Contemporary Mathematics

Graph Partitioning for
Scalable Distributed Graph Computations

Aydin Bulu¢ and Kamesh Madduri

ABSTRACT. Inter-node communication time constitutes a significant fraction
of the execution time of graph algorithms on distributed-memory systems.
Global computations on large-scale sparse graphs with skewed degree distri-
butions are particularly challenging to optimize for, as prior work shows that it
is difficult to obtain balanced partitions with low edge cuts for these graphs. In
this work, we attempt to determine the optimal partitioning and distribution of
such graphs, for load-balanced parallel execution of communication-intensive
graph algorithms. We use breadth-first search (BFS) as a representative ex-
ample, and derive upper bounds on the communication costs incurred with a
two-dimensional partitioning of the graph. We present empirical results for
communication costs with various graph partitioning strategies, and also ob-
tain parallel BFS execution times for several large-scale DIMACS Challenge
instances on a supercomputing platform. Our performance results indicate
that for several graph instances, reducing work and communication imbalance
among partitions is more important than minimizing the total edge cut.

1. Introduction

Graph partitioning is an essential preprocessing step for distributed graph com-
putations. The cost of fine-grained remote memory references is extremely high in
case of distributed memory systems, and so one usually restructures both the graph
layout and the algorithm in order to mitigate or avoid inter-node communication.
The goal of this work is to characterize the impact of common graph partitioning
strategies that minimize edge cut, on the parallel performance of graph algorithms
on current supercomputers. We use breadth-first search (BFS) as our driving ex-
ample, as it is representative of communication-intensive graph computations. It
is also frequently used as a subroutine for more sophisticated algorithms such as
finding connected components, spanning forests, testing for bipartiteness, maxi-
mum flows [10], and computing betweenness centrality on unweighted graphs [1].
BFS has recently been chosen as the first representative benchmark for ranking
supercomputers based on their performance on data intensive applications [5].

2000 Mathematics Subject Classification. Primary 05C70; Secondary 05C85, 68W10.
Key words and phrases. graph partitioning, hypergraph partitioning, inter-node communi-
cation modeling, breadth-first search, 2D decomposition.

©0000 (copyright holder)

2 AYDIN BULUC AND KAMESH MADDURI

Given a distinguished source vertez s, breadth-first search (BFS) systematically
explores the graph G to discover every vertex that is reachable from s. Let V and F
refer to the vertex and edge sets of G, whose cardinalities are n = |V| and m = |E|.
We assume that the graph is unweighted; equivalently, each edge e € E is assigned a
weight of unity. A path of length [from vertex s to t is defined as a sequence of edges
(uj,uit1) (edge directivity assumed to be u; — u;41 in case of directed graphs),
0 < i < I, where ug = s and u; = t. We use d(s,t) to denote the distance between
vertices s and ¢: the length of the shortest path connecting s and ¢. BFS implies
that all vertices at a distance k (or level k) from vertex s should be first visited
before vertices at distance k + 1. The distance from s to each reachable vertex is
typically the final output. In applications based on a breadth-first graph traversal,
one might optionally perform auxiliary computations when visiting a vertex for the
first time. Additionally, a breadth-first spanning tree rooted at s containing all the
reachable vertices can also be maintained.

Level-synchronous BF'S implementations process all the vertices that are k hops
away from the root (at the k' level), before processing any further vertices. For
each level expansion, the algorithm maintains a frontier, which is the set of active
vertices on that level. The k*® frontier is denoted by Fj, which may also include any
duplicates and previously-discovered vertices. The pruned frontier is the unique set
of vertices that are discovered for the first time during that level expansion.

In Section 2, we review parallel BFS on distributed memory systems. Sec-
tions 3 and 4 provide an analysis of the communication costs of parallel BFS, and
relate them to the metrics used by graph and hypergraph partitioning. We detail
the experimental setup for our simulations and real large-scale runs in Section 5.
Section 6 presents a microbenchmarking study of the collective communication
primitives used in BFS, providing evidence that the 2D algorithm has lower com-
munication costs. This is partly due to its better use of interconnection network
resources, independent of the volume of data transmitted. We present performance
results in Section 7 and summarize our findings in Section 8.

2. Parallel Breadth-first Search

Data distribution plays a critical role in parallelizing BFS on distributed-
memory machines. The approach of partitioning vertices to processors (along with
their outgoing edges) is the so-called 1D partitioning, and is the method employed
by Parallel Boost Graph Library [6]. A two-dimensional edge partitioning is im-
plemented by Yoo et al. [11] for the IBM BlueGene/L, and by us [2] for different
generations of Cray machines. Our 2D approach is different in the sense that it
does a checkerboard partitioning (see below) of the sparse adjacency matrix of the
underlying graph, hence assigning contiguous submatrices to processors. Both 2D
approaches achieved higher scalability than their 1D counterparts. One reason is
that key collective communication phases of the algorithm are limited to at most
/D processors, avoiding the expensive all-to-all communication among p processors.
Yoo et al.’s work focused on low-diameter graphs with uniform degree distribution,
and ours primarily studied graphs with skewed degree distribution. A thorough
study of the communication volume in 1D and 2D partitioning for BFS, which
involves decoupling the performance and scaling of collective communication oper-
ations from the number of words moved, has not been done for a large set of graphs.
This paper attempts to fill that gap.

GRAPH PARTITIONING FOR SCALABLE DISTRIBUTED GRAPH COMPUTATIONS 3

The 1D row-wise partitioning (left) and 2D checkerboard partitioning (right)
of the sparse adjacency matrix of the graph are as follows:

Al A171 PR A17pc
(2.1) AP =], AP = : . :
Ap Api |- [Apo

The nonzeros in the i*" row of the sparse adjacency matrix A represent the
outgoing edges of the i*" vertex of G, and the nonzeros in the j* column of A
represent the incoming edges of the j*™ vertex.

In 2D partitioning, processors are logically organized as a mesh with dimen-
sions p, X p., indexed by their row and column indices. Submatrix A; ; is assigned
to processor P(i,j). The indices of the submatrices need not be contiguous, and
the submatrices themselves need not be square in general. In 1D partitioning,
sets of vertices are directly assigned to processors, whereas in 2D, sets of vertices
are collectively owned by all the processors in one dimension. Without loss of
generality, we will consider that dimension to be the row dimension. These sets
of vertices are labeled as Vi, Vs,...,V,,, and their outgoing edges are labeled as
Adjt(Vy), AdjH (Va), ..., Adj+(Vpr). Each of these adjacencies is distributed to pro-
cessors that are members of a row dimension: Adj™(V;) is distributed to P(1,:),
Adj*t(V3) is distributed to P(2,:), and so on. The colon notation is used to index
a slice of processors, e.g. processors in the i*" processor row are denoted by P(i,:).

