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ABSTRACT: The historical trend of increasing single CPU performance has given way 
to roadmap of increasing core count. The challenge of effectively utilizing these multi-
core chips is just starting to be explored by vendors and application developers alike. In 
this study, we present some performance measurements of several complete scientific 
applications on single and dual core Cray XT3 and XT4 systems with a view to 
characterizing the effects of switching to multi-core chips. We consider effects within a 
node by using applications run at low concurrencies, and also effects on node-
interconnect interaction using higher concurrency results. Finally, we construct a simple 
performance model based on the principle on-chip shared resource—memory 
bandwidth—and use this to predict the performance of the forthcoming quad-core 
system. 
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1 Introduction 
For the past 15 years, CPU performance has 
improved at an exponential pace – doubling 
approximately every 18 months with remarkable 
consistency. In order to maintain performance 
improvements within the conservative power 
envelope allowed by practical system design, 
the historical trend of increasing clock rates at 
an exponential pace has given way to a chip-
scale multiprocessor (CMP) design strategy 
where the performance of individual CPU cores 
stays constant and the number of cores increases 
at an exponential pace [1,2,3]. 
 
In the High-End Computing (HEC) arena, the 
first exposure to CMPs occurred via the Power4 
dual-cores from IBM in 2002. In 2005 both Intel 
and AMD launched commodity dual-core chips 
with quad-core systems following or to be 
released later this year. The AMD dual and quad 
core design are the building blocks of the next 
generation Cray XT system, the platform 
selected by both the NERSC at Lawrence 
Berkeley National Laboratory and the NCCS at 

Oak Ridge National Laboratory. Both these 
systems consist of tens of thousands of cores, 
and we can expect future systems to be 
composed of millions [4]. 
 
Taken as a whole, the transition to multi-core 
technologies represents a paradigm shift of 
similar magnitude to that of transitioning from 
vector supercomputers to massively parallel 
processor (MPP) machines that occurred in the 
mid-1990s. While the challenges presented by 
the shift to MPPs could be summarized as how 
best to map data and computation onto local and 
remote resources, the challenges faced in the 
transition to multi-core arise form the problem 
of how best to share resources within a CMP. 
 
Initially, both vendors and application writers 
are treating multi-core chips simply as 
conventional symmetric multiprocessors, or in 
the case of the current Cray XT running the 
Catamount OS, as hosts to multiple tasks 
running under a SPMD programming model. 
Leaving for future research the topic of whether 
and how some of the new features of multi-core 
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chips can be exploited by alternate 
programming models, we focus on how the 
SPMD applications of today are impacted by 
this transition. 
 
In the following study we examine the 
performance of several applications drawn from 
different scientific disciplines on Cray XT3 and 
XT4 platforms and compare run times and other 
performance metrics on both single and dual 
core systems. We extend our previous work [5] 
by: testing a conjecture regarding the interplay 
of tuning applications for a single core chip and 
then moving to a dual core one; by examining 
how increased concurrency also plays into the 
multi-core penalty; and by validating our multi-
core performance prediction model with a more 
complete set of applications. 

2 Cray XT System Architecture 
The basic building block of the Cray XT4 and 
Cray XT3 systems is a processing element. 
Each PE is comprised of one AMD Opteron 
processor (single, dual or soon to be available 
quad core) coupled with its own memory and 
dedicated communication resource. 
 
Each PE can be supplied with 1~8 GB of 
memory, and depending on the AMD socket 
characteristics this may be DDR1 or DDR2, 
with different memory speeds also available. 
 
Each Opteron processor is directly connected to 
the Cray XT interconnect via a Cray SeaStar 
routing and communications chip over a 6.4 
GB/s HyperTransport path. The SeaStar chip 
acts as the gateway to the Cray XT high 
bandwidth, low latency interconnect. The router 
in the SeaStar chip provides six high speed 
network links, 7.6 GB/s bi-directional, to 
connect to six neighbors in the 3D torus 
topology. While the peak bandwidth of the 
Seastar chips is the same in both XT3 and XT4, 
the second-generation chip (Seastar 2.1) is 
capable of twice the injection bandwidth and 
has a lower message-injection latency. 
 

