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Abstract. In this paper, we give an overview of a set of methods being developed for solving
classical PDEs in irregