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Abstract

We regularize the variable coefficient Helmholtz equations arising from implicit time discretizations for resistive MHD,
in a way that leads to a symmetric positive-definite system uniformly in the time step. Standard centered-difference discret-
izations in space of the resulting PDE leads to a method that is second-order accurate, and that can be used with multigrid
iteration to obtain efficient solvers.
� 2008 Published by Elsevier Inc.
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The magnetic field equations for resistive MHD are given by
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þr � ð~v~B�~B~vÞ ¼ �r � ðgr�~BÞ; ð1Þ

r �~B ¼ 0; ð2Þ
where g is the spatially-varying resistivity. In semi-implicit methods for (1) and (2), one uses an implicit dis-
cretization of the time evolution of the magnetic field as a sub-step due to the resistive terms. This leads to
solving linear systems obtained from discretizing in space the following system of equations.
1

r
~Bþ bL~B ¼ ~f ;

bL~B � r� ðgr�~BÞ; ð3Þ
where ~f satisfies r �~f ¼ 0. Solutions to (3) satisfy the divergence-free condition r �~B ¼ 0. Straightforward
discretizations of (3) lead to linear systems that, in the limit r ?1, are not amenable to the application of
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geometric multigrid. bL vanishes when applied to a gradient of a scalar potential, leading to high wavenumber
modes in the discretized problem that are not damped by point relaxation. This does not affect the existence of
solutions of the original system of PDEs, since the divergence-free condition on ~f is a necessary and sufficient
condition for solvability of (3) for r ?1.

For the case of constant g, we can use the identity
r�r�~B ¼ �D~Bþrðr �~BÞ ð4Þ

and the divergence-free condition to observe that solutions to (3) also satisfy
1

r
~Bþ eL~B ¼ ~f ;

eL~B � �gr~B
ð5Þ
and conversely. In this case, we can use standard discretizations of the discrete Laplacian, D; and geometric
multigrid is an efficient iterative method for solving the resulting linear system for all r > 0.

In this paper, we present a generalization of the formulation (5) to the case of spatially-varying resistivities,
based on the observation that ~B is a solution to (3) if and only if ~B is a solution to
1

r
~Bþ L~B ¼ ~f ;

L~B � r� ðgr�~BÞ � rðgr �~BÞ:
ð6Þ
The addition of the rðgr �~BÞ term is in the spirit of a method originating with Godunov [3] of adding mul-
tiples ofr �~B to the ideal MHD equations to regularize the hyperbolic structure, leading to methods for which
the magnetic field equations are still satisfied if the divergence-free condition is satisfied at some initial time
[2,4,5]. In this case, we are adding terms to the resistive operator to regularize the parabolic structure of
the equations.

As is the case for (5), the operator L in (6) is a symmetric positive-definite operator. This is most easily seen
by taking the inner product of Lð~BÞ with ~B and integrating by parts over RD:
Z

RD
ðr � ðgr�~BÞÞ �~B� ðrðgr �~BÞÞ �~Bdx ¼

Z
RD

gðjr �~Bj2 þ jr �~Bj2Þdx: ð7Þ
In RD, this expression vanishes only if ~B vanishes identically. In more complicated domains, it is possible to
obtain nonzero vector fields for which both the divergence and curl vanish, but such vector fields are extremely
smooth and will probably not have any negative impact on the performance of multigrid. In any case, we do
not consider such problems here.

Typically, solutions obtained from solving the equations using standard centered-difference spatial discret-
izations satisfy some discretized form of the divergence-free condition up to truncation error. However, this is
also the case for a large class of methods for ideal MHD [1,5,6], and therefore the algorithm proposed here can
be used to extend those methods to the resistive case, as has been done for constant resistivity.

To derive our discretization, we first observe that the operator L in (6) can be expressed as the divergence of
vector-valued fluxes:
L~B ¼
XD

d¼1

oðg~F dÞ
oxd

; ð8Þ

~F d ¼ rBd �
o~B
oxd
� ðr �~BÞed : ð9Þ
Here, ed is the unit vector in the d direction. We assume a cell-centered discretization for~B : ~Bh
i � ~BðihÞ, where

i 2 ZD and h is the mesh spacing. Then, L~B is discretized as follows:
ðLh~BÞi ¼
1

h

XD

d¼1

giþ1
2ed~F d

iþ1
2ed � gi�1

2ed~F d
i�1

2ed

� �
; ð10Þ
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where ed is the unit vector in the d direction, giþ1
2ed ¼ g i þ 1

2
ed

� �
h

� �
and ~F d

iþ1
2ed is computed by replacing the

derivatives at a face in (9) by centered-differences at the face:
o~B
oxd

�����
iþ1

2edð Þh
� 1

h
ð~Biþed �~BiÞ;

o~B
oxd 0

�����
iþ1

2edð Þh
� 1

4h
~Biþed0 þ~Biþed0 þed �~Bi�ed0 �~Bi�ed0 þed

� �
; d 0 6¼ d:
In the case where g is a constant, the above discretization reduces to the standard 2D + 1-point centered-dif-
ference discretization of the Laplacian.