All the experiments in this study were 
performed on the NCCS Jaguar system at 
ORNL. During the past two years, Jaguar has 
been variously configured as a single-core XT3, 
dual-core XT3, and most recently as a dual-core 
hybrid XT3/XT4 system.  Most data were 
collected from its merged XT3/XT4 system, 
which was completed at the end of March 2007.  

3 MILC 
The benchmark code MILC [6] represents part 
of a set of codes written by the MIMD Lattice 
Computation (MILC) collaboration to study 
quantum chromodynamics (QCD), the theory of 
the strong interactions of subatomic physics. 
Strong interactions are responsible for binding 
quarks into protons and neutrons and holding 
them all together in the atomic nucleus. MILC 
performs simulations of four-dimensional SU(3) 
lattice gauge theory on MIMD parallel 
machines. The test case data shown here is for a 
lattice size of 324 with two trajectories of five 
steps each. 
 
In a previous paper [5] we postulated that 
different degrees of optimization of a given 
application might change the extent to which the 
application is affected by multi-core effects.  
With MILC we have the opportunity to test this 
hypothesis.  We can also study the benefits 
provided by a faster memory subsystem by 
comparing MILC performance between the XT3 
and XT4.  
 
MILC is a highly memory intensive code and a 
version that includes a variety of compiler and 
hand-written optimizations for improving 
memory throughput has been developed by Cray 
engineers. The original version of the code 
simply used the “-O3” compiler optimization 
flag with gcc; the Cray-supplied version added 
the compiler options “-funroll-loops -fprefetch-
loop-arrays -fomit-frame-pointer” (of which the 
most important option by far is “-fprefetch-
loop-arrays”).  The optimized version also 
included replacement of 15 C routines with 
inline assembler kernels, and added several 
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software prefetching macros to loops in two 
routines. 
 
Using these two versions of the code we now 
compare times for 64-processor runs under 
several conditions: XT3 vs. XT4, unoptimized 
vs. optimized, and single-core vs. dual-core.  
Data are collected in Tables 3.1 and 3.2. 
 

Times (seconds) MILC Version XT3 XT4 
Single Core Orig 274 230 
Single Core Opt 160 127 
Dual Core Orig 358 277 
Dual Core Opt 230 181 

 Dual Core Penalty 
 XT3 XT4 

Original 1.31 1.20 
Optimized 1.44 1.43 

  

            Table 3.1 MILC Timings on Jaguar. 
 
 

MILC Version Improvement: 
      XT4/XT3 

Single Core 
Orig 1.19 

Single Core Opt 1.26 
Dual Core Orig 1.29 
Dual Core Opt 1.27 

 
Improvement: 

Optimized / 
Original 

 XT3 XT4 
Single Core 1.71 1.81 
Dual Core 1.56 1.53 

     

     Table 3.2 MILC Performance Ratios on Jaguar. 
 
Based on the data, we can make the following 
observations.  The dual-core penalty is clearly 
worse for the optimized version of the code than 
for the original version.  This is reasonable: the 
highly optimized code will make more efficient 
use of the memory channel in single-core mode; 
thus, it will experience more contention for that 
channel in dual-core mode. 

 
An additional, intermediate level of 
optimization, using C code with prefetch but no 
SSE, was also examined.  Although not shown 
in the tables, the results are completely 
consistent with those shown above; i.e., as the 
level of optimization increases the dual core 
penalty increases.  For this code, using both 
cores of the dual-core processor greatly reduces 
the improvement afforded by code optimization. 
On the dual-core XT4, the optimized code is 
about 1.5 times faster, but using only a single 
core on the XT4 shows a speedup of 1.8. 
 
