H100). On-board favors workloads that
move large volumes of data between the CPU and GPU and
have demanding GPU computational requirements.

Discrete GPU: The discrete PCIe-attached GPU is what
is currently in use in many HPC center and is used in our
evaluation [7]. The GPU has a separate High Bandwidth
Memory (HBM) for the GPU and data is staged from host
memory of the CPU. The discrete GPU utilizes the relatively
slow PCIe connection to perform data transfers between
host and device. This results in bandwidths of 31.5GBps
(Gen4 ×16) and incurs a latency of on the order of a few
microseconds per transfer.

Disaggregated: Statically configured nodes may have
a sub-optimal ratio of CPUs to GPUs to NICs. This may
leave a GPU or CPU resource underutilized, or stranded. By
uncoupling GPUs from CPU resources we create opportunities
for gains in overall system utilization as we can provide a
flexible mapping of accelerator to CPU resources. For example
this might look like a set of GPU devices shared among CPU
nodes over a data center network. This flexibility comes at the
cost of higher latency and NIC limited bandwidth between the
disaggregated CPUs and GPUs. This adds an additional 2us
of latency, which is a reasonable approximation of inter-node
latency (1.86us measured on the Perlmutter system).

A. Related work

There is a growing body of work focused on the feasibility
of disaggregating accelerators within a data center [8]–[12].
However, much of this work is focused on utilization and
scheduling of a cluster or data center rather than modeling the
impact of tightly coupled and disaggregated CPUs and GPUs.

There is a large body of work that has quantified the
potential for offloading to a particular accelerator. In the past
this has mostly been a binary decision whether to use a GPU
accelerator or not. The increasing variety of accelerators and
designs has complicated the problem of designing a HPC
center. APIs that provide portable offload techniques such
as OpenCL [13], OpenACC [14] and OneAPI [15] require
architectural models to determine what code to offload.

More broadly offloading and scheduling Function as a
Service (FaaS) [16]–[21] has been of interest for decades. In
contrast, our focus is providing a model and tools to study
the coupling between CPU and accelerator.

III. CONCURRENT OFFLOAD MODEL

The opportunity for applications to effectively leverage an
accelerator is determined by comparing the benefit from the
acceleration factor of the computational workload against the
overheads of moving the data to the accelerator and launching
the kernels. We visualize this as a flow chart in Fig. 1. Where

c Traditional processor.
Tc Time to solution on c.
a Accelerated processor.
α Factor of acceleration for execution on a relative to c.
Taβ Time to launch kernel and transfer data.
Tc/α Time to execute kernel after launch.
Taγ Time to return result from a to c.
Ta Time to solution on a.

Fig. 1. Flowchart and definitions to evaluate the benefit of offloading
computation to an accelerator versus running it on the host CPU.

Tc is the time to solution on a traditional host, such as a
CPU, we can compare this against the sum of accelerator
states (Ta) on the right hand side of the flow chart.

Such a model provides a simplified view of the benefits for
traditional acceleration where data transfers occur outside of
the accelerated kernel execution. This model has been valuable
in representing a wide-range of early ports to accelerators,
which historically incurred substantial initialization and data
transfer costs. This required coarse-grained patterns of large
data transfers followed by large kernels.

As shown in Fig. 1, we label the time to initiate and
transfer data to the accelerator as Taβ and then the time to
return the solution to the host process as Taγ . The factor of
acceleration of the accelerator, compared to the host CPU is
labeled as α. If the acceleration factor is sufficiently large,
or the data transfer and initialization times are sufficiently
small, offloading the the accelerator provides a net speedup:

Taβ+Taγ+Tc/α<Tc

so
Taβ+Taγ<Tc(

α−1

α
)

or
Taβ+Taγ

Tc
=offload:compute<

α−1

α

Thus, the acceleration factor restricts the viable of-
fload:compute ratio required for any speedup. For example, if
α=2×, then the unaccelerated compute time must be twice the



Fig. 2. Initiation and transfer overheads (Taβ and Taγ ) of kernel launch,
malloc times and PCIe transfers for DGEMM of varying size as measured
on NERSC Perlmutter (NVIDIA A100 GPU).

cost of offloading to break even. Conversely, if α=5×, then
the offload cost must be far less than 80% of unaccelerated
compute time if acceleration is to provide any overall speedup.

A. An example using DGEMM

To provide some intuition, consider a double precision,
matrix-matrix-multiply (DGEMM). While real applications
are more complex, DGEMM provides an appropriate vehicle
to explore basic concepts. The flow chart provides an accurate
description of the launch behavior to determine when it is
beneficial to move a calculation from the host-based CPU to an
attached GPU. DGEMM takes two matrices each of size N2

doubles as inputs and returns one matrix of size N2 doubles
performing 2N3 operations in the process. Understanding
DGEMM’s relationship between computation and problem
size (i.e. data transfers) reinforces the intuition that the value
of accelerators increases with progressively coarser grained
offloading. To better illustrate the real overheads associated
with Taβ and Taγ we profile DGEMM execution overheads
on an NVIDIA A100 [22] GPU using Nsight Systems.

