

CUG 2007 Proceedings 1 of 10

The Performance Effect of Multi-core on Scientific Applications

 Jonathan Carter, Yun (Helen) He, John Shalf,
 Hongzhang Shan, Erich Strohmaier, and Harvey Wasserman
 NERSC Division, Lawrence Berkeley National Laboratory,
 Berkeley, CA 94720

ABSTRACT: The historical trend of increasing single CPU performance has given way
to roadmap of increasing core count. The challenge of effectively utilizing these multi-
core chips is just starting to be explored by vendors and application developers alike. In
this study, we present some performance measurements of several complete scientific
applications on single and dual core Cray XT3 and XT4 systems with a view to
characterizing the effects of switching to multi-core chips. We consider effects within a
node by using applications run at low concurrencies, and also effects on node-
interconnect interaction using higher concurrency results. Finally, we construct a simple
performance model based on the principle on-chip shared resource—memory
bandwidth—and use this to predict the performance of the forthcoming quad-core
system.

KEYWORDS: Multi-core, scientific computing

1 Introduction
For the past 15 years, CPU performance has
improved at an exponential pace – doubling
approximately every 18 months with remarkable
consistency. In order to maintain performance
improvements within the conservative power
envelope allowed by practical system design,
the historical trend of increasing clock rates at
an exponential pace has given way to a chip-
scale multiprocessor (CMP) design strategy
where the performance of individual CPU cores
stays constant and the number of cores increases
at an exponential pace [1,2,3].

In the High-End Computing (HEC) arena, the
first exposure to CMPs occurred via the Power4
dual-cores from IBM in 2002. In 2005 both Intel
and AMD launched commodity dual-core chips
with quad-core systems following or to be
released later this year. The AMD dual and quad
core design are the building blocks of the next
generation Cray XT system, the platform
selected by both the NERSC at Lawrence
Berkeley National Laboratory and the NCCS at

Oak Ridge National Laboratory. Both these
systems consist of tens of thousands of cores,
and we can expect future systems to be
composed of millions [4].

Taken as a whole, the transition to multi-core
technologies represents a paradigm shift of
similar magnitude to that of transitioning from
vector supercomputers to massively parallel
processor (MPP) machines that occurred in the
mid-1990s. While the challenges presented by
the shift to MPPs could be summarized as how
best to map data and computation onto local and
remote resources, the challenges faced in the
transition to multi-core arise form the problem
of how best to share resources within a CMP.

Initially, both vendors and application writers
are treating multi-core chips simply as
conventional symmetric multiprocessors, or in
the case of the current Cray XT running the
Catamount OS, as hosts to multiple tasks
running under a SPMD programming model.
Leaving for future research the topic of whether
and how some of the new features of multi-core

CUG 2007 Proceedings 2 of 10

chips can be exploited by alternate
programming models, we focus on how the
SPMD applications of today are impacted by
this transition.

In the following study we examine the
performance of several applications drawn from
different scientific disciplines on Cray XT3 and
XT4 platforms and compare run times and other
performance metrics on both single and dual
core systems. We extend our previous work [5]
by: testing a conjecture regarding the interplay
of tuning applications for a single core chip and
then moving to a dual core one; by examining
how increased concurrency also plays into the
multi-core penalty; and by validating our multi-
core performance prediction model with a more
complete set of applications.

2 Cray XT System Architecture
The basic building block of the Cray XT4 and
Cray XT3 systems is a processing element.
Each PE is comprised of one AMD Opteron
processor (single, dual or soon to be available
quad core) coupled with its own memory and
dedicated communication resource.

Each PE can be supplied with 1~8 GB of
memory, and depending on the AMD socket
characteristics this may be DDR1 or DDR2,
with different memory speeds also available.

Each Opteron processor is directly connected to
the Cray XT interconnect via a Cray SeaStar
routing and communications chip over a 6.4
GB/s HyperTransport path. The SeaStar chip
acts as the gateway to the Cray XT high
bandwidth, low latency interconnect. The router
in the SeaStar chip provides six high speed
network links, 7.6 GB/s bi-directional, to
connect to six neighbors in the 3D torus
topology. While the peak bandwidth of the
Seastar chips is the same in both XT3 and XT4,
the second-generation chip (Seastar 2.1) is
capable of twice the injection bandwidth and
has a lower message-injection latency.

All the experiments in this study were
performed on the NCCS Jaguar system at
ORNL. During the past two years, Jaguar has
been variously configured as a single-core XT3,
dual-core XT3, and most recently as a dual-core
hybrid XT3/XT4 system. Most data were
collected from its merged XT3/XT4 system,
which was completed at the end of March 2007.

3 MILC
The benchmark code MILC [6] represents part
of a set of codes written by the MIMD Lattice
Computation (MILC) collaboration to study
quantum chromodynamics (QCD), the theory of
the strong interactions of subatomic physics.
Strong interactions are responsible for binding
quarks into protons and neutrons and holding
them all together in the atomic nucleus. MILC
performs simulations of four-dimensional SU(3)
lattice gauge theory on MIMD parallel
machines. The test case data shown here is for a
lattice size of 324 with two trajectories of five
steps each.

In a previous paper [5] we postulated that
different degrees of optimization of a given
application might change the extent to which the
application is affected by multi-core effects.
With MILC we have the opportunity to test this
hypothesis. We can also study the benefits
provided by a faster memory subsystem by
comparing MILC performance between the XT3
and XT4.

MILC is a highly memory intensive code and a
version that includes a variety of compiler and
hand-written optimizations for improving
memory throughput has been developed by Cray
engineers. The original version of the code
simply used the “-O3” compiler optimization
flag with gcc; the Cray-supplied version added
the compiler options “-funroll-loops -fprefetch-
loop-arrays -fomit-frame-pointer” (of which the
most important option by far is “-fprefetch-
loop-arrays”). The optimized version also
included replacement of 15 C routines with
inline assembler kernels, and added several

CUG 2007 Proceedings 3 of 10

software prefetching macros to loops in two
routines.

Using these two versions of the code we now
compare times for 64-processor runs under
several conditions: XT3 vs. XT4, unoptimized
vs. optimized, and single-core vs. dual-core.
Data are collected in Tables 3.1 and 3.2.

Times (seconds) MILC Version XT3 XT4
Single Core Orig 274 230
Single Core Opt 160 127
Dual Core Orig 358 277
Dual Core Opt 230 181

 Dual Core Penalty
 XT3 XT4

Original 1.31 1.20
Optimized 1.44 1.43

 Table 3.1 MILC Timings on Jaguar.

MILC Version Improvement:
 XT4/XT3

Single Core
Orig 1.19

Single Core Opt 1.26
Dual Core Orig 1.29
Dual Core Opt 1.27

Improvement:

Optimized /
Original

 XT3 XT4
Single Core 1.71 1.81
Dual Core 1.56 1.53

 Table 3.2 MILC Performance Ratios on Jaguar.

Based on the data, we can make the following
observations. The dual-core penalty is clearly
worse for the optimized version of the code than
for the original version. This is reasonable: the
highly optimized code will make more efficient
use of the memory channel in single-core mode;
thus, it will experience more contention for that
channel in dual-core mode.

An additional, intermediate level of
optimization, using C code with prefetch but no
SSE, was also examined. Although not shown
in the tables, the results are completely
consistent with those shown above; i.e., as the
level of optimization increases the dual core
penalty increases. For this code, using both
cores of the dual-core processor greatly reduces
the improvement afforded by code optimization.
On the dual-core XT4, the optimized code is
about 1.5 times faster, but using only a single
core on the XT4 shows a speedup of 1.8.

The primary improvement for single-node
performance of the XT4 vs. the XT3 is the near
doubling of memory bandwidth, which is
reflected in the STREAM benchmark that show
improvements ranging from 1.4 to 1.8
depending on the function. At first glance the
MILC data seem inconsistent with this
observation. In dual-core mode the XT4
provides the same improvement in performance
for the un-optimized and optimized versions of
the code, but in single-core mode the XT4
provides less benefit for the original version –
the opposite of what might be expected. Our
theory is that a single task of un-optimized
MILC application is not capable of saturating
the memory interface of the XT4 and does not
gain the full benefit of the improved memory
bandwidth. Consistent with this theory is the
fact that neither version of MILC achieves an
XT4-to-XT3 speedup anywhere close to the
STREAM improvements.

Turning towards performance effects on high
concurrency simulations, Figure 3.1, below,
shows the results of a weak scaling study of
MILC on Jaguar in XT4 mode, where it can be
seen that, for an equivalent number of total
cores, the un-optimized version of the code in
single-core mode actually runs slightly faster
than the optimized version running in dual-core
mode above 1000 cores. For the un-optimized
version of the code the dual-core penalty is
about 20% on 64 cores, rising to about 35% on

4096 cores. For the optimized version the dual-
core penalty is about 40% on 64 cores, rising to
about 58% on 4096 cores.