Level-synchronous BFS with 1D graph partitioning comprises three main steps:

e Local discovery: Inspect outgoing edges of vertices in current frontier.

e Fold: Exchange discovered vertices via an All-to-all communication phase,
so that each processor gets the vertices that it owns after this step.

e Local update: Update distances and parents locally for newly-visited ver-
tices.

The parallel BFS algorithm with 2D partitioning has four steps:

e Expand: Construct the current frontier of vertices on each processor by a
collective All-gather step along the processor column P(:, j) for 1 < j < p..

e Local discovery: Inspect outgoing edges of vertices in the current frontier.

e Fold: Exchange newly-discovered vertices via an collective All-to-all step
along the processor row P(i,:), for 1 <1i < p,.

e Local update: Update distances and parents locally for newly-visited ver-
tices.

In contrast to the 1D case, communication in the 2D algorithm happens only
along one processor dimension. If Fxpand happens along one processor dimension,
then Fold happens along the other processor dimension. Detailed pseudo-code for
the 1D and 2D algorithms can be found in our earlier paper [2]. Detailed micro
benchmarking results in Section 6 show that the 2D algorithm has a lower commu-
nication cost than the 1D approach due to the decreased number of communicating
processors in collectives. The performance of both algorithms is heavily depen-
dent on the performance and scaling of MPI collective MPT_Al1toallv. The 2D
algorithm also depends on the MPI_Al1lGatherv collective.

4 AYDIN BULUC AND KAMESH MADDURI

3. Analysis of Communication Costs

In prior work [2], we study the performance of parallel BFS on synthetic Kro-
necker graphs used in the Graph 500 benchmark. We observe that the communica-
tion volume is O(m) with a random ordering of vertices, and a random partitioning
of the graph (i.e., assigning m/p edges to each processor). The edge cut is also
O(m) with random partitioning. While it can be shown that low-diameter real-
world graphs do not have sparse separators [8], constants matter in practice, and
any decrease in the communication volume, albeit not asymptotically, may translate
into reduced execution times for graph problems that are typically communication-
bound.

We outline the communication costs incurred in 2D-partitioned BFS in this
section. 2D-partitioned BFS also captures 1D-partitioned BFS as a degenerate
case. We first distinguish different ways of aggregating edges in the local discovery
phase of the BFS approach:

(1) No aggregation at all, local duplicates are not pruned before fold.

(2) Local aggregation at the current frontier only. Our simulations in Section 7.1
follow this assumption.

(3) Local aggregation over all (current and past) locally discovered vertices by
keeping a persistent bitmask. We implement this optimization for gathering
parallel execution results in Section 7.2.

Consider the expand phase. If the adjacencies of a single vertex v are shared
among AT < p. processors, then its owner will need to send the vertex to AT — 1
neighbors. Since each vertex is in the pruned frontier once, the total communication
volume for the expand phases over all iterations is equal to the communication
volume of the same phase in 2D sparse-matrix vector multiplication (SpMV) [4].
Each iteration of BFS is a sparse-matrix sparse-vector multiplication of the form
AT x F,. Hence, the column-net hypergraph model of AT accurately captures the
cumulative communication volume of the BFS expand steps, when used with the
connectivity —1 metric.

ho
al

d? el

FiGure 1. Example illustrating communication in fold phase of
BFS: Partitioning of Adj™ (v).

Characterizing communication for the fold phase is more complicated. Con-
sider a vertex v of in-degree 9, shown in Figure 1. In terms of the sparse matrix
representation of the graph discussed above, this corresponds to a column with 9
nonzeros. We label the adjacencies Adj™ (v) with a superscript denoting the earliest

GRAPH PARTITIONING FOR SCALABLE DISTRIBUTED GRAPH COMPUTATIONS 5

BFS iteration in which they are discovered. Vertex h in the figure belongs to Fy,
vertices a and f to F}, and so on. Furthermore, assume that the adjacencies of
v span three processors, with the color of the edges indicating the partitions they
belong to. We denote non-local vertices with RemoteAdj™ (v). Since v belongs to
the black partition, RemoteAdj™ (v) is Adj™ (v) \ {d, e, f} in this case.

The communication cost of the fold phase is complicated to analyze due to the
space-time partitioning of edges in the graph in a BFS execution. We can annotate
every edge in the graph using two integers: the partition the edge belongs to, and
the BFS phase in which the edge is traversed (remember each edge is traversed
exactly once).

The communication volume due to a vertex v in the fold phase is at most
|RemoteAdj™ (v)|, which is realized when every e € RemoteAdj™ (v) has a distinct
space-time partitioning label, i.e. no two edges are traversed by the same remote
process during the same iteration. The edgecut of the partitioned graph is the set
of all edges for which the end vertices belong to different partitions. The size of the
edgecut is equal to D ’RemoteAdjf(v) , giving an upper bound for the overall
communication volume due to fold phases.

Another upper bound is O(diameter -(A~ — 1)), which might be lower than the
edgecut. Here, A~ < p,. is the number of processors among which Adj~ (v) is parti-
tioned, and diameter gives the maximum number of BF'S iterations. Consequently,
the communication volume due to discovering vertex v, comm(v), obeys the fol-
lowing inequality: comm(v) < min (diameter -(A~ — 1), |[RemoteAdj™ (v)|). In the
above example, this value is min (8,6) = 6.

c? c?

dz..u e3 dz..u e3

(a) 1st iteration, vol=1 (b) 2nd iteration, vol=1

i3 i3

S ho

al al
2
g

b? b2

g

c2

d2 e’ dz"" e’

(c) 3rd iteration, vol=2 (d) 4th iteration, vol=1

FIGURE 2. Partitioning of Adj™ (v) per BFS iteration.

Figure 2 shows the space-time edge partitioning of Adj™ (v) per BFS step.
In the first step, the communication volume is 1, as the red processor discovers
v through the edge (h,v) and sends it to the black processor for marking. In the

6 AYDIN BULUC AND KAMESH MADDURI

second step, both green and black processors discover v and communication volume
is 1 from green to black. Continuing this way, we see that the actual aggregate
communication in the fold phase of v is 5.

The row-net hypergraph model of AT is an optimistic lower-bound on the overall
communication volume of the fold phases using the connectivity —1 metric. On the
other hand, modeling the fold phase with the edgecut metric would be a pessimistic
upper bound (in our example, the graph model would estimate communication
due to v to be 6). It is currently unknown which bound is tighter in practice for
different classes of graphs. If we implement global aggregation (global replication of
discovered vertices), the total communication volume in the fold phase will decrease
all the way down to the SpMV case of (A~ —1). However, this involves an additional
communication step similar to the expand phase, in which processors in the column
dimension exchange newly-visited vertices.

