EDGAR

- **Energy-efficient Data and Graph Algorithms Research**
- Funded by Applied Math, ASCR
- Early Career Research Program (start: 2013)
- PI: Aydın Buluç (Berkeley Lab)
- Postdoctoral Fellow:
 - Ariful Azad (100%)
- Students:
 - Veronika Strnadova-Neeley (Since Oct 2015, UCSB)
 - Adam Sealfon (CSGF Fellow, Summer 2015, MIT)
 - Chaitanya Aluru (undergraduate, UC Berkeley)
EDGAR (FY15)

Awards:
• Aydın Buluç, *IEEE TCSC Award for Excellence for Early Career Research* by the IEEE Committee on Scalable Computing, 2015
• HipMer team (next slide), HPCWire’s Readers’ Choice Award for the *Best Use of HPC Application in Life Sciences*

Artifacts:
• Aydın Buluç, *Guest Editor*: Parallel Computing, special issue on “Graph Analysis for Scientific Discovery”
• Six peer-reviewed publications, one invited article
• Six invited talks (one at conference, five at universities/labs)
HipMer: An Extreme-Scale De Novo Genome Assembler

Meraculous assembler is used in production at the Joint Genome Institute
- Wheat assembly is a “grand challenge”
- Hardest part is contig generation (large in-memory hash table that represents graph)
- HipMer is an efficient parallelization of Meraculous

Meraculous Assembly Pipeline

reads

k-mers

New k-mer analysis filters errors using probabilistic “Bloom Filter”

contigs

Graph algorithm (connected components) scales to 15K cores on NERSC’s Edison

scaffolding using scalable alignment

Performance improvement from *days to minutes*

Communication-Avoiding Sparse Matrix-Matrix Multiply

Applications:
- Algebraic multigrid (AMG) restriction
- Graph computations
- Quantum chemistry
- Similarity computation (data mining)
- Interior-point optimization

\[\frac{n}{\sqrt{pc}} \]

\[C_{ij}^{\text{intermediate}} = \sum A_{ik} B_{jk} \]

3D-threaded (red) beats the previous state-of-the-art (blue) by 8X at large concurrencies

Parallel Maximum Cardinality Matching in Bipartite Graphs Using “Tree Grafting”

Scaling: One node of Edison (24-core Intel Ivy Bridge). On average **17x** speedups relative to serial algorithm.

Performance: On 40-core Intel On average **7x** faster than current best algorithm. Can be up to **42x** faster.

Counting and Enumerating Triangles using Matrix Algebra

A = L + U
L × U = B
A ∧ B = C

sum(C)/2 = 4 triangles

A. Azad, A. Buluç, and J. R Gilbert. “Parallel triangle counting and enumeration using matrix algebra”,
Graph Algorithm Building Blocks IPDPS Workshops, 2015
Maximal Cardinality Matching using Matrix Algebra

Matrix-based primitives enable efficient and scalable distributed-memory implementations of various maximal cardinality algorithms solely by minimal modifications to the underlying semiring operator.