Fig. 2 plots (1) observed kernel launch time, (2) maximum
observed time to allocate memory on the GPU, and (3) host-
to-device (HtoD) and device-to-host (DtoH) data transfers as a
function of matrix dimension (N ) spanning a range of matrix
footprints from as small as 500KB to as large as 8.3GB. As a
comparison, it also shows the theoretical time-per-transfer on
the PCIe network (the reciprocal of bandwidth, also known
as the gap in the LogP [23] model). Observe that HtoD and
DtoH transfer times are somewhat higher than the theoretical
lower limit of the PCIe network. This is because of protocol
and other overheads that prevent the full utilization of the raw
PCIe pin bandwidth. Device memory allocation and kernel
launch time show little sensitivity to problem size. Although
device malloc time is very large, in many real applications,
the cost can be amortized across multiple kernel invocations.

The simplicity of DGEMM provides an easy way to
estimate the acceleration factor α. For modern hardware
we can calculate the peak fused-multiply-addition (FMA)

Fig. 3. Impact of launch time and bandwidth on DGEMM performance.
Three problem sizes show the benefit of a GPU compared to a CPU for launch
times and data transfer bandwidths. The computation times were collected on
NVIDIA A100 GPU and the acceleration factor over the host CPU is α=8.

operation rate that is the foundation of the DGEMM
calculation. For example, we assume a modern CPU has a
double-precision throughput of 2.5 TFLOP/s (CPU frequency
× core count × number of FMA units × number of FMAs
per cycle × the vector width divided by the precision). A
similar calculation, which leverages tensor operations, is
provided by GPU technical specifications [24] and shows
that the A100 GPU provides 20 TFLOP/s of double-precision
performance. This would imply the GPU has an α of 8× the
64-core host CPU in this DGEMM example.

With all the parameters of the model accounted for we can
explore how changes in architecture design that increase band-
width between the host CPU and accelerator or reduce the ini-
tialization and launch cost will benefit a given workload. Fig. 3
shows the performance benefits of increasing the data transfer
bandwidths or reducing the launch cost for the NVIDIA A100
compared to a host CPU with α = 8. We show the results
for three different problem sizes — (a) 10242, (b) 20482, (c)
40962 — with the time spent in computation measured on the
A100 GPUs and the data transfer and launch times modeled for
a range of improved bandwidth and launch overheads. Launch
times are modeled between 0 and 500µs. The model shows
how improving bandwidth particularly benefits DGEMMs
larger than 40962 compared to 10242. Even with massive
increases to bandwidth and a launch overhead of zero, the best
case speedup for a 10242 DGEMM is less than 2× due to the
small amount of work relative to the latency-bound data trans-
fers. Smaller matrices (e.g. 10242) could be a potential can-
didate for execution on an APU, as APUs have only a single
memory space and therefore do not incur data transfer costs.
While the tight coupling of an APU’s GPU and CPU compo-
nents is beneficial, it cannot match a discrete GPU’s raw com-
putational density. Conversely, larger problems are more sen-
sitive to increases to bandwidth, rather than changes in launch
costs. For multiplications in the range of 40962, attainable
speedup nears 7× as bandwidth increases to 400GBps. Such
large problems see little sensitivity to increased launch costs.

To reiterate, we use DGEMM to develop modeling
intuition. Modern full-featured applications may (1) leverage
a variety of algorithms that make estimating α difficult, (2)
utilize multiple tiers of networks, (3) exhibit varying transfer



performance dependent on message size and overheads, and
(4) perform multiple iterations of potentially overlapping
kernel launch, memory allocation and data transfers. This
requires a more sophisticated set of tools to analyze, which
we address in the next section.

IV. CAPTURING COMPLEX APPLICATION BEHAVIOR

In order to understand real applications, one must extract
greater detail than analytical modeling could provide. For
example, in comparison to the simple single DGEMM kernel,
a real application may be comprised of tens of different
kernels executed thousands of times. Each of these kernels
may leverage multiple data transfers of varying size. To
extract these details we utilize and augment NVIDIA’s Nsight
Systems profiler [25]. Nsight Systems provides detailed
analysis of application performance including data transfer
sizes and timings, kernel performance, CPU activity and
memory utilization. While Nsight provides a set of default
analysis and views, it also exports the profiles to a database
format that can be imported by other analysis frameworks and
tools. We extract this data and port it into our Python-based
NEthing [dbl blind] framework to provide the additional
analysis needed to meet the objectives of this paper.

Our work addresses several challenges that provide the
necessary detail to understand the complex applications
running on HPC systems today. Our framework automates
the parameter generation for a LogGP-based model, outputs
summary statistics and generates figures to summarize the
overall application. Lastly, our framework allows the user to
export the generated time series which can be analyzed in
common frameworks such as Jupyter, Python and Pandas.

A. Challenges

Fig. 4. Peak FP64 GPU performance per watt (relative to V100) over the
last 5 years as specified by the manufacturer (AMD and NVIDIA).