CUG 2007 Proceedings 4 of 10

 Figure 3.1 Weak Scaling of MILC on Jaguar XT4.

At 64 cores the percentage of time spent in
communication is only about 5% of the total, so
the impact of dual-core is confined mainly to
sharing of main memory bandwidth. At higher
concurrencies this is not the case. At the
simplest level, the impact can be divided into
effects on latency and bandwidth. The CG
solver in the MILC code is very sensitive to
communication system latency. The measured
communication latencies increase considerably
when moving from single core to dual core. For
example, we have measured an MPI
unidirectional inter-node latency of about 4.8
microseconds on Jaguar in single-core mode,
but this increases to about 6.3 microseconds
when both cores on the two nodes perform the
ping experiment (Figure 3.2). This increase in
latency is a result of the master-slave
relationship between cores on a node. Perhaps
even more important is the reduction in
unidirectional bandwidth observed (Figure 3.3)
as both cores attempt to access the SeaStar
channnel: the observed bandwidth for 64K
message sizes (typical of MILC) is reduced by
about a factor of two.

On top of the point-to-point communication
analysis, the cost of collective communication
will increase with the concurrency. Studies on
other architectures have shown that it is
insignificant at 64 processors, but grows to 25%

of the total communication time at 2048
processors.

It is not unreasonable to suggest that the
improved efficiency in the computational
portion of the optimized version of the code
results in a greater percentage of time spent in
communications. In the dual-core optimized-
code case this effect and the increased costs of
communication in dual core mode discussed
previously work together, and a very large dual-
core penalty is seen at high concurrencies.

Figure 3.2 Observed Time for Small MPI Messages on
Jaguar XT4.

 Figure 3.3 Observed MPI Bandwidth on Jaguar
XT4.

4 BeamBeam3D
BeamBeam3D [7] models the colliding process
of two counter-rotating charged particle beams
moving at close to the speed of light. An
accurate modeling of the beam-beam interaction

0

50

100

150

200

250

300

350

400

450

0 512 1024 1536 2048 2560 3072 3584 4096

Number of Cores

T
im

e
 (

s
e
c
o

n
d

s
)

Single-Core Original

Dual-Core Original

Single-Core Optimized

Dual-Core Optimized

is essential to maximizing the luminosity in high
energy accelerator ring colliders. The
BeamBeam3D application performs a 3D
particle-in-cell computation that contains
multiple models (weak-strong, strong-strong)
and multiple collision geometries (head-on,
long-range, crossing angle). It tracks
macroparticles in colliders using a transfer map.
The simulated particles are deposited onto a
three-dimensional grid to calculate the 3D
charge density distribution. At collision points,
the electric and magnetic field are calculated
self consistently by solving the Vlasov-Poisson
equation using Hockney’s FFT method. Then
the electric field and magnetic field are
calculated on the grid and reinterpolated back to
the macroparticles. The macroparticles are
advanced in momentum space using these fields
plus external fields from accelerator forces and
focusing elements. The parallel implementation
utilizes a particle-field decomposition method to
achieve load balance. BeamBeam3D’s
communication is dominated by the expensive
global operations to gather the charge density,
broadcast the electric and magnetic fields, and
perform transposes for the 3D FFTs—this
represents a high volume of global message
exchange communication.

CUG 2007 Proceedings 5 of 10

For the strong-scaling experiments conducted in
this study, we examine a 5 million particle
simulation using grid resolutions of
256x256x32; comparative performance data are
shown in Figure 4.1.

BeamBeam3D has some very complex
communication issues, such as load-imbalance,
that are not present in many other applications.
The communication issues are less prevalent at
the lower concurrencies. For example, with
XT4 dual core, communication accounts for 4%
of total time with 8 cores, and 15% with 64
cores. The bandwidth and latency effects
discussed for MILC could be playing a larger
role at higher concurrencies.

BeamBeam3D Execution Time

0

50

100

150

200

250

32 64 128 256 512 1024

Processors

Ti
m

e
(s

ec
)

XT3 Dual
XT3 Single
XT4 Dual
XT4 Single

 Figure 4.1 Performance of BeamBeam3D on Jaguar.

Timings for the 64-processor runs are shown in
Table 4.1 below. We can see that the dual core
penalty is significant on both architectures, but
higher on the XT4.