To demonstrate the method we first compute the convergence rates of the solution. Given an exact solution
~Be to (3) the solution error eh is defined as
eh
i ¼ ~Bh

i �~BeðihÞ;

where ~Bh is the solution to
1

r
~Bh þ Lhð~BhÞ ¼ ~f h;~f h

i ¼ f ðihÞ:
For these tests we define the exact solution to be
~Be ¼ ððsinð2pyÞ þ sinð2pzÞÞ; ðsinð2pxÞ þ sinð2pzÞÞ; ðsinð2pyÞ þ sinð2pxÞÞÞ;

~f � 1

r
~Be þr� ðgr�~BeÞ
in three dimensions. In two dimensions, ~Be ¼ ðsinð2pyÞ; sinð2pxÞÞ. The coefficient g = 1 + 0.1(sin(2px) +
sin(2py) + sin(2pz)) in three dimensions and g = 1 + 0.1(sin(2px) + sin(2py)) in two dimensions and f is
defined so that it is divergence-free. The domain of computation is the unit square/cube, with periodic bound-
ary conditions and equally spaced grid points. Solution error results for the case 1

r ¼ 1 are given in Figs. 1 and
2. Solution error results for the case 1

r ¼ 0 are given in Figs. 3 and 4. For both cases, we see robust second-
order convergence in L1, L2 and L1 norms.

For MHD applications, it is important for stability considerations that the numerical divergence of the
magnetic field also converges to zero. We present convergence results for a second-order accurate approxima-
tion to r �~B given an initial analytically divergence-free magnetic field
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Fig. 1. Solution error at various resolutions in two dimensions, showing O(h2) convergence. 1
r ¼ 1.
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Fig. 2. Solution error at various resolutions in three dimensions, showing O(h2) convergence. 1
r ¼ 1.
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Fig. 3. Solution error at various resolutions in two dimensions, showing O(h2) convergence. 1
r ¼ 0.
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Fig. 4. Solution error at various resolutions in two dimensions, showing O(h2) convergence. 1
r ¼ 0.
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r �~B � 1

2h

XD

d¼1

~Biþ1
2ed �~Bi�1

2ed

� �
for the cases 1
r ¼ 1 in Figs. 5 and 6 and results for 1

r ¼ 0 in Figs. 7 and 8. We see that r �~B converges to zero
like O(h2) in L1,L2 and L1 norms for both cases.

Figs. 9 and 10 compare multigrid convergence rates for the cases where the divergence of ~B is and is not
included in the fluxes and 1

r ¼ 1. Figs. 11 and 12 show multigrid convergence rates for the cases where the
divergence of ~B is and is not included in the flux F and 1

r ¼ 0. Clearly, in both cases, the use of (6) instead
of (3) makes the difference between multigrid converging or not.

We have demonstrated a technique for efficiently solving Helmholtz-like equations which appear in mag-
netohydrodynamics. Using the constraint that the magnetic field and the forcing terms are divergence-free we
convert the resistive operator to a symmetric positive-definite operator by the addition of the term
�rðgr �~BÞ. This approach, when discretized using standard finite volume methods for co-located field com-
ponents, leads to efficient multigrid solvers, and the solution satisfies the divergence-free condition to trunca-
tion error. Multigrid iteration using the corresponding discretizations that do not include the additional
divergence term fails to converge, or blows up after a few iterations.
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Fig. 5. r �~B for solutions at various resolutions in two dimensions. r �~B converges to zero at Oðh2Þ: 1
r ¼ 1.
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Fig. 6. r �~B for solutions at various resolutions in three dimensions. r �~B converges to zero at Oðh2Þ: 1
r ¼ 0.
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Fig. 8. r �~B for solutions at various resolutions in three dimensions. r �~B converges to zero at Oðh2Þ: 1
r ¼ 0.
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Fig. 9. Multigrid convergence in three dimensions with and without r �~B term in the flux. 1
r ¼ 1.
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Fig. 7. r �~B for solutions at various resolutions in two dimensions. r �~B converges to zero at Oðh2Þ: 1
r ¼ 0.
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Fig. 11. Multigrid convergence in three dimensions with and without r �~B term in the flux. 1
r ¼ 0.
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Fig. 10. Multigrid convergence in two dimensions with and without r �~B term in the flux. 1
r ¼ 1.
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Fig. 12. Multigrid convergence in two dimensions with and without r �~B term in the flux. 1
r ¼ 0.
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