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Problem: maximum cardinality Vertex Edge
matching in bipartite graph. O Matched Matched

Unmatched

Application: block triangular forms
of matrices, least square problemes,

circuit simulation, weighted & . &

matching.

Algorithm: Search for disjoint paths
alternating between matched and © &

unmatched edges. Maximum Cardinality Matching

Innovation: Re-use search trees created in one phase in the next phase
by grafting branches of trees. Significantly reduces work in the tree-
traversal and exposes more parallelism.

Ariful Azad, Aydin Bulug, and Alex Pothen. A parallel tree grafting algorithm for maximum cardinality
matching in bipartite graphs. In Proceedings of the IPDPS, 2015.




Performance: On 40-core Intel Westmere-EX
On average 7x faster than current best algorithm. Can be up to 42x faster.

16

B Push-Relabel
12 71 mpothen-Fan
B MS-BFS-Graft

Relative performance

%

el N 0

AL S q %) du \e ) 2
de\ c %%/ CO? ae( 03 ‘_? a‘e‘\ ?\N\ A (0 ad /\.\ \N\o— e eb—GOO% \N\ (P ed

W
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Parallel Algorithms for De Novo Genome Assembly
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Evangelos Georganas, Aydin Bulug, Jarrod Chapman, Leonid Oliker, Daniel Rokhsar, and Katherine Yelick.
Parallel de bruijn graph construction and traversal for de novo genome assembly. In Supercomputing (SC'14).




Parallel Genome Alignment for De novo Assembly

* In de novo assembly, billions of reads must be aligned to contigs
* First aligner to parallelize the seed index construction (“fully” parallel)
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Evangelos Georganas, Aydin Bulug, Jarrod Chapman, Leonid Oliker, Daniel Rokhsar, and Katherine Yelick.
meraligner: A fully parallel sequence aligner. In Proceedings of the IPDPS, 2015.




Fast Parallel Block Eigensolvers

Block iterative methods: h
- have data locality and cache re-use n <
- expose more parallelism
Sparse matrix vector block multiplication
Motivated by nuclear structure calculations L
Applications: data analysis & spectral clustering nxn matrix with nnz
nonzeroes, in xf3 blocks
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H. Metin Aktulga, Aydin Bulug, Samuel Williams, and Chao Yang. Optimizing sparse matrix-multiple vectors
multiplication for nuclear configuration interaction calculations. In Proceedings of the IPDPS, 2014




Filtered Semantic Graph Processing

Standard KDT

Filter (Py)

Python | KDT Algorithm

Semiring (Py)

v
C++ CombBLAS
Primitive

* Filters enable efficient processing of
semantic graphs (with edge/vertex

attributes)

e Semirings enable customization of graph
algorithms using matrix primitives

* Filters & semirings can be a performance
bottleneck in high-level languages

e SEJITS enable just-in-time compilation of

filters/semirings into Combinatorial BLAS,

matching performance low-level code
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Adam Lugowski, Shoaib Kamil, Aydin Bulug, Sam Williams, Erika Duriakova, Leonid Oliker, Armando Fox, John Gilbert.
Parallel processing of filtered queries in attributed semantic graphs. Journal of Parallel & Dist. Comp. (JPDC)), 2014




The Graph BLAS Effort

Standards for Graph Algorithm Primitives

Tim Mattson (Intel Corporation), David Bader (Georgia Institute of Technology), Jon Berry (Sandia National
Laboratory), Aydin Buluc (Lawrence Berkeley National Laboratory), Jack Dongarra (University of Tennessee),
Christos Faloutsos (Carnegie Melon University), John Feo (Pacific Northwest National Laboratory), John Gilbert
(University of California at Santa Barbara), Joseph Gonzalez (University of California at Berkeley), Bruce
Hendrickson (Sandia National Laboratory), Jeremy Kepner (Massachusetts Institute of Technology), Charles
Leiserson (Massachusetts Institute of Technology), Andrew Lumsdaine (Indiana University), David Padua (University
of Illinois at Urbana-Champaign), Stephen Poole (Oak Ridge National Laboratory), Steve Reinhardt (Cray
Corporation), Mike Stonebraker (Massachusetts Institute of Technology), Steve Wallach (Convey Corporation),
Andrew Yoo (Lawrence Livermore National Laboratory)

Abstract-- It is our view that the state of the art in constructing a large collection of
graph algorithms in terms of linear algebraic operations is mature enough to
support the emergence of a standard set of primitive building blocks. This paper is

a position paper defining the problem and announcing our intention to launch an
open effort to define this standard.

The Graph BLAS Forum: http://istc-bigdata.org/GraphBlas/
Graph Algorithms Building Blocks (GABB workshop at IPDPS’14 and IPDPS’15):
http://www.graphanalysis.org/workshop2015.html




Direction-optimizing BFS on distributed memory

Up to 8X faster on Kronecker (Graph500) F?" C f.'ixed—siz'eo.l r.eal inpu’F,

inputs (largest run on 16 billion vertices direction-optimizing algorithm needs
and 256 billion edges) 1/16™ of processors (and energy)
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R-MAT on Jaguar (Processors)

Implemented on top of Combinatorial BLAS (i.e. uses 2D decomposition)

Bulug, Beamer, Madduri, Asanovi¢, Patterson, “Distributed-Memory Breadth-First Search on Massive Graphs”, Chapter in
Parallel Graph Algorithms, Bader (editor), CRC Press / Taylor & Francis (2015), to appear
Beamer, B., Asanovic, Patterson, "Distributed Memory Breadth-First Search Revisited: Enabling Bottom-Up Search”, IPDPSW’13




Communication-avoiding All-Pairs Shortest-Paths
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Strong Scaling on Hopper (Cray XE6 up to

X = i
1024 nodes = 24576 cores) D*; % recursive call

Algorithm based on Kleene’s recursive B =BD; C=DC;
formulation on the (min,+) semiring A = A + BC;

Solomonik, Bulug, Demmel. “Minimizing communication in all-pairs shortest paths”, IPDPS. 2013.




Communication Optimal Sparse Matrix Multiplication

Matrix multiplication: Previous Sparse Classical Lower Bound:
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* Expected (Under some technical assumptions)

 Two new algorithms (3D iterative & recursive)
that attain the new lower bound

* No previous algorithm attain these.

Assumption: Assignment of
data and work to processors is
sparsity-pattern-independent

Ballard, Bulug, Demmel, Grigori, Lipshitz, Schwartz, and Toledo. Communication optimal parallel
multiplication of sparse random matrices. In SPAA 2013.