In the previous section, we mention several ways that real
applications may increase the complexity of analysis. In this
section, we describe the challenges of generating parameters
for our accelerator offload model, and how we use collected
profiles to summarize important application behavior (tiers of
network, size- and overhead-dependent transfer performance,
computation and data-transfer overlap).

Computation: Detailed predictions of computational ben-
efits of a future architecture across a broad workload requires
detailed simulation and analysis that is beyond the scope
of this paper. As such, we make the assumption that future
hardware accelerators are manufactured under similar process
technologies, and exhibit similar performance per watt. As far
as general purpose GPUs are concerned, we assume that future
GPUs and APUs will maintain the FLOPS per watt growth
of the last five years as shown in Fig 4, which is doubling
every three years. This is a middle of the road projection with
others, like TSMC, suggesting a continued doubling every
two years [26]. We use these trends to represent the portions
of computation as blocks of time that may be accelerated by
α and we derive α from historical data. While we know, some
architectures such as recent AI accelerators strike a different
balance between supported precision, memory capacity,
bandwidth, and chip area, we leave this for future work.

Multi-tier networks: In a typical scale-out application
this creates multiple tiers of data transfers happening between
(1) the host CPU and GPU (e.g. PCIe), (2) device-to-device
over an intra-node network (e.g. NVlink [27] or Infinity
Fabric [28]) and (3) device-to-device over an inter-node
network (e.g. Ethernet, Slingshot [29] or Infiniband [30]). To
account for this, we measure and model the performance of
the network hierarchy for both PCIe and NVLink. To further
complicate matters, both host bound and NIC bound PCIe
traffic are indistinguishable from each other when examining
logs of PCIe transfers. The version of Nsight Systems used
in this work provides “experimental” functionality to record
NIC traffic, however we were unable to make this work
in our experiments. While we would like to activate it in
future versions, for the purposes of this work we differentiate
between NIC-bound and host-bound PCIe traffic by executing
multiple configurations of process mappings (Fig. 5) and
comparing the PCIe traffic of each. The first configuration
is confined to a single node with 4 GPUs per node (left-side
of Fig 5). In this case, there is no PCIe traffic destined for
the NIC (i.e. only host-bound). In the second configuration
(right-side of Fig 5) we use four nodes with one GPU per
node. Transfers that were taking place over NVLink must
now cross the HPC network. This adds additional PCIe traffic.
We can estimate the NIC-bound PCIe traffic by subtracting
the sum of PCIe data transferred in the 4-node configuration
from the sum of PCIe transfers in the 1-node configuration.

Beyond LogP modeling: The LogP model was created
to break down communication costs into latency, overhead,
gap (the time to load the entire message onto the wire) and
processing. In the original model, l, o, and g are all fixed cost,
independent of message size. Later enhancements determined
that g should be represented as a cost per byte transferred
[31] and other work suggest that pipelining and batching
operations require further analysis to determine the cost per
byte as a function of message size [32]. For the kernels
explored in this work, we found up to a 13% improvement
in model accuracy by accounting for message size.

We automate the creation of LogGP-based models for



Fig. 5. Two configurations used to explore the shifts in data transfer charac-
teristics as we compare host-bound vs. remote bound transfers. In the 4-node
configuration, additional PCIe traffic occurs that are bound for remote GPUs.

communication performance at each tier of the network for
the applications profiled. This allows users to estimate the
network efficiency and overheads specific to the frequency
and message sizes of each application. We can then apply the
efficiency observed for modeling the performance impact of
future networks.

Overlap of Computation and Data Transfers: General
purpose GPU accelerators have typically been loosely attached
to CPUs and incur substantial (order ten microseconds)
penalties for launching kernels, performing data transfers and
allocating device memory. To hide these costs, many real
applications overlap computation and data transfers. On GPUs
this can be done by utilizing multiple streams which each
synchronize independently of each other and allowing for
asynchronous data transfer between host and device. For the
applications explored in this work we saw kernel/data transfer
overlap occurring in up to 40% of transfers. If an application
has substantial overlap, the benefit of increasing the processing
power or the interconnect bandwidth will be less noticeable
to overall application run times. A contribution of NEthing
is that it consolidates computation and data transfer events
into a single timeline before calculating the overlap between
the time-series. This allows users to differentiate the data
transfers that overlap with computation (and would not
necessarily see the benefit of increased bandwidth) from the
non-overlapping transfers that are performance critical.

Run time vs. kernel windows: Often, an application or
benchmark will need to set up the problem, perform I/O,
broadcast parameters to the set of worker nodes, and verify
the solution. It’s not always clear whether these non-trivial
setup and tear-down phases are representative of a production
application, which may have been shortened to be tractable
for analysis and repeated execution. For this reason, NEthing
reports data in terms of the run time, that is the total execution
window, and the kernel window, which we define as the time
between the first kernel’s start and last kernel’s completion.

Kernel launch times: For most applications, kernel launch
times are overshadowed by data transfer times (see Fig. 2).
Although the Nsight profiler captures kernel launch times
and we can determine the amount of time spent performing
initiating kernels, none of the architectures we explore fully

eliminate these kernel launch times. For an APU, the greatest
benefit comes from eliminating the host to device memory
copy. Additional work may be done to reduce kernel launch
latency by overlapping the kernels or pre-instantiating kernel
work descriptors. In this work, we focus on the impact of
varying the interconnect between the host CPU and GPU,
rather than exploring improvements for kernel launch times.