The primary improvement for single-node 
performance of the XT4 vs. the XT3 is the near 
doubling of memory bandwidth, which is 
reflected in the STREAM benchmark that show 
improvements ranging from 1.4 to 1.8 
depending on the function. At first glance the 
MILC data seem inconsistent with this 
observation.  In dual-core mode the XT4 
provides the same improvement in performance 
for the un-optimized and optimized versions of 
the code, but in single-core mode the XT4 
provides less benefit for the original version – 
the opposite of what might be expected. Our 
theory is that a single task of un-optimized 
MILC application is not capable of saturating 
the memory interface of the XT4 and does not 
gain the full benefit of the improved memory 
bandwidth.  Consistent with this theory is the 
fact that neither version of MILC achieves an 
XT4-to-XT3 speedup anywhere close to the 
STREAM improvements.  
 
Turning towards performance effects on high 
concurrency simulations, Figure 3.1, below, 
shows the results of a weak scaling study of 
MILC on Jaguar in XT4 mode, where it can be 
seen that, for an equivalent number of total 
cores, the un-optimized version of the code in 
single-core mode actually runs slightly faster 
than the optimized version running in dual-core 
mode above 1000 cores.  For the un-optimized 
version of the code the dual-core penalty is 
about 20% on 64 cores, rising to about 35% on 



4096 cores. For the optimized version the dual-
core penalty is about 40% on 64 cores, rising to 
about 58% on 4096 cores.  
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   Figure 3.1 Weak Scaling of MILC on Jaguar XT4. 
 
At 64 cores the percentage of time spent in 
communication is only about 5% of the total, so 
the impact of dual-core is confined mainly to 
sharing of main memory bandwidth. At higher 
concurrencies this is not the case. At the 
simplest level, the impact can be divided into 
effects on latency and bandwidth. The CG 
solver in the MILC code is very sensitive to 
communication system latency. The measured 
communication latencies increase considerably 
when moving from single core to dual core. For 
example, we have measured an MPI 
unidirectional inter-node latency of about 4.8 
microseconds on Jaguar in single-core mode, 
but this increases to about 6.3 microseconds 
when both cores on the two nodes perform the 
ping experiment (Figure 3.2).  This increase in 
latency is a result of the master-slave 
relationship between cores on a node.  Perhaps 
even more important is the reduction in 
unidirectional bandwidth observed (Figure 3.3) 
as both cores attempt to access the SeaStar 
channnel: the observed bandwidth for 64K 
message sizes (typical of MILC) is reduced by 
about a factor of two.  
 
On top of the point-to-point communication 
analysis, the cost of collective communication 
will increase with the concurrency. Studies on 
other architectures have shown that it is 
insignificant at 64 processors, but grows to 25% 

of the total communication time at 2048 
processors. 
 
It is not unreasonable to suggest that the 
improved efficiency in the computational 
portion of the optimized version of the code 
results in a greater percentage of time spent in 
communications. In the dual-core optimized-
code case this effect and the increased costs of 
communication in dual core mode discussed 
previously work together, and a very large dual-
core penalty is seen at high concurrencies. 

 
Figure 3.2 Observed Time for Small MPI Messages on 
Jaguar XT4. 
 

 
  Figure 3.3 Observed MPI Bandwidth on Jaguar 
XT4. 

4 BeamBeam3D 
BeamBeam3D [7] models the colliding process 
of two counter-rotating charged particle beams 
moving at close to the speed of light. An 
accurate modeling of the beam-beam interaction 
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is essential to maximizing the luminosity in high 
energy accelerator ring colliders. The 
BeamBeam3D application performs a 3D 
particle-in-cell computation that contains 
multiple models (weak-strong, strong-strong) 
and multiple collision geometries (head-on, 
long-range, crossing angle). It tracks 
macroparticles in colliders using a transfer map. 
The simulated particles are deposited onto a 
three-dimensional grid to calculate the 3D 
charge density distribution. At collision points, 
the electric and magnetic field are calculated 
self consistently by solving the Vlasov-Poisson 
equation using Hockney’s FFT method. Then 
the electric field and magnetic field are 
calculated on the grid and reinterpolated back to 
the macroparticles. The macroparticles are 
advanced in momentum space using these fields 
plus external fields from accelerator forces and 
focusing elements. The parallel implementation 
utilizes a particle-field decomposition method to 
achieve load balance. BeamBeam3D’s 
communication is dominated by the expensive 
global operations to gather the charge density, 
broadcast the electric and magnetic fields, and 
perform transposes for the 3D FFTs—this 
represents a high volume of global message 
exchange communication. 
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For the strong-scaling experiments conducted in 
this study, we examine a 5 million particle 
simulation using grid resolutions of 
256x256x32; comparative performance data are 
shown in Figure 4.1.    
 
BeamBeam3D has some very complex 
communication issues, such as load-imbalance, 
that are not present in many other applications.  
The communication issues are less prevalent at 
the lower concurrencies.  For example, with 
XT4 dual core, communication accounts for 4% 
of total time with 8 cores, and 15% with 64 
cores. The bandwidth and latency effects 
discussed for MILC could be playing a larger 
role at higher concurrencies.  
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  Figure 4.1 Performance  of BeamBeam3D on Jaguar. 
 
Timings for the 64-processor runs are shown in 
Table 4.1 below. We can see that the dual core 
penalty is significant on both architectures, but 
higher on the XT4.  
 

Times (seconds) 
Cores XT3 XT4 
Single Core 86 77 
Dual Core 109 102 
 Dual Core Penalty 
 XT3 XT4 
 1.27 1.32 

 
      Table 4.1 BeamBeam3D Timings on Jaguar. 
 
Interestingly, we see the best performance on 
256 processors for both the XT3 single and dual 
core runs, but on the XT4 it is 128 processors 
for dual core and 512 processors for single core. 
We observe a large communication increase 
(22% with 128 cores vs. 43% with 256 cores) in 
XT4 dual-core mode. It seems that the XT4 
node has a different balance with respect to the 
interconnect and computation in dual-core 
mode, and this has a major impact on 
scalability. 
 

5 Predicting the Performance of 
Applications on Future Cray XT Systems 

In a previous report [5], we describe in some 
detail the architectural similarities of the AMD 
Opteron single and dual core chips. We also 
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observe that when excluding messaging 
performance, the primary source of contention 
when moving from single core to dual core is 
memory bandwidth. Testing with STREAM and 
Membench micro-benchmarks confirms this 
assumption, as the performance of the 2.6 GHz 
AMD cores are nearly identical when the data 
fits in the L2 cache, and only becomes 
differentiated when the data sizes become larger 
than the L2 cache and must go to main memory. 
In addition, an analysis with Apex-MAP shows 
that a simple 2-parameter (bandwidth + latency) 
performance model that assumes dual-core 
effectively halves the main memory bandwidth, 
is highly accurate in predicting dual-core 
performance for a wide variety of memory 
access patterns. Therefore, investigation of more 
complex models for dual-core performance is 
unlikely to yield higher-fidelity results for this 
chip architecture. 
 
With this in mind, we can attempt the task of 
extrapolating the performance of the 
applications studied here on quad-core systems. 
We begin by enumerating the assumptions of 
our model: 
 

1. The only source of performance 
difference between single- and dual-core 
runs is memory bandwidth contention. 

2. The 2.6 GHz RevE and RevF AMD 
cores execute code at roughly the same 
performance in the absence of memory 
bandwidth contention. 

3. We can therefore break execution time 
into the portion that is stalled on shared 
resources (memory bandwidth) and the 
portion that is stalled on non-shared 
resources (everything else). 

4. Under this circumstance, we can use the 
timing difference from single- to dual-
core runs to compute the fraction of 
execution time spent in memory 
bandwidth contention. 

5. We can then extrapolate the quad-core 
performance by assuming the time spent 
in the execution component remains the 

same, but the time spent in memory 
bandwidth contention will increase 
proportional to the reduction in effective 
memory bandwidth per core. 

 
We note that the quad-core AMD architecture 
has some micro-architectural changes, such as 
the improved SIMD throughput, changes in 
cache architecture, and TLB, that are not 
accounted for in our model.  The core 
improvements offer limited up-side potential in 
terms of performance of the quad-core.  Our 
model represents the baseline case where no 
improvements to the core are assumed. 
 
In addition to the previously described MILC 
and BeamBeam3D applications, we have 
collected compute-only timing information for 
three other scientific applications, CAM, GTC 
and PARATEC. 
 
The Community Atmosphere Model (CAM) is 
the atmospheric component of the flagship 
Community Climate System Model (CCSM3.0). 
Developed at the National Center for 
Atmospheric Research (NCAR), the CCSM3.0 
is used to study climate change. The CAM 
application is an atmospheric general circulation 
model (AGCM) and can be run either coupled 
within CCSM3.0 or in a stand-alone mode 
driven by prescribed ocean temperatures and sea 
ice coverages [8]. AGCMs are key tools for 
weather prediction and climate research. They 
also require large computing resources: even the 
largest current supercomputers cannot keep pace 
with the desired increases in the resolution and 
simulation times of these models. The version of 
CAM we used is a D resolution (about 0.5 
degree resolution) with finite-volume dynamical 
core. 
 
GTC is a 3-D particle-in-cell code used for 
studying turbulent transport in magnetic fusion 
plasmas [9]. The simulation geometry is that of 
a torus, which is the natural configuration of all 
tokamak fusion devices. As the charged 
particles forming the plasma move within the 
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externally-imposed magnetic field, they 
collectively create their own self-consistent 
electrostatic (and electromagnetic) field that 
quickly becomes turbulent under driving 
temperature and density gradients. Waves and 
particles interact self-consistently with each 
other, exchanging energy that grows or damps 
their motion or amplitude. The particle-in-cell 
(PIC) method describes this complex 
phenomenon by solving the 5D gyro-averaged 
kinetic equation coupled to the Poisson 
equation. The test case studied here is 10 
particles per cell and 2000 time steps. 
 
PARATEC (Parallel Total Energy Code) 
performs ab-initio quantum-mechanical total 
energy calculations using pseudopotentials and 
a plane wave basis set [10]. The 
pseudopotentials are of the standard norm-
conserving variety. Forces and stress can be 
easily calculated and used to relax the atoms 
into their equilibrium positions. PARATEC uses 
an all-band conjugate gradient (CG) approach to 

solve the Kohn-Sham equations of Density 
Functional Theory (DFT) and obtain the 
ground-state electron wave functions. Much of 
the computation time (typically 60%) involves 
FFTs and BLAS3 routines. In solving the Kohn-
Sham equations using a plane wave basis, part 
of the calculation is carried out in real space and 
the remainder in Fourier space using parallel 3D 
FFTs to transform the wave functions between 
the two spaces. The global data transposes 
within these FFT operations account for the 
bulk of PARATEC’s communication overhead, 
and can quickly become the bottleneck at high 
concurrencies. The test case used as input to 
collect data is bulk silicon with a unit cell 
containing 125 atoms, running a single self-
consistent field calculation. 
 
The application timings on Jaguar XT3 and XT4 
with single and dual cores are summarized in 
Table 5.1. All applications are run with 64 
processors except for CAM which uses only 56 
processors. 

 
 

Single Core Dual Core Dual Core Penalty Application XT3 XT4 XT3 XT4 XT3 XT4 
MILC 274 230 358 277 1.31 1.20 

MILC-opt 160 127 230 181 1.44 1.43 
BeamBeam3D 86 77 109 102 1.27 1.32 

CAM 1123 1043 1283 1126 1.14 1.08 
GTC 1389 1348 1447 1398 1.04 1.04 

PARATEC 609 598 620 612 1.02 1.02 
 

 

      Table 5.1 Compute Only Times (seconds) for Applications on Jaguar.

We began by testing our model by using the 
XT3 performance data to predict the effective 
performance on the XT4. The XT4 in this test 
operates at the same clock frequency as the 
XT3, but the DDR2-667 memory subsystem is 
30% faster than the DDR1-400 MHz memory of 
the XT3. Using the MILC optimized version 
data:  
 

• The execution time for single-core runs 
on the XT3 is 160 seconds, and the time 
spent in dual-core is 230 seconds. 