4. Graph and Hypergraph Partitioning Metrics

We consider several different orderings of vertices and edges and determine the
incurred communication costs. Our baseline approach is to take the given ordering
of vertices and edges as-is (i.e., the natural ordering), and to partition the graph
into 1D or 2D (checkerboard) slices as shown in Equation 2.1. The second scenario
is to randomly permute vertex identifiers, and then partition the graph via the
baseline approach. These two scenarios do not explicitly optimize for an objective
function. We assume the load-balanced 2D wvector distribution [2], which matches
the 2D matrix distribution for natural and random orderings. Each processor row
(except the last one) is responsible for ¢ = [n/p, | elements. The last processor row
gets the remaining n — |n/p.|(p, — 1) elements. Within the processor row, each
processor (except the last) is responsible for |t/p.| elements.

We use the graph partitioner METIS [7] to generate a 1D row-wise partitioning
with balanced vertices per partition and simultaneously minimizing the number
of cut edges. Lastly, we experiment with hypergraph partitioning, which exactly
captures total communication costs of sparse matrix-dense vector multiplication in
its objective function [4]. We use PaToH [3] and report results with its row-wise
and checkerboard partitioning algorithms. Our objective is to study how graph
and hypergraph partitioning affect computational load balance and communication
costs. In both use cases of PaToH, we generate a symmetric permutation as output,
since input and output vectors have to be distributed in the same way to avoid data
shuffling after each iteration. PaToH distributes both the matrix and the vectors
in order to optimize the communication volume, and so PaToH runs might have an
unbalanced vector distribution.

We define V(d, p) to be the number of words sent by processor p in the d*" BFS
communication phase, on a run with P processors that takes D level-synchronous
iterations to finish. We compute the following machine-independent counts that
give the incurred communication.

(1) Total communication over the course of BFS execution:

D P

TotalVolume = Z Z V(d,p).

d=1p=1

GRAPH PARTITIONING FOR SCALABLE DISTRIBUTED GRAPH COMPUTATIONS 7

(2) Sum of maximum communication volumes for each BFS step:
D D
MazxVolume = max_V, d,p) + max Vyga(d,p).
d:1pe{1mp} erpand(ap) dzzlpe{l...P} fold(ap)
Although we report the total communication volume over the course of BFS
iterations, we are most concerned with the MazVolume metric. It is a better approx-
imation for the time spent on remote communication, since the slowest processor
in each phase determines the overall time spent in communication.

5. Experimental Setup

Our parallel BFS implementation is level-synchronous, and so it is primarily
meant to be applied to low-diameter graphs. However, to quantify the impact of
barrier synchronization and load balance on the overall execution time, we run our
implementations on several graphs, both low- and high-diameter.

We categorize the following DIMACS Challenge instances as low diameter: the
synthetic Kronecker graphs (kron_g500-simple-logn and kron_g500-logn fami-
lies), Erd6s-Rényi graphs (er-fact1.5 family), web crawls (eu-2005 and others),
citation networks (citationCiteseer and others), and co-authorship networks
(coAuthorsDBLP and others). Some of the high-diameter graphs that we report
performance results on include hugebubbles-00020, graphs from the delaunay
family, road networks (road_central), and random geometric graphs.

Most of the DIMACS test graphs are small enough to fit in the main memory of
a single machine, and so we are able to get baseline serial performance numbers for
comparison. We are currently using serial partitioning software to generate vertex
partitions and vertex reorderings, and this has been a limitation for scaling to larger
graphs. However, the performance trends with DIMACS graphs still provide some
interesting insights.

We use the k-way multilevel partitioning scheme in METIS (v5.0.2) with the
default command-line parameters to generate balanced vertex partitions (in terms
of the number of vertices per partition) minimizing total edge cut. We relabel
vertices and distribute edges to multiple processes based on these vertex partitions.
Similarly, we use PaToH’s column-wise and checkerboard partitioning schemes to
partition the sparse adjacency matrix corresponding to the graph. While we report
communication volume statistics related to checkerboard partitioning, we are still
unable to use these partitions for reordering, since PaToH edge partitions are not
necessarily aligned.

We report parallel execution times on Hopper, a 6392-node Cray XEG6 system
located at Lawrence Berkeley National Laboratory. Each node of this system con-
tains two twelve-core 2.1 GHz AMD Opteron Magny-Cours processors. There are
eight DDR3 1333-MHz memory channels per node, and the observed memory band-
width with the STREAM [9] benchmark is 49.4 GB/s. The main memory capacity
of each node is 32 GB, of which 30 GB is usable by applications. A pair of com-
pute nodes share a Gemini network chip, and these network chips are connected
to form a 3D torus (of dimensions 17 x 8 x 24). The observed MPI point-to-point
bandwidth for large messages between two nodes that do not share a network chip
is 5.9 GB/s. Further, the measured MPI latency for point-to-point communication
is 1.4 microseconds, and the cost of a global barrier is about 8 microseconds. The
maximum injection bandwidth per node is 20 GB/s.

8 AYDIN BULUC AND KAMESH MADDURI

We use the GNU C compiler (v4.6.1) for compiling our BFS implementation.
For inter-node communication, we use Cray’s MPI implementation (v5.3.3), which
is based on MPICH2. We report performance results up to 256-way MPI pro-
cess/task concurrency in this study. In all experiments, we use four MPI tasks
per node, with every task constrained to six cores to avoid any imbalances due to
Non-Uniform Memory Access (NUMA) effects. We did not explore multithreading
within a node in the current study. This may be another potential source of load
imbalance, and we will quantify this in future work. More details on multithreading
within a node can be found in our prior work on parallel BFS [2].

To compare performance across multiple systems using a rate analogous to
the commonly-used floating point operations per second, we normalize the serial
and parallel execution times by the number of edges visited in a BFS traversal
and present a Traversed Edges Per Second (TEPS) rate. For an undirected graph
with a single connected component, the BFS algorithm would visit every edge in
the component twice. We only consider traversal execution times from vertices
that appear in the largest connected component in the graph (all the DIMACS
test instances we used have one large component), compute the mean search time
(harmonic mean of TEPS) using at least 20 randomly-chosen sources vertices for
each benchmark graph, and normalize the time by the cumulative number of edges
visited to get the TEPS rate.

6. Microbenchmarking Collectives Performance

In our previous paper [2], we argue that the 2D algorithm has a lower com-
munication cost because the inverse bandwidth is positively correlated with the
communicator size in collective operations. In this section, we present a detailed
microbenchmarking study that provides evidence to support our claim. A sub-
communicator is a sub partition of the entire processor space. We consider the
2D partitioning scenario here. The 1D case can be realized by setting the column
processor dimension to one. We have the freedom to perform either one of the
communication phases (Allgatherv and Alltoallv) in contiguous ranks, where pro-
cesses in the same subcommunicator map to sockets that are physically close to
each other. The default mapping is to pack processes along the rows of the proces-
sor grid, as shown in Figure 3 (we refer to this ordering as contiguous ranks). The
alternative method is to reorder ranks so that they are packed along the columns
of the processor grid (referred to as spread-out ranks). The alternative remapping
decreases the number of nodes spanned by each column subcommunicator. This
increases contention, but can potentially increase available bandwidth.

We consider both the cases of spread-out and contiguous ranks on Hopper, and
microbenchmark Allgatherv and Alltoallv operations by varying processor grid con-
figurations. We benchmark each collective at 400, 1600, and 6400 process counts.
For each process count, we use a square /p x 1/p grid, a tall skinny (2,/p) % (\/p/2)
grid, and a short fat (,/p/2) x (2/p) grid, making a total of nine different process
configurations for each of the four cases: Allgatherv spread-out, Alltoallv spread-
out, Allgatherv packed, Alltoallv packed. We perform linear regression on mean
inverse bandwidth (measured as microseconds/MegaBytes) achieved among all sub-
communicators when all subcommunicators work simultaneously. This mimics the
actual BFS scenario. We report the mean as opposed to minimum, because the
algorithm does not require explicit synchronization across subcommunicators.

GRAPH PARTITIONING FOR SCALABLE DISTRIBUTED GRAPH COMPUTATIONS 9

p.

{—A—\ s1 s2 s1 s2
node A E] e &
node A node B

node B

P Mappin
node C sl s2 sl s2
l— node D @ £ sé
node C node D
Virtual processor grid topology Physical processor grid topology

FIGURE 3. Mapping of column subcommunicators from a 4 x 4
virtual process grid to a physical network connecting 4 nodes, each
having 4 sockets. Each column subcommunicator (shown with a
different color) spans multiple physical nodes. One MPI process
maps to one socket.

In each run, we determine constants a, b, ¢ that minimize the sum of squared
errors (SSres = Y. (Yobsd — Yest)?) between the observed inverse bandwidth and the
inverse bandwidth estimated via the equation 8(p;, pc) = ap,+bp.+c. The results
are summarized in Table 1. If the observed t-value of any of the constants are below
the critical t-value, we force its value to zero and rerun linear regression. We have
considered other relationships that are linear in the coefficients, such as power series
and logarithmic dependencies, but the observed t-values were significantly below
the critical t-value for those hypotheses, hence not supporting them. We also list
72, coefficient of determination, which shows the ratio (between 0.0 and 1.0) of
total variation in 8 that can be explained by its linear dependence on p, and p..
Although one can get higher 72 scores by using higher-order functions, we opt for
linear regression in accordance to Occam’s razor, because it adequately explains
the underlying data in this case.

Regression | Pack along rows | Pack along columns

coefficients Bag ﬂaZa 5ag ﬂa2a

a 0.0700 | 0.0246 - 0.0428
0.0148 - - 0.0475

c 2.1957 | 1.3644 | 2.3822 4.4861

SSres 1.40 0.46 0.32 7.66

r? 0.984 | 0.953 | 0.633 0.895

TaABLE 1. Regression coefficients for 8(p,,p.) = ap, + bp. + c.
Alltoallv (a2a) happens along the rows and Allgatherv (ag) along
the columns. Shaded columns show the runs with spread-out ranks.
Dash (‘~’) denotes uncorrelated cases.

We see that both the subcommunicator size (the number of processes in each
subcommunicator) and the total number of subcommunicators affect the perfor-
mance in a statistically significant way. The linear regression analysis shows that
the number of subcommunicators have a stronger effect on the performance than
the subcommunicator size for the Allgatherv operation on spread-out ranks (0.0700
vs 0.0148). For Alltoallv operation on spread-out ranks, however, their effects are

10 AYDIN BULUC AND KAMESH MADDURI

comparable (0.0428 vs 0.0475). Increasing the number of subcommunicators in-
creases both the contention and the physical distance between participating pro-
cesses. Subcommunicator size does not change the distance between each partic-
ipant in a communicator and the contention, but it can potentially increase the
available bandwidth by using a larger portion of the network. We argue that it
is that extra available bandwidth that makes subcommunicator size important for
the Alltoallv case, because it is more bandwidth-hungry than Allgatherv.

For Alltoallv runs with contiguous ranks, we find that the total number of sub-
communicators does not affect the inverse bandwidth in a statistically significant
way. We truncate the already-low coefficient to zero since its observed t-values
are significantly below the critical t-value. The subcommunicator size is positively
correlated with the inverse bandwidth. This supports our original argument that
larger subcommunicators degrade performance due to sub-linear network band-
width scaling. For Allgatherv runs with contiguous ranks, however, we see that
neither parameter affects the performance in a statistically significant way.

We conclude that the number of processors inversely affect the achievable band-
width on the Alltoallv collective used by both the 1D and 2D algorithms. Hence,
the 2D algorithm uses available bandwidth more effectively by limiting the number
of processors in each subcommunicator.

7. Performance Analysis and Results

7.1. Empirical modeling of communication. We first report machine-
independent measures for communication costs. For this purpose, we simulate
parallel BF'S using a MATLAB script whose inner kernel, a single BF'S step local to
a processor, is written in C++ using mex for speed. For each partition, the simulator
does multiple BFS runs (in order) starting from different random vertices to report
an accurate average, since BFS communication costs, especially the MaxVolume
metric, depend on the starting vertex. When reporting the ratio of TotalVolume
to the total number of edges in Table 2, the denominator counts each edge twice
(since an adjacency is stored twice).

p=4x1 p=16x1 p=064x1

Graph N R P N R P N R P

coPapersCiteseer 4.7% 14.7% 1.9% 8.7% 47.9% 3.4% 10.8% 102.5% 4.8%
coAuthorsCiteseer 37.6% 79.9% 5.9% 59.3% 143.9% 11.3% 68.7% 180.3% 15.6%
citationCiteseer 64.8% 75.0% 7.8% 125.0% 139.0% 16.9% 164.9% 176.1% 29.0%
coPapersDBLP 7.6% 18.4% 3.7% 15.7% 58.2% 7.6% 21.0% 118.8% 11.7%
coAuthorsDBLP 45.2% 81.3% 10.9% 74.9% 148.9% 19.8% 90.1% 182.5% 27.2%
eu-2005 5.3% 23.2% 0.3% 8.7% 63.8% 1.9% 12.3% 107.4% 7.2%
kronecker-logn18 7.7% 7.6% 6.3% 22.7% 23.1% 19.5% 47.5% 53.4% 45.0%
delaunay_-n20 52.4% 123.7% 0.2% 59.3% 178.0% 0.6% 60.6% 194.4% 1.4%
rgg-n_2_20_s0 0.2% 85.5% 0.1% 0.6% 160.1% 0.3% 2.5% 188.9% 0.6%

TABLE 2. Percentage of TotalVolume for 1D row-wise partitioning
to the total number of edges (lower is better). N denotes the
natural ordering, R denotes the ordering with randomly-permuted
vertex identifiers, and P denotes reordering using PaToH.

The reported communication volume for the expand phase is exact, in the sense
that a processor receives a vertex v only if it owns one of the edges in Adj™ (v) and
it is not the owner of v itself. We count a vertex as one word of communication.
In contrast, in the fold phase, the discovered vertices are sent in (parent, vertex_id)

GRAPH PARTITIONING FOR SCALABLE DISTRIBUTED GRAPH COMPUTATIONS 11

pairs, resulting in two words of communication per discovered edge. This is why
values in Table 2 sometimes exceed 100% (i.e. more total communication than the
number of edges), but are always less than 200%. For these simulations, we report
numbers for both 1D row-wise and 2D checkerboard partitioning when partitioning
with the natural ordering, partitioning after random vertex relabeling, and parti-
tioning using PaToH. The performance trends obtained with 1D partitions gener-
ated using METIS (discussed in Section 7.2) are similar to the ones obtained with
PaToH partitions, and we do not report the METIS simulation counts in current
work.

For 1D row-wise partitioning, random relabeling increases the total commu-
nication volume (i.e., the edge cut), by a factor of up to 10x for low-diameter
graphs (realized in coPaperCiteseer with 64 processors) and up to 250x for high-
diameter graphs (realized in rgg n 2 20_s0 with 16 processors), compared to the
natural ordering. Random relabeling never decreases the communication volume.
PaToH can sometimes drastically reduce the total communication volume, as ob-
served for the graph delaunay n20 (15x reduction compared to natural ordering
and 45X reduction compared to random relabeling for 64 processors) in Table 2.
However, it is of little use with synthetic Kronecker graphs.

p=2x2 p=4x4 p=8x38

Graph N R P N R P N R P

coPapersCiteseer 1.32 0.67 0.64 1.25 0.46 0.74 1.35 0.39 0.81
coAuthorsCiteseer 1.45 0.91 0.66 1.47 0.88 0.76 1.60 0.97 0.85
citationCiteseer 0.91 0.28 0.63 0.88 0.84 0.70 0.91 0.93 0.71
coPapersDBLP 1.13 0.68 0.64 1.01 0.48 0.66 1.07 0.42 0.72
coAuthorsDBLP 1.35 0.92 0.69 1.31 0.91 0.76 1.40 1.00 0.85
eu-2005 1.89 0.73 1.29 1.90 0.56 0.60 1.63 0.57 0.48
kronecker-logn18 0.71 0.73 0.52 0.51 0.51 0.42 0.43 0.39 0.34
delaunay_n20 1.79 0.95 0.60 2.16 1.09 0.59 2.45 1.24 0.60
rgg-n_-2_20_s0 135.54 0.75 0.61 60.23 0.80 0.64 18.35 0.99 0.66

TABLE 3. Ratio of TotalVolume with 2D checkerboard partitioning
to the TotalVolume with 1D row-wise partitioning (less than 1
means 2D improves over 1D).

Table 3 shows that 2D checkerboard partitioning generally decreases total com-
munication volume for random and PaToH orderings. However, when applied to
the default natural ordering, 2D in general increases the communication volume.

p=4x1 p=16x1 p=64x1

Graph N R P N R P N R P

coPapersCiteseer 1.46 1.01 1.23 1.81 1.02 1.76 2.36 1.07 2.44
coAuthorsCiteseer 1.77 1.02 1.55 2.41 1.06 2.06 2.99 1.21 2.86
citationCiteseer 1.16 1.02 1.39 1.33 1.07 2.17 1.53 1.21 2.93
coPapersDBLP 1.56 1.01 1.22 1.99 1.02 1.86 2.40 1.05 2.41
coAuthorsDBLP 1.84 1.01 1.39 2.58 1.05 1.85 3.27 1.13 2.43
eu-2005 1.37 1.10 1.05 3.22 1.28 3.77 7.35 1.73 9.36
kronecker-logn18 1.04 1.06 1.56 1.22 1.16 1.57 1.63 1.42 1.92
delaunay -n20 2.36 1.03 1.71 3.72 1.13 3.90 6.72 1.36 8.42
rgg n_2_20_s0 2.03 1.03 2.11 4.70 1.13 6.00 9.51 1.49 13.34

TABLE 4. Ratio of P- MaxVolume to TotalVolume for 1D row-wise
partitioning (lower is better).

12 AYDIN BULUC AND KAMESH MADDURI

p=2x2 p=4x4 p=8x8
Graph N R P N R P N R P
coPapersCiteseer 1.38 1.29 1.20 2.66 1.07 1.59 4.82 1.04 2.12
coAuthorsCiteseer 1.46 1.29 1.56 2.57 1.08 1.95 4.76 1.08 2.52
citationCiteseer 1.29 1.29 1.40 1.35 1.08 2.08 1.71 1.07 2.63
coPapersDBLP 1.40 1.29 1.28 2.35 1.07 1.81 4.00 1.03 1.96
coAuthorsDBLP 1.51 1.28 1.28 2.51 1.08 1.81 4.57 1.12 1.97
eu-2005 1.70 1.32 1.78 3.38 1.15 3.25 8.55 1.19 8.58
kronecker-lognl8 1.31 1.31 2.08 1.14 1.12 1.90 1.12 1.09 1.93
delaunay _n20 1.40 1.30 1.77 3.22 1.12 4.64 8.80 1.18 11.15
rgg-n_-2_20_s0 3.44 1.31 2.38 8.25 1.13 6.83 53.73 1.18 17.07
TABLE 5. Ratio of P- MaxVolume to TotalVolume for 2D checker-
board partitioning (lower is better).
Natural (ave) == Random (ave) = = PaToH (ave) Natural (ave) == Random (ave) = = PaToH (ave)
Natural (max) =#=Random (max) =®=PaToH (max) Natural (max) =#=Random (max)=®=PaToH (max)
«» 550 «» 400
2 2
g 500 3 350
3 3
£ as0 £ 300
400
250
350
200
300
150
250
200 100
150 50
100 0
4x1 16x1 64x1 2x2 4x4 8x8
(a) 1D row-wise model (b) 2D checkerboard model

FIGURE 4. Maximum and average communication volume scaling
for various partitioning strategies. y-axis is in thousands of words
received.

The (P - MaxVolume)/ TotalVolume metric shown in Tables 4 and 5 show the
expected slowdown due to load imbalance in per-processor communication. This is
an understudied metric that is not directly optimized by partitioning tools. Random
relabeling of the vertices results in partitions that are load-balanced per iteration.
The maximum occurs for the eu-2005 matrix on 64 processors with 1D partitioning,
but even in this case, the maximum (1.73x) is less than twice the average. In
contrast, both natural and PaToH orderings suffer from imbalances, especially for
higher processor counts.

To highlight the problems with minimizing the total (hence average) communi-
cation as opposed to the maximum, we plot the communication volume scaling in
Figure 4 for the Kronecker instance we study. The plots show that even though Pa-
ToH achieves the lowest average communication volume per processor, its maximum
communication volume per processor is even higher than the random case. This
partly explains the computation times reported in Section 7.2, since the maximum
communication per processor is a better approximation for the overall execution
time.

Edge count imbalances for different partitioning strategies can be found in the
Appendix. Although they are typically low, they only represent the load imbalance

GRAPH PARTITIONING FOR SCALABLE DISTRIBUTED GRAPH COMPUTATIONS 13

due to the number of edges owned by each processor, and not the number of edges
traversed per iteration.

7.2. Impact of Partitioning on parallel execution time. Next, we study
parallel performance on Hopper for some of the DIMACS graphs. To understand
the relative contribution of intra-node computation and inter-node communication
to the overall execution time, consider the Hopper microbenchmark data illustrated
in Figure 5. The figure plots the aggregate bandwidth (in GB/s) with multi-node
parallel execution (and four MPI processes per node) and a fixed data/message size.
The collective communication performance rates are given by the total number of
bytes received divided by the total execution time. We also generate a random
memory references throughput rate (to be representative of the local computational
steps discussed in Section 2), and this assumes that we use only four bytes of every
cache line fetched. This rate scales linearly with the number of sockets. Assigning
appropriate weights to these throughput rates (based on the the communication
costs reported in the previous section) would give us a lower bound on execution
time, as this assumes perfect load balance.

800 |{—©— Computation (RandomAccess) +
-A- Fold (Alitoall) 0
500 ..+ Expand (Allgather) +/

300 0

200 +/

100 |
50 - +/
g}

S+
20)

Aggregate Bandwidth (GB/s)

10

T T T T T T T T T
1 2 4 8 16 32 64 128 256

Number of nodes

FIGURE 5. Strong-scaling performance of collective communica-~
tion with large messages and intra-node random memory accesses
on Hopper.

We report parallel execution time on Hopper for two different parallel concur-
rencies, p = 16 and p = 256. Tables 6 and 7 give the serial performance rates (with
natural ordering) as well as the relative speedup with different reorderings, for sev-
eral benchmark graphs. There is a 3.5% variation in serial performance rates, with
the skewed-degree graphs showing the highest performance and the high diameter
graphs road_central and hugebubbles-00020 the lowest performance. For the
parallel runs, we report speedup over the serial code with the natural ordering.
Interestingly, the random-ordering variants perform best in all of the low-diameter
graph cases. The performance is better than PaToH- and METIS-partitioned vari-
ants in all cases. The table also gives the impact of checkerboard partitioning on
the running time. There is a moderate improvement for the random variant, but

14 AYDIN BULUC AND KAMESH MADDURI

the checkerboard scheme is slower for the rest of the schemes. The variation in rel-
ative speedup across graphs is also surprising. The synthetic low-diameter graphs
demonstrate the best speedup overall. However, the speedups for the real-world low-
diameter graphs are 1.5x lower, and the relative speedups for the high-diameter
graphs are extremely low.

Relative Rel. Speedup
Perf Rate Speedup over 1D
p=1x1 p=16x1 p=4x4
Graph N N R M P N R M P
coPapersCiteseer 24.9 5.6 9.7X 8.0 6.9% 0.4% 1.0x 0.4% 0.5%
eu-2005 23.5 6.1x 7.9% 5.0 4.3x 0.5x 1.1x 0.5% 0.6
kronecker-logn18 24.5 12.6x 12.6x 1.8x 4.4% 1.1x 1.1x 1.4x 0.8%
er-fact1.5-scale20 14.1 11.2x 11.2x 11.5x 10.0X 1.1x 1.2x 0.8x 1.1x
road_central 7.2 3.5% 2.2x 3.5% 3.6% 0.6x 0.9%x 0.5x 0.5%
hugebubbles-00020 7.1 3.8% 2.7x 3.9% 2.1x 0.7x 0.9 0.6x 0.6x
rgg-n_2_20_s0 14.1 2.5% 3.4% 2.6x 2.6x 0.6x 1.2% 0.6x 0.7x
delaunay n18 15.0 1.9% 1.6% 1.9% 1.3% 0.9% 1.4% 0.7x 1.4%
TABLE 6. BFS performance (in millions of TEPS) for single-
process execution, and observed relative speedup with 16 MPI pro-
cesses (4 nodes, 4 MPI processes per node). The fastest variants
are highlighted in each case. M denotes METIS partitions.
Relative Rel. Speedup
Perf Rate Speedup over 1D
p=1x1 p =256 x1 p=16 x 16
Graph N N R M P N R M P
coPapersCiteseer 24.9 10.8x 22.4% 12.9% 18.1x 0.5 2.5% 0.7x 0.5
eu-2005 23.5 12.9x 21.7x 8.8x 17.2x 0.6x 2.7x 0.6x 0.3x
kronecker-logn18 24.5 42.3x 41.9x 16.3x 23.9X 2.6x 2.6% 0.3x 1.1x
er-fact1.5-scale20 14.1 57.1x 58.0x 50.1x 50.4x 1.6x 1.6x 1.1x 1.2x
road_central 7.2 1.2x 0.9x 1.3x% 1.7x 1.9%x 2.1x 1.1x 0.9x
hugebubbles-00020 7.1 1.6x 1.5x 1.6 2.0x 1.5x 2.2x 2.0x 0.8x
rgg-n_2_20_s0 14.1 1.5x 1.3x 1.6 2.1x 1.2x 1.2x 1.3x 1.1x
delaunay n18 15.0 0.6x 0.4% 0.5% 0.8x 1.8x 1.9% 2.1x 1.6x

TABLE 7. BFS performance rate (in millions of TEPS) for single-
process execution, and observed relative speedup with 256 MPI
processes (64 nodes, 4 MPI processes per node).