Memory allocation times: In Fig. 2, we observed that
device malloc has some of the highest overheads when
considering initialization costs. Due to the high overheads
for allocating device memory, many applications have
been optimized to allocate memory only when absolutely
necessary and reuse allocated buffers for multiple kernels.
This generally means that memory allocation costs may be
amortized throughout the execution of an application. For the
applications we explored, we only saw a handful of memory
allocations occur throughout their executions. NEthing
includes a timeline of memory allocations so a user may
determine whether or not this is the case for their program.

V. NETHING DEMONSTRATION

In order to demonstrate the capabilities of our analysis
framework, we perform a small set of profiling experiments
for a sophisticated, GPU accelerated application, MILC.
In the subsequent section, these experiments serve as a
baseline from which we can demonstrate the benefits of
future architectural enhancements, such as improvements to
bandwidth, or decreasing initiation costs.

A. Baseline Architecture

We perform our experiments on the Perlmutter system [7]
at NERSC. Each node has a single AMD 7763 64-core CPU
and four NVIDIA A100 GPUs. There is 256 GB of DDR4
DRAM for each CPU and each GPU contains 40 GB of
HBM2. Each GPU is connected to every other GPU within
the node by 100GBps (per-direction) of NVLink-3, resulting
in 300GBps of incoming and 300GBps outgoing bandwidth
for a single GPU. The GPUs and CPUs are connected by a
PCIe-4×16 connection (31.5GBps). Two Mellanox NICs are
attached to each node providing 25GBps aggregate bandwidth.

B. Applications and Configuration

MILC: To demonstrate our framework, we show
the detailed results for a sophisticated GPU accelerated
application, MILC [2]. MILC is a collaborative code for lattice
QCD computations. The software is written in C and C++
and performs SU(3) lattice gauge theory. We used the QUDA
backend of MILC developed by NVIDIA for their correspond-
ing GPUs [33]. We ran the MILC generation problem that
runs the su3 rhmd hisq executable. The output of the MILC
generation run is the time taken for three solvers: Conjugate
Gradient (CG), Fermion Force (FF) and Gauge Force (GF). All
three solvers are extremely sensitive to the placement of tasks
due to the inter-task communication. Our four MILC problem
sizes use lattices of 323×32, 323×64, 323×96 and 363×72.

LAMMPS: We use the molecular dynamics software
package LAMMPS [34], which provides a wide range of



potential implementations to simulate interactions between
atoms. For this paper, we select the computationally intensive
Spectral Neighborhood Analysis Potential (SNAP) [34]. The
SNAP implementation computes the force on each atom
based on its neighbors and a set of bispectrum components
that describe the local neighborhood. The set of atoms is
divided among the available tasks. Each task is assigned a
single GPU. Unlike MILC, LAMMPS-SNAP has far less
communication between tasks — for large atom sets, PCI
transfer times are less than 1% of the total execution time.
In essence, this version of LAMMPS is a loosely-coupled
ensemble of tasks. As such, we only observe the degree to
which a GPU communicates with its host processor.

Due to space constraints, we demonstrate NEthing’s
visualization capabilities using only MILC which shows more
varied behavior, but include LAMMPS in the demonstration
of NEthing’s analysis capabilities in Sec VI.

C. Differentiating Data Movement

In order to establish the relationship between growth in
computation, launch costs, and data transfer requirements of
the application, we increase the scale of the problem size while
holding the number of GPUs constant. Each of these runs are
executed in two process-mapping configurations as shown in
Fig. 5: four GPUs on a single node (1-node) or one GPU per
node across four nodes (4-node). In other words, both process
mappings always use four GPUs in aggregate, but the node
count changes between one and four. In both configurations,
we allocate 32 hardware threads on the host CPU per GPU.

Running in the 4-node configuration creates the additional
challenge of having to distinguish between PCIe traffic bound
for the local host versus PCIe traffic that is passing through the
local CPU before continuing over the network to a remote host.
The reason it is important to distinguish between these types of
traffic is because future architectures such as an on-board GPU
or APU may have better bandwidth between the host CPU
and GPU, but the network will remain limited by PCIe perfor-
mance across all architectures. Normally this would be an easy
problem to solve by collecting data from the NIC, but we were
unable to get this working during the evaluation of this work.
In the future, these counters will be added to our framework.

By running on a single node with four GPUs connected
over NVLink, we shift transfers that would occur over the NIC
to NVLink. This allows users to determine the data transfer
characteristics for host-bound PCIe traffic. Complementing
the single node run, the 4-node configuration shifts traffic that
would move over NVLink to move over the HPC Slingshot
Network instead. We can compare the data transfers of both
configurations to see what additional traffic goes over the
network and whether it has different properties than host-
bound traffic, such as computation and data transfer overlap.