 
•  The STREAM benchmarks indicate that 

the memory bandwidth for dual core is 
approximately half that of the single 
core (for this example we will assume 
that it is half), so if the five assumptions 
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above hold true, we should expect 
execution time to obey the relationship:  
o single core: core_exec_time + 

bandwidth_contention_time = 160 s  
 
o dual core: core_exec_time + 

2*bandwidth_contention_time=230 s 
 

• Solving the above system of equations 
provides us with an estimate of 90 
seconds spent executing in the core (for 
both single and dual core) and 70 
seconds spent in memory bandwidth 
contention for single core and 140 
seconds (2x longer) spent in memory 
bandwidth contention for dual core. 

 
We can now use the STREAM bandwidth 
numbers to project the time spent in memory 
bandwidth contention for the XT4’s faster 
memory subsystem and predict single and dual 
core XT4 times. In Table 5.2 below we show 
predictions and actual measurements for the 
XT4 using STREAM TRIAD rates both in 
determining the memory bandwidth contention 
time, and in extrapolating to the XT4. The 
relatively large prediction errors for MILC, 
MILC-opt, and BeamBeam3D 64-core in dual 

core XT4 performance could be associated with 
communication effects that are not accounted 
for in the model.  We note that the error in the 
prediction of 8-core Beam-Beam3D runs is 
considerably smaller than that of the 64-core 
runs that we present in Table 5.2.  However, we 
also point out that overall, the predictive errors 
are surprisingly small given the simplicity of the 
model.  
 
The predicted quad-core penalties for MILC, 
MILC-opt, and BeamBeam3D are relatively 
large. The AMD quad-core chip (Barcelona) 
offers some mitigating features in the core 
design, such as a doubling in floating point 
throughput, which could reduce this penalty, but 
the potential for performance improvements are 
bounded by the low Computational Intensity 
(CI) measured for these codes.  The impact of 
the changes in cache hierarchy is not 
understood, but the proportion of total on-chip 
cache to the number of cores remains the same 
although the hierarchical arrangement of the 
memory in the cache has changed. So, although 
we ignore the micro-architectural changes, the 
results are not likely to change dramatically 
from this simple model. 

 
 

Application XT4 Single Core XT4 Dual Core XT4 Quad Core 
 Prediction Actual Error Prediction Actual Error Prediction Penalty 

MILC 227 230 -1.5% 289 277 4.3% 410 1.78 
MILC-opt 120 127 -5.1% 172 181 -4.7% 273 2.15 

BB3D,64 core 73 77 -5.2% 90 102 -11.7% 123 1.60 
BB3D,8 core 494 516 -4.3% 595 600 -0.8% 793 1.54 

CAM 1032 1043 -1.0% 1151 1126 2.3% 1382 1.33 
GTC 1356 1348 0.6% 1399 1398 0.1% 1483 1.10 

PARATEC 603 598 0.8% 611 612 -0.2% 627 1.05 
 

                 Table 5.2 Prediction and Actual Compute-only Times (in seconds) for Applications. 
 

 

6 Conclusions 
We have examined in detail the performance of 
the MILC and BeamBeam3D applications on 

the Cray XT3 and XT4 in order to quantify the 
performance implications of running on a dual 
core configuration. In both cases a performance 
penalty of more than 20% is seen at low 
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concurrencies, and this increases with 
concurrency. In the case of MILC, 
optimizations to increase throughput of the 
memory subsystem are seen to be less effective 
on the dual core system, dealing the optimized 
code a double blow on dual-core systems. 
 
In addition, we have developed a simple 
performance prediction model based on 
effective memory bandwidth and validated this 
model on the XT4 with three additional 
applications, CAM, GTC and PARATEC. The 
results are extremely promising, with all but one 
error rates of less than 10%. Our predictive 
model for a quad-core system are obviously 
subject to a much wider variety of errors, but 
nevertheless seem to show that for some 
applications the transition to quad-core will be a 
challenge for highly-optimized applications, 
such as MILC that are memory bandwidth 
bound, but on average will present more modest 
impacts on other mainstream applications such 
as CAM, GTC, and PARATEC. 
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