Times (seconds)
Cores XT3 XT4
Single Core 86 77
Dual Core 109 102
 Dual Core Penalty
 XT3 XT4
 1.27 1.32

 Table 4.1 BeamBeam3D Timings on Jaguar.

Interestingly, we see the best performance on
256 processors for both the XT3 single and dual
core runs, but on the XT4 it is 128 processors
for dual core and 512 processors for single core.
We observe a large communication increase
(22% with 128 cores vs. 43% with 256 cores) in
XT4 dual-core mode. It seems that the XT4
node has a different balance with respect to the
interconnect and computation in dual-core
mode, and this has a major impact on
scalability.

5 Predicting the Performance of
Applications on Future Cray XT Systems

In a previous report [5], we describe in some
detail the architectural similarities of the AMD
Opteron single and dual core chips. We also

CUG 2007 Proceedings 6 of 10

observe that when excluding messaging
performance, the primary source of contention
when moving from single core to dual core is
memory bandwidth. Testing with STREAM and
Membench micro-benchmarks confirms this
assumption, as the performance of the 2.6 GHz
AMD cores are nearly identical when the data
fits in the L2 cache, and only becomes
differentiated when the data sizes become larger
than the L2 cache and must go to main memory.
In addition, an analysis with Apex-MAP shows
that a simple 2-parameter (bandwidth + latency)
performance model that assumes dual-core
effectively halves the main memory bandwidth,
is highly accurate in predicting dual-core
performance for a wide variety of memory
access patterns. Therefore, investigation of more
complex models for dual-core performance is
unlikely to yield higher-fidelity results for this
chip architecture.

With this in mind, we can attempt the task of
extrapolating the performance of the
applications studied here on quad-core systems.
We begin by enumerating the assumptions of
our model:

1. The only source of performance
difference between single- and dual-core
runs is memory bandwidth contention.

2. The 2.6 GHz RevE and RevF AMD
cores execute code at roughly the same
performance in the absence of memory
bandwidth contention.

3. We can therefore break execution time
into the portion that is stalled on shared
resources (memory bandwidth) and the
portion that is stalled on non-shared
resources (everything else).

4. Under this circumstance, we can use the
timing difference from single- to dual-
core runs to compute the fraction of
execution time spent in memory
bandwidth contention.

5. We can then extrapolate the quad-core
performance by assuming the time spent
in the execution component remains the

same, but the time spent in memory
bandwidth contention will increase
proportional to the reduction in effective
memory bandwidth per core.

We note that the quad-core AMD architecture
has some micro-architectural changes, such as
the improved SIMD throughput, changes in
cache architecture, and TLB, that are not
accounted for in our model. The core
improvements offer limited up-side potential in
terms of performance of the quad-core. Our
model represents the baseline case where no
improvements to the core are assumed.

In addition to the previously described MILC
and BeamBeam3D applications, we have
collected compute-only timing information for
three other scientific applications, CAM, GTC
and PARATEC.

The Community Atmosphere Model (CAM) is
the atmospheric component of the flagship
Community Climate System Model (CCSM3.0).
Developed at the National Center for
Atmospheric Research (NCAR), the CCSM3.0
is used to study climate change. The CAM
application is an atmospheric general circulation
model (AGCM) and can be run either coupled
within CCSM3.0 or in a stand-alone mode
driven by prescribed ocean temperatures and sea
ice coverages [8]. AGCMs are key tools for
weather prediction and climate research. They
also require large computing resources: even the
largest current supercomputers cannot keep pace
with the desired increases in the resolution and
simulation times of these models. The version of
CAM we used is a D resolution (about 0.5
degree resolution) with finite-volume dynamical
core.

GTC is a 3-D particle-in-cell code used for
studying turbulent transport in magnetic fusion
plasmas [9]. The simulation geometry is that of
a torus, which is the natural configuration of all
tokamak fusion devices. As the charged
particles forming the plasma move within the

CUG 2007 Proceedings 7 of 10

externally-imposed magnetic field, they
collectively create their own self-consistent
electrostatic (and electromagnetic) field that
quickly becomes turbulent under driving
temperature and density gradients. Waves and
particles interact self-consistently with each
other, exchanging energy that grows or damps
their motion or amplitude. The particle-in-cell
(PIC) method describes this complex
phenomenon by solving the 5D gyro-averaged
kinetic equation coupled to the Poisson
equation. The test case studied here is 10
particles per cell and 2000 time steps.