D. Results

Radar Plot: NEthing radar plots (Figs. 6-7) summarize the
different aspects of MILC application performance for four
different problem sizes. For each labeled spoke (performance

Fig. 6. Radar plot MILC (1-node) using four different problem sizes. Data
shows the time relative to the kernel window that was spent in GPU and CPU
computation, Peer-to-peer and PCIe data transfers, as well as kernel launch.

Fig. 7. Radar plot MILC (4-node) using four different problem sizes.
Compared to the 1-node runs we see the increase in serial CPU and PCIe
transfers due to MPI inter-node communication.

component), the radial distance of the colored region indicates
the percentage of time that component contributes to the kernel
window (first kernel launch to last kernel’s completion). Note
that the sum of values across dimensions may add up to greater
than 100%. This is due to the fact that individual components
may overlap with each other (e.g. CPU running while the
GPU is running, while data transfers are taking place).

In Fig. 6, each of the four problem sizes for the 1-node
configuration are overlaid onto each other. This allows users to



visualize whether varying the problem size results in different
components dominating the kernel time. MILC shows roughly
the same percentage of time spent in each dimension of the
radar plot as we increase the problem size. Overall, we observe
that MILC is relatively balanced, spending approximately
20% of the time running GPU kernels, 5% of the time in PCIe
transfers, under 1% of time in peer to peer (NVLink) transfers
and a similar amount of time in kernel launch. We also observe
that the CPU is active throughout the execution, with multiple
cores running in parallel for nearly 50% of this window.

Comparing Fig. 6 with Fig. 7, we see that the multi-node
run experiences significantly higher serial CPU utilization
and a greater percentage of time performing PCIe transfers
(20%). Both are due to the addition of MPI processing and
inter-node communication that was transferred over NVLink
in the single node experiment.

Initialization costs: As we examine MILC memory
utilization for different lattice sizes, we see that the utilized
device memory ranges from between approximately 4GB
to 8GB. The general pattern of device allocations repeats
throughout the different problem sizes, but there are only
around six device memory allocations that occur during the
run. For large problem sizes, the impact of these memory
allocations is minimal (less than 1% of a 70 second run).

Across the range of MILC problem sizes, we observe
between 81,472 and 88,467 kernel launches across five unique
kernels in a 32 to 71 second kernel window. Moreover, the
median kernel launch latencies ranged from 4.4 to 4.6us
showing little sensitivity to problem size. The aggregate
kernel launch time represents 1% or less of total execution.
While kernel launches (particularly worst case) may improve
in future generations of accelerators, the differences in kernel
launch times across the architectures (e.g. GPU vs. APU)
are minor in comparison to other architectural levers, such as
adjustments to CPU-GPU data transfer performance.

Data transfer costs: Data transfer time and volumes for
MILC are considerable though the transfer rate is simliar
across problem sizes. The smallest size problem moves
approximately 100GB of data over the PCIe bus in 32
seconds. The largest problem size transfers over 190GB of
data to and from the GPU in 71 seconds. By comparing single-
and multi-node runs of the same problem size and GPU
concurrency, we observe 21-39% of PCIe traffic is destined
for the NIC (inter-node), with the remaining 79-61% traffic
destined to the CPU (intra-node). The distinction between the
two is important for understanding the value of improving
chip-to-chip bandwidth, similar to the NVIDIA Grace-Hopper
Superchip [35], which supports increased bidirectional
bandwidth of 900GBps (intra-node) between CPU and GPU
components. While traffic destined for local host memory
would benefit from this increase, traffic destined for remote
nodes would still be limited by slower network interfaces.

Overlap between kernel execution and data transfers is
another factor that has potential to limit the observed benefits
of improvements to bandwidth. If a data transfer is already
hidden by overlapping with kernel execution, accelerating the

transfer provides no benefit as the kernel execution time is still
the bottleneck. Single-node runs of MILC saw minimal PCIe-
kernel overlap. For the 4-node configuration (Fig 7) 35-40%
of total PCIe transfer time is overlapped with kernel execution.
This difference suggest that only the PCIe transfers related
to network communication overlap with kernel execution.

Given a profile of data transfers, our tool automatically
generates a model that shows the efficiency (percentage of
theoretical bandwidth) of the data transfer across varying mes-
sage sizes. This provides users with an understanding of what
efficiency they can expect from current and future generations
of network interfaces and how the performance varies across
transfer sizes and direction (HtoD vs DtoH vs. Peer-to-Peer).

Fig 8 shows the LogGP model for three different transfer
types: Host-to-Device, Device-to-Host and NVLink (363×72
problem size, 1-node). The y-axis shows the average transfer
time per byte for a given message size, while the x-axis
is the message size. The data points show the numerous
data transfers that occur for a wide range of message sizes
and how the time per byte differs by more than a order of
magnitude depending on message size.

For host-to-device performance, the coefficient calculated
in the curve fit shows that the PCIe connection achieves
85% of the theoretical performance of 31.5GBps for large
message sizes. In this plot, the y-intercept reveals there is
approximately a 2us overhead cost associate with any transfer
from the CPU to GPU for MILC. Going in the opposite
direction, for device-to-host transfers, we calculate slightly
lower realized throughput of the PCIe connection (83%)
with approximately 10% higher overheads than from host-
to-device (2.2us). Additionally, the device-to-host direction
incurs greater variability than the host-to-device transfers.

Examining the rightmost plot of Fig. 8, we see NVLink
performance is extremely fast with about 95% utilization of
the 100GBps link, but is more difficult to predict due to the
variability observed, resulting in a lower confidence fit. The
model suggest that the overhead plus latency to send a message
over NVLink are considerable (a y-intercept of approximately
10us) which make it a good fit for large transfer sizes that can
amortize the delay. Examining the cause of this variability is
something we would like to explore further in the future.

VI. PERFORMANCE IMPACT OF CPU-GPU COUPLING

In the previous section, using MILC as an example, we
demonstrated how NEthing could highlight the principal
components of application execution and model data transfers
using the LogGP model. In this section, we introduce
a new way to visually characterize the suitability of an
application to an emerging integrated or disaggregated
architectural paradigm. We begin, by using DGEMM, MILC
and LAMMPS to illustrate the potential for accelerator
disaggregation on 2022 architectures. We then project
performance onto a set of hypothetical 2026 architectures,
which includes the APU and on-board GPU.



Fig. 8. Observed seconds (y-axis) per byte for sending a message at varying message size (x-axis) for MILC (363×72 problem size). As message size
increases, so does efficiency allowing for greater bandwidth (reduced gap). The orange line is the function used to calculate the effective bandwidth vs the
theoretical bandwidth (dashed green line). The y-intercept represents the overhead plus latency in LogGP.

A. 2022 Architectures

For current systems there are a number of solutions that
extend the PCIe network beyond a node to offer disaggregation
of a GPU accelerator. The motivation for a disaggregated GPU
is the stranded resources problem in data centers. Specifically,
it is impossible to perfectly tune the ratio of CPUs to GPUs
on a node for all applications and in some instances GPUs
or CPUs may be undersubscribed. A disaggregated solution
composes the ideal CPU:GPU ratio by selecting GPUs from a
shared pool of GPUs that are accessed over an HPC network.
This additional hop over a network adds latency. Therefore,
the disaggregated solution does not aim to provide greater
performance, rather greater value and utilization. In the 2022
scenario, both inter-node and intra-node data transfers have
identical bandwidth (PCIe limited). The main difference is that
an inter-node kernel launch and data transfer would incur ad-
ditional latency. We model this by adding an additional latency
of 2µs, which is what we measure on the Perlmutter system.

In Fig 9 summarizes the performance characteristics of
our application kernels (single node, 4-GPU). The x-axis is
the average data transfer time per kernel in nanoseconds and
is calculated by looking at the mean host-to-device transfer
size and the mean device-to-host transfer size, then using our
LogGP model, calculating the transfer time. (Alternatively
one could analyze each significant kernel of an application.) It
is implicit that the kernel uses a single host-to-device transfer
for input and a single device-to-host transfer for output. For
reference, our kernels saw between 1 and 4 transfers per
kernel launch. The y-axis is the mean kernel duration. With
α=8 between the A100 and CPU, we can then fill in the
region of performance where the GPU solution is preferred
over a CPU solution (the grey region). The CPU Preferred
line assumes a kernel launch time of 4us

The red, orange, and yellow regions show the expected
performance penalty if we were to disaggregate the A100
GPU. Our first observation is that every application analyzed
shows less than a 5% performance penalty for running on
disaggregated GPUs. For LAMMPS and DGEMM the penalty
is less than 1%. For LAMMPS this is simply due to the fact
it is run as an ensemble of independent tasks each of which
spend less than 1% of their run time in data transfers. For
DGEMM this is largely due to the size of the data transfers.

Fig. 9. 2022 Application Offload Model. Performance characteristics shown
by the average kernel transfer time and kernel duration as measured on an
A100 GPU system with an α=8 compared to CPU execution. Total run time
is the sum of the x-axis (data transfer), y-axis (kernel execution) and kernel
launch latency. Kernels that spend more time transferring data, relative to
kernel execution (bottom-right) are more suitable for a CPU. Kernels in
the yellow region are suitable for disaggregation with minimal performance
penalty. For each kernel, the x-error bar indicates the observed portion of
data transfer that overlaps kernel execution.

As both inter-node and intra-node transfers are limited by the
PCIe interface, there is little impact so long as the problem
size is large enough. Interestingly, if we were to decrease
the DGEMM problem size enough to become latency bound
(less than 5122) the problem would run better on the CPU
than GPU and disaggregation becomes a moot point.

The second observation is that of the applications analyzed,
all but the smallest DGEMMs show a strong preference for
GPUs. This is intuitive, given the N3 :N2 relationship between
computation to data transfer of DGEMM, small DGEMMS are
relatively more sensitive to data transfer than larger DGEMMs.



TABLE I
SUMMARY OF POTENTIAL 2026 GPU ARCHITECTURES. PEAK TFLOPS/W
IS BASED FROM TRENDS OF FIG. 4. GPU POWER VARIES AMONG DISCRETE
PCIE SOLUTION, APU, OR ON-BOARD. ACHIEVED FLOPS FOR THE 350W

ARCHITECTURES IS TAKEN FROM EXISTING SPECIFICATIONS [6].