Figure 6 gives a breakdown of the average parallel BFS execution and inter-node
communication times for 16-processor parallel runs, and provides insight into the
reason behind varying relative speedup numbers. For all the low-diameter graphs,
at this parallel concurrency, execution time is dominated by local computation. The
local discovery and local update steps account for up to 95% of the total time, and
communication times are negligible. Comparing the computational time of random
ordering vs. METIS reordering, we find that BFS on the METIS-reordered graph
is significantly slower. The first reason is that METIS partitions are highly unbal-
anced in terms of the number of edges per partition for this graph, and so we can
expect a certain amount of imbalance in local computation. The second reason is
a bit more subtle. Partitioning the graph to minimize edge cut does not guarantee
that the local computation steps will be balanced, even if the number of edges per
process are balanced. The per-iteration work is dependent on the number of ver-
tices in the current frontier and their distribution among processes. Randomizing

GRAPH PARTITIONING FOR SCALABLE DISTRIBUTED GRAPH COMPUTATIONS

m Computation ®Fold = Expand
300
250
£ 200
150
100
50 oo

s)

BFS time (|

Random-1D Random-2D METIS-1D
Partitioning Strategy

(a) kronecker-lognl8 (total)

W Computation HFold ™ Expand

PaToH-1D

H Fold m Expand

w

N
w

Comm. time (ms)
.

e ¥
o bk N

Random-1D Random-2D METIS-1D PaToH-1D

Partitioning Strategy

(b) kronecker-lognl8 (comm)

H Fold ™ Expand

m
m E 87 HEEE
E P
o € ° 7 EEE T
E s
= PO - - - -
: E l
o S 2 -
© = g
Random-1D Random-2D METIS-1D PaToH-1D Random-1D Random-2D METIS-1D PaToH-1D
Partitioning Strategy Partitioning Strategy
(c) eu-2005 (total) (d) eu-2005 (comm)
W Computation ®Fold m Expand H Fold m Expand
m
@ E 8 EHE
E o | @E
o £
£ =
] R - - - -
£ £
) NN B EooE "
° i
Random-1D Random-2D METIS-1D PaToH-1D Random-1D Random-2D METIS-1D PaToH-1D
Partitioning Strategy Partitioning Strategy
(e) coPapersCiteseer (total) (f) coPapersCiteseer (comm)
B Computation ®Fold ™ Expand H Fold ™ Expand
1200 esssmmssmmesmns oo L
o 1000 - o=~~~ R~~~ """ mmmmmn oo 2 400 {---qguuaa--------ses=nnnmmmmmeeeeseeennnesseeeeeeeeenns
E 800 [N >
° £300 | B
£ 600 - - N ------ =
o 400 B g 200 T EEE . ''''''''''''''''''''
& £ 100 - EEEEEEE - g BEERERE
- B : B
0 T 0 T T T

Random-1D Random-2D METIS-1D
Partitioning Strategy

(g) road_central (total)

PaToH-1D

Random-1D Random-2D METIS-1D PaToH-1D

Partitioning Strategy

(h) road_central (comm)

15

FIGURE 6. Average BFS execution time for various test graphs
with 16 MPI processes (4 nodes, 4 MPI processes per node).

vertex identifiers destroys any inherent locality, but also improves local computa-
tion load balance. The partitioning tools reduce edge cut and enhance locality, but
also seem to worsen load balance, especially for skewed degree distribution graphs.
The PaToH-generated 1D partitions are much more balanced in terms of number

16 AYDIN BULUC AND KAMESH MADDURI

of edges per process (in comparison to the METIS partitions for Kronecker graphs),
but the average BFS execution still suffers from local computation load imbalance.
Next, consider the web crawl eu-2005. The local computation balance even after
randomization is not as good as the synthetic graphs. One reason might be that the
graph diameter is larger than the Kronecker graphs. 2D partitioning after random-
ization only worsens the load balance. The communication time for the fold step is
somewhat lower for METIS and PaToH partitions compared to random partitions,
but the times are not proportional to the savings projected in Table 4. This de-
serves further investigation. coPapersCiteseer shows trends similar to eu-2005.
Note that the communication time savings going from 1D to 2D partitioning are
different in both cases.

The tables also indicate that the level-synchronous approach performs ex-
tremely poorly on high-diameter graphs, and this is due to a combination of reasons.
There is load imbalance in the local computation phase, and this is much more ap-
parent after METIS and PaToH reorderings. For some of the level-synchronous
phases, there may not be sufficient work per phase to keep all 16/256 processes
busy. The barrier synchronization overhead is also extremely high. For instance,
observe the cost of the expand step with 1D partitioning for road_central in Fig-
ure 6. This should ideally be zero, because there is no data exchanged in expand
for 1D partitioning. Yet, multiple barrier synchronizations of a few microseconds
turn out to be a significant cost.

Table 7 gives the parallel speedup achieved with different reorderings at 256-way
parallel concurrency. The Erdds-Rényi graph gives the highest parallel speedup for
all the partitioning schemes, and they serve as an indicator of the speedup achieved
with good computational load balance. The speedup for real-world graphs is up
to 5x lower than this value, indicating the severity of the load imbalance problem.
One more reason for the poor parallel speedup may be that these graphs are smaller
than the Erd6s-Rényi graph. The communication cost increases in comparison to
the 16-node case, but the computational cost comprises 80% of the execution time.
The gist of these performance results is that for level-synchronous BFS, partitioning
has a considerable effect on the computational load balance, in addition to altering
the communication cost. On current supercomputers, the computational imbalance
seems to be the bigger of the two costs to account for, particularly at low process
concurrencies.

As highlighted in the previous section, partitioners balance the load with re-
spect to overall execution, that is the number of edges owned by each processor,
not the number of edges traversed per BFS iteration. Figure 7 shows the actual
imbalance that happens in practice due to the level-synchronous nature of the BFS
algorithm. Even though PaToH limits the overall edge count imbalance to 3%,
the actual per iteration load imbalances are severe. In contrast, random vertex
numbering yields very good load balance across MPI processes and BFS steps.

8. Conclusions and Future Work

Our study highlights limitations of current graph and hypergraph partition-
ers for the task of partitioning graphs for distributed computations. The crucial
limitations are:

GRAPH PARTITIONING FOR SCALABLE DISTRIBUTED GRAPH COMPUTATIONS

PaToH ordering

Random ordering

17

= Compute
@ Idle
8 Communicate

MPI task #
©

SNWAOON®
S

Il
II--.llll'l-l---
(S
o

SN WA OO N ®

(=

100 150

o

100 150 0
Time (ms)

FIGURE 7. Parallel BFS execution timeline for the eu-2005 graph

with PaToH and random vertex ordering (16 MPI processes, 4

nodes, 4 processes per node).