PARATEC (Parallel Total Energy Code)
performs ab-initio quantum-mechanical total
energy calculations using pseudopotentials and
a plane wave basis set [10]. The
pseudopotentials are of the standard norm-
conserving variety. Forces and stress can be
easily calculated and used to relax the atoms
into their equilibrium positions. PARATEC uses
an all-band conjugate gradient (CG) approach to

solve the Kohn-Sham equations of Density
Functional Theory (DFT) and obtain the
ground-state electron wave functions. Much of
the computation time (typically 60%) involves
FFTs and BLAS3 routines. In solving the Kohn-
Sham equations using a plane wave basis, part
of the calculation is carried out in real space and
the remainder in Fourier space using parallel 3D
FFTs to transform the wave functions between
the two spaces. The global data transposes
within these FFT operations account for the
bulk of PARATEC’s communication overhead,
and can quickly become the bottleneck at high
concurrencies. The test case used as input to
collect data is bulk silicon with a unit cell
containing 125 atoms, running a single self-
consistent field calculation.

The application timings on Jaguar XT3 and XT4
with single and dual cores are summarized in
Table 5.1. All applications are run with 64
processors except for CAM which uses only 56
processors.

Single Core Dual Core Dual Core Penalty Application XT3 XT4 XT3 XT4 XT3 XT4
MILC 274 230 358 277 1.31 1.20

MILC-opt 160 127 230 181 1.44 1.43
BeamBeam3D 86 77 109 102 1.27 1.32

CAM 1123 1043 1283 1126 1.14 1.08
GTC 1389 1348 1447 1398 1.04 1.04

PARATEC 609 598 620 612 1.02 1.02

 Table 5.1 Compute Only Times (seconds) for Applications on Jaguar.

We began by testing our model by using the
XT3 performance data to predict the effective
performance on the XT4. The XT4 in this test
operates at the same clock frequency as the
XT3, but the DDR2-667 memory subsystem is
30% faster than the DDR1-400 MHz memory of
the XT3. Using the MILC optimized version
data:

• The execution time for single-core runs
on the XT3 is 160 seconds, and the time
spent in dual-core is 230 seconds.

• The STREAM benchmarks indicate that

the memory bandwidth for dual core is
approximately half that of the single
core (for this example we will assume
that it is half), so if the five assumptions

CUG 2007 Proceedings 8 of 10

above hold true, we should expect
execution time to obey the relationship:
o single core: core_exec_time +

bandwidth_contention_time = 160 s

o dual core: core_exec_time +

2*bandwidth_contention_time=230 s

• Solving the above system of equations
provides us with an estimate of 90
seconds spent executing in the core (for
both single and dual core) and 70
seconds spent in memory bandwidth
contention for single core and 140
seconds (2x longer) spent in memory
bandwidth contention for dual core.

We can now use the STREAM bandwidth
numbers to project the time spent in memory
bandwidth contention for the XT4’s faster
memory subsystem and predict single and dual
core XT4 times. In Table 5.2 below we show
predictions and actual measurements for the
XT4 using STREAM TRIAD rates both in
determining the memory bandwidth contention
time, and in extrapolating to the XT4. The
relatively large prediction errors for MILC,
MILC-opt, and BeamBeam3D 64-core in dual

core XT4 performance could be associated with
communication effects that are not accounted
for in the model. We note that the error in the
prediction of 8-core Beam-Beam3D runs is
considerably smaller than that of the 64-core
runs that we present in Table 5.2. However, we
also point out that overall, the predictive errors
are surprisingly small given the simplicity of the
model.

The predicted quad-core penalties for MILC,
MILC-opt, and BeamBeam3D are relatively
large. The AMD quad-core chip (Barcelona)
offers some mitigating features in the core
design, such as a doubling in floating point
throughput, which could reduce this penalty, but
the potential for performance improvements are
bounded by the low Computational Intensity
(CI) measured for these codes. The impact of
the changes in cache hierarchy is not
understood, but the proportion of total on-chip
cache to the number of cores remains the same
although the hierarchical arrangement of the
memory in the cache has changed. So, although
we ignore the micro-architectural changes, the
results are not likely to change dramatically
from this simple model.