× FLOPS GPU FP64 GPU CPU ↔ GPU CPU ↔ GPU
Archit. (2026) (vs. A100) TFLOPS Power Bandwidth Latency
Disagg. GPU 5.1 102 350W 121GB/s 4us
Discrete GPU 5.1 102 350W 121GB/s 2us

On-board GPU 6.7 133 700W 900GB/s 1us
APU 5.1 102 350W N/A N/A

B. 2026 Architectural Paradigms

If we consider the directions that future architectures might
employ there is a significant design space to explore in how
tightly coupled the CPU and GPU are. This ranges from
(1) APUs in which the CPU and GPU are integrated in a
single package with a single physical memory space (2)
On-board GPUs where CPUs and GPUs are integrated on
the same board via a high-bandwidth interconnect but have
separate capacity- and bandwidth-optimized memory [35],
(3) conventional discrete PCIe-attached GPUs (architecturally
similar to on-board but with a slower interconnect), and (3)
GPUs disaggregated over a remote network.

Tab. I shows the projected performance and power of
each architecture in the 2026 time frame. Using the trend
observed in Fig. 4, we project a peak FP64 efficiency of 0.19
TFLOPS/W in the 2026 time frame. Using this efficiency, we
may calculate FLOPS and performance for a 700W on-board
GPU. This model projects the 2026 on-board GPU to have
a peak FP64 performance of 133TFLOP/s which is a 6.7×
increase versus the 2020 A100 GPU [22]. We assume kernel
launch costs to be reduced in this time frame from 4us to
2us. For the remaining design points we assume discrete
PCIe-attached and disaggregated GPUs will have a TDP of
350W like NVIDIA’s forthcoming Hopper GPU [6]. As with
the H100, we assume a non-linear relationship between power
and performance, such that PCIe-attached GPUs using half
the TDP of an on-board GPU solution are able to achieve
76% of the performance [6]. In the following text we provide
additional information specific to each design point.

CPUs: We assume GPU-accelerated supercomputers in the
2026 time frame will include (on average) 32 2.5GHz CPU
cores per GPU (up 2× from 64-cores per 4 GPUs on 2021’s
Perlmutter). This is a reasonable design point and matches
the hardware threads per CPU of the system our experiments
were run on. This simplifies the exploration space to focus on
differences in CPU-GPU connectivity rather than differences
in CPU architectures.

APUs: Our APU design point has a package TDP of
700W. However, only half of this is dedicated to the GPU
portion of the package. This results in a 5.1× increase in
FLOPS, which is identical to what we use for discrete and
disaggregated GPUs in our model. In future experiments we
will explore the impact of adjusting the division of power
between CPU and GPU. However, dedicating all the power

to the GPU (doubling) can only increase the APU’s GPU
performance by 33%. As there is a single, physically-unified
memory, data copies are non-existent.

On-board GPUs: In this work there are two distinguishing
differences between the APU and On-board GPU. The first is
that the on-board GPU contains two separate memories, one
for CPU and one for GPU. These two memory regions are
connected by a interconnect that allows for bandwidth equal
to the CPU memory bandwidth (450GBps unidirectional for
H100). For our design, we increase the performance per watt
following the trends of Fig. 4 and we double the bandwidth be-
tween the CPU and GPU so that it continues to match the next
generation of DDR performance (900 GBps unidirectional).
We decrease the latency between the CPU and GPU to 1us.

The second difference between the other accelerators is
that the on-board GPU leverages double the power to deliver
a 6.7 × increase in FLOPS relative to the A100 while,
other designs only provide 5.1 ×. This performance per watt
efficiency is informed by upcoming H100 specifications [6]

Discrete GPUs: The discrete PCIe-attached GPU is power
limited to 350W. As such, this architecture has a lower gain
in FLOPS of 5.1 × compared to the on-board. The discrete
GPU is motivated by performance per dollar and performance
per watt rather than peak capability (75% of the peak FP64
FLOPS with half the TDP [6]). This design point utilizes
PCIe6×16 (121 GBps) to perform data transfers between
host and device and incurs a latency of 2us per transfer.

Disaggregated GPUs: Our disaggregated GPU paradigm
is conceptually identical to the discrete, PCIe-attached GPU
with the exception that it is accessed over a remote network.
This adds an additional 2us of latency — a reasonable
approximation of inter-node latency In the 2026 time frame,
network bandwidth will be limited by the PCIe Gen6×16
(121 GBps) fabric to the NIC. Compared to the earlier 2022
scenario of Fig. 9, a disaggregated GPU solution in 2026 must
compete against tightly coupled designs such as the APU.