(1) The frequently-used partitioning objective function, total communication vol-
ume, is not representative of the execution time of graph problems such as
breadth-first search, on current distributed memory systems.

(2) Even well-balanced vertex and edge partitions do not guarantee load-balanced
execution, particularly for real-world graphs. We observe a range of relative
speedups, between 8.8 to 50x, for low-diameter DIMACS graph instances.

(3) Although random vertex relabeling helps in terms of load-balanced parallel
execution, it can dramatically reduce locality and increase the communication
cost to worst-case bounds.

(4) Weighting the fold phase by a factor of two is not possible with two-phase
partitioning strategies employed in current checkerboard method in PaToH,
but it is possible with the single-phase fine grained partitioning. However,
fine grained partitioning arbitrarily assigns edges to processors, resulting in
communication among all processors instead of one processor grid dimension.

Although MazVolume is a better metric than TotalVolume in predicting the
running time, BFS communication structure heavily depends on run-time informa-
tion. Therefore, a dynamic partitioning algorithm that captures the access patterns
in the first few BFS iterations and repartitions the graph based on this feedback
can be a more effective way of minimizing communication.

As future work, we plan to extend this study to consider additional distributed-
memory graph algorithms. Likely candidates are algorithms whose running time
is not so heavily dependent on the graph diameter. We are also working on a
hybrid hypergraph-graph model for BFS where fold and expand phases are modeled
differently.

Acknowledgments

We thank Bora Ucar for fruitful discussions and his insightful feedback on
partitioning. This work was supported by the Director, Office of Science, U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.

18 AYDIN BULUC AND KAMESH MADDURI

References

1. U. Brandes, A faster algorithm for betweenness centrality, J. Mathematical Sociology 25
(2001), no. 2, 163-177.

2. A. Bulug and K. Madduri, Parallel breadth-first search on distributed memory systems, Proc.
ACM/IEEE Conference on Supercomputing, 2011.

3. U.V. Catalylirek and C. Aykanat, PaToH: Partitioning tool for hypergraphs, 2011.

4. U.V. Catalytirek, C. Aykanat, and B. Ugar, On two-dimensional sparse matriz partitioning:
Models, methods, and a recipe, STAM J. Scientific Computing 32 (2010), no. 2, 656-683.

5. The Graph 500 List, http://wwu.graph500.org, last accessed May 2012.

6. D. Gregor and A. Lumsdaine, The Parallel BGL: A Generic Library for Distributed Graph
Computations, Proc. Workshop on Parallel/High-Performance Object-Oriented Scientific
Computing (POOSC’05), 2005.

7. G. Karypis and V. Kumar, Multilevel k-way partitioning scheme for irreqular graphs, Journal
of Parallel and Distributed Computing 48 (1998), no. 1, 96-129.

8. R.J. Lipton, D.J. Rose, and R.E. Tarjan, Generalized nested dissection, STAM J. Numer.
Analysis 16 (1979), 346-358.

9. J.D. McCalpin, Memory bandwidth and machine balance in current high performance com-
puters, IEEE Tech. Comm. Comput. Arch. Newslett, 1995.

10. Y. Shiloach and U. Vishkin, An O(n?lgn) parallel maz-flow algorithm, Journal of Algorithms
3 (1982), no. 2, 128 — 146.

11. A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson, and U. V. Catalyiirek, A
scalable distributed parallel breadth-first search algorithm on BlueGene/L, Proc. ACM/IEEE
Conf. on High Performance Computing (SC2005), November 2005.

Appendix on edge count per processor

Tables 8 and 9 show the per-processor edge count (non-zero count in the graph’s
sparse adjacency matrix, denoted as m;,i € P in the table) load imbalance for 1D
and 2D checkerboard partitionings, respectively. The reported imbalances are for
the storage of the graph itself, and exclude the imbalance among the frontier ver-
tices. This measure affects memory footprint and local computation load balance.
1D row-wise partitioning gives very good edge balance for high-diameter graphs,
which is understandable due to their local structure. This locality is not affected
by any ordering either. For low-diameter graphs that lack locality, natural order-
ing can result in up to a 3.4x higher edge count on a single processor than the
average. Both the random ordering and PaToH orderings seem to take care of this
issue, though. On the other hand, 2D checkerboard partitioning exacerbates load
imbalance in the natural ordering. For both low and high diameter graphs, a high
imbalance, up to 10 — 16x, may result with natural ordering. Random ordering
lowers it to at most 11% and PaToH further reduces it to approximately 3 — 5%.

p=4x1 p=16x1 p=064x1
N R P N R P N R P

coPapersCiteseer 2.11 1.00 1.00 2.72 1.02 1.00 3.14 1.06 1.00
coAuthorsDBLP 1.90 1.00 1.00 2.60 1.03 1.00 3.40 1.04 1.00

Graph

eu-2005 1.05 1.01 1.01 1.50 1.05 1.02 2.40 1.06 1.02
kronecker-logn18 1.03 1.02 1.01 1.10 1.08 1.02 1.29 1.21 1.02
rgg-n-2_20_s0 1.01 1.00 1.03 1.02 1.00 1.02 1.02 1.00 1.02
delaunay_n20 1.00 1.00 1.02 1.00 1.00 1.02 1.00 1.00 1.02

TABLE 8. Edge count imbalance: max;cp(m;)/average;cp(m;)
with 1D row-wise partitioning (lower is better, 1 is perfect bal-
ance).

GRAPH PARTITIONING FOR SCALABLE DISTRIBUTED GRAPH COMPUTATIONS 19
p=2x2 p=4x4 p=8x38

Graph N R P N R P N R P

coPapersCiteseer 3.03 1.01 1.02 7.43 1.00 1.03 15.90 1.02 1.02
coAuthorsDBLP 2.46 1.00 1.03 5.17 1.02 1.01 10.33 1.02 1.02
eu-2005 1.91 1.03 1.03 3.73 1.06 1.03 9.20 1.13 1.05
kronecker-logn18 1.03 1.01 1.01 1.06 1.04 1.03 1.15 1.11 1.03
rgg-n-2_20_s0 2.00 1.00 1.04 4.01 1.00 1.04 8.05 1.01 1.03
delaunay_n20 1.50 1.00 1.04 2.99 1.00 1.03 5.99 1.01 1.04

TABLE 9. Edge count imbalance:
with 2D checkerboard partitioning
balance).

LAWRENCE BERKELEY NATIONAL LABORATORY

THE PENNSYLVANIA STATE UNIVERSITY

max;e p(m;)/average;c p(m;)

(lower is better, 1 is perfect