Application XT4 Single Core XT4 Dual Core XT4 Quad Core
 Prediction Actual Error Prediction Actual Error Prediction Penalty

MILC 227 230 -1.5% 289 277 4.3% 410 1.78
MILC-opt 120 127 -5.1% 172 181 -4.7% 273 2.15

BB3D,64 core 73 77 -5.2% 90 102 -11.7% 123 1.60
BB3D,8 core 494 516 -4.3% 595 600 -0.8% 793 1.54

CAM 1032 1043 -1.0% 1151 1126 2.3% 1382 1.33
GTC 1356 1348 0.6% 1399 1398 0.1% 1483 1.10

PARATEC 603 598 0.8% 611 612 -0.2% 627 1.05

 Table 5.2 Prediction and Actual Compute-only Times (in seconds) for Applications.

6 Conclusions
We have examined in detail the performance of
the MILC and BeamBeam3D applications on

the Cray XT3 and XT4 in order to quantify the
performance implications of running on a dual
core configuration. In both cases a performance
penalty of more than 20% is seen at low

CUG 2007 Proceedings 9 of 10

concurrencies, and this increases with
concurrency. In the case of MILC,
optimizations to increase throughput of the
memory subsystem are seen to be less effective
on the dual core system, dealing the optimized
code a double blow on dual-core systems.

In addition, we have developed a simple
performance prediction model based on
effective memory bandwidth and validated this
model on the XT4 with three additional
applications, CAM, GTC and PARATEC. The
results are extremely promising, with all but one
error rates of less than 10%. Our predictive
model for a quad-core system are obviously
subject to a much wider variety of errors, but
nevertheless seem to show that for some
applications the transition to quad-core will be a
challenge for highly-optimized applications,
such as MILC that are memory bandwidth
bound, but on average will present more modest
impacts on other mainstream applications such
as CAM, GTC, and PARATEC.

Acknowledgments
The authors would like to thank Cray and AMD
technical staff for useful discussions. This
research used resources of the National Center
for Computational Sciences at Oak Ridge
National Laboratory, which is supported by the
Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-
00OR22725. The authors are supported by the
Director, Office of Science, Advanced Scientific
Computing Research, U.S. Department of
Energy under Contract No. DE-AC02-
05CH11231.

References
[1] S. Borkar. “Design challenges of technology
scaling.” IEEE Micro, 19(4):23–29, Jul-Aug
1999.

[2] P. P. Gelsinger. “Microprocessors for the
new millennium: Challenges, opportunities, and
new frontiers.” In International Solid State

Circuits Conference, ISSCC, pages 22–25,
2001.

[3] J. L. Hennessy and D. A. Patterson.
“Computer Architecture : A Quantitative
Approach; fourth edition.” Morgan Kaufmann,
San Francisco, 2006.

[4] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J.
Gebis, P. Husbands, K. Keutzer, D. A.
Patterson, W. Lester Plishker, J. Shalf, S. Webb
Williams and K. A. Yelick, “The Landscape of
Parallel Computing Research: A View from
Berkeley,” EECS Department University of
California, Berkeley Technical Report No.
UCB/EECS-2006-183 December 18, 2006.

[5] J. Levesque, J. Larkin, M. Foster, J. Glenski,
G. Geissler, S. Whalen, B. Waldecker, J. Carter,
D. Skinner, H. He, H. Wasserman, J. Shalf, H.
Shan, E. Strohmaier. “Understanding and
Mitigating Multicore Performance Issues on the
AMD Opteron Architecture,” LBNL Report
62500, March 2007.

[6] MILC collaboration's public lattice gauge
theory code. See
http://physics.utah.edu/~detar/milc.html

[7] J. Qiang, M. Furman, and R. Ryne. A
parallel particle-in cell model for beam-beam
interactions in high energy ring colliders. J.
Comp. Phys., 198, 2004.

[8] W. D. Collins, P. J. Rasch, B. A. Boville, J.
J. Hack, J. R. McCaa, D. L. Williamson, B. P.
Briegleb, C. M. Bitz, S.-J. Lin, and M. Zhang.
The Formulation and Atmospheric Simulation
of the Community Atmosphere Model: CAM3.
Journal of Climate, 19, 2006.

[9] Z. Lin, T. S. Hahm, W. W. Lee, W. M.
Tang, and R. B. White. Turbulent transport
reduction by zonal flows: Massively parallel
simulations. Science, Sep 1998.

http://physics.utah.edu/%7Edetar/milc.html

CUG 2007 Proceedings 10 of 10

[10] PARAllel Total Energy Code Webpage.
http://www.nersc.gov/projects/paratec.

	1 Introduction
	2 Cray XT System Architecture
	3 MILC
	4 BeamBeam3D
	5 Predicting the Performance of Applications on Future Cray XT Systems
	1
	6 Conclusions
	Acknowledgments
	References