C. Model Projections

Fig. 10 projects performance for a selection of
kernels/applications onto the four architectures specified
in Tab. I. The y-axis is the execution time relative to the
time observed on Perlmutter’s A100 GPUs (a value of 0.33
corresponds to a speedup of 3× over the A100 GPU).
For each bar we have separated out the kernel launch cost
(grey), the kernel execution time (solid) and the data transfer
time (hashed). Similar to earlier scenarios, we base these
projections on the mean kernel time and the mean data
transfer volumes to and from the accelerator. All of the data
transfer times are based on the LogGP model parameterized
by Fig 8, but we adjust the latency and apply the observed
efficiency to higher bandwidth networks such as the 121
GBps of PCIe6 x16. This illustrates the utility of our NEthing
tool to project the performance of future architectures.

Fig. 10 shows that aside from the LAMMPS ensemble run,
the discrete GPU solution will spend a substantial fraction
of its run time in data transfers. The increased latency of



Fig. 10. Projected application run time (vs. A100) for four different architectures in the 2026 time frame (lower is better). Note, a value of 0.33 corresponds with
a speedup of 3× over the A100 GPU. Time is broken down into fraction of time spent in kernel launch (gray), kernel execution (solid), and data transfer (hashed).

disaggregation will only make this worse. Conversely, by
accelerating or eliminating data transfers, the integrated
solutions like on-board GPUs and APUs will see increased
performance on such applications. In general, the higher
FLOP rate for the high-power, on-board solution reduces the
requisite kernel time, and results in faster application run times
for MILC and the LAMMPS ensemble. As one decreases
matrix sizes, DGEMM run time is increasingly dominated by
data transfer times. As such, the APU’s elimination of data
transfers helps performance more than its reduced TDP hurts.

VII. DISCUSSION AND CONCLUSIONS

Trying to navigate through the sea of heterogeneity is an
increasing challenge for system designers. They must choose
between architectural designs that favor one-dimension such as
CPU-accelerator-coupling at the expense of other dimensions
such as raw accelerator performance in a zero-sum game.
As such, designers must create models and tools capable of
analyzing the diversity of architectural options against the
breadth of applications whilst concisely quantifying the trade-
offs. We use the NEthing tool to capture complex application
behavior which can inform our basic accelerator offload
model and project the benefit on to future architectures.

Disaggregation vs. Tighter Coupling: When comparing
a discrete GPU to a disaggregated GPU, the disaggregation
penalty was generally minor, with the exception of the smallest
MILC problem (which saw 19% slowdown compared to
the discrete architecture). However, when compared to the
APU and on-board GPU, the discrete and disaggregated
solutions saw significant slowdowns (with the exception of
the LAMMPS-SNAP ensemble). This suggests a 2026 disag-
gregated accelerator operates in a smaller niche than 2022. To
be viable in 2026, the disaggregated kernel must be largely
computation-bound with minimal data transfers. Alternatively,
specialized, high-bandwidth networks could be deployed
across disaggregated resources [36], but this potentially drives
up system costs. Ultimately, disaggregated systems must
increase GPU utilization (time the GPU is actively utilized) by
a factor proportional to the performance difference between the
disaggregated solution and the integrated (e.g. APU) solution.

The APU removes the need to perform the extra data
transfer by operating both CPU and GPU from a single
memory space and the on-board solution provides such a

substantial bandwidth increase that data transfer times are
minimized for all but the smallest DGEMM kernels, which
are latency bound (rather than bandwidth). One exception
to this observation is the LAMMPS ensemble run, which
spends such a small proportion of time in data transfer and
kernel launches that it is only bound by the accelerator’s
ability to execute the kernel. For the architectural approaches
considered, we assume the on-board GPU has an increase
in FLOPS of 6.7× compared to the other solutions of 5.1×.
Increasing discrete and disaggregated GPU TDP will increase
performance, but will never bridge the performance difference
for applications that look like MILC or DGEMM. Conversely,
APU architectural designers must increase GPU performance
by allocating more power to the GPU (e.g. better than a
3:1 GPU:CPU APU TDP breakdown) in order for APU
performance to approach parity with the on-board solution.

Overlooked opportunities for APUs: For the workload
evaluated, the APU falls within 75% of the performance of the
on-board GPU, with a smaller deficit for MILC and a substan-
tial performance gain for small DGEMM kernels. However,
it’s important to note that the codes that might show the great-
est value of the APU most may not exist on today’s systems.
That is, historically codes that required frequent data transfers
relative to the length of the offloaded kernel were poor choices
for GPU offload. An architecture that consists of a single phys-
ical memory for GPU and CPU, such as the APU opens up
new opportunities for offload. This leaves us with the question
of what overlooked opportunities exist for the APU. As scien-
tists and engineers typically only promote their successes, it’s
difficult to find the records of codes that didn’t perform well
on previous generations of GPUs, but might succeed on future
APUs. We look forward to exploring this topic in future work.

Peak performance per unit vs. scale-out perfor-
mance: The hidden variable when designing any system is the
price. While we make no projections in this work about price, a
system’s architect must determine how they value the per-node
performance against scale-out application performance. Differ-
ent architectures will provide different points for optimizing
along these two axes as the architect may choose to leverage a
component that provides lower raw performance per unit, but
greater performance per watt or dollar in order to achieve a
greater number of nodes and benefit scale-out applications.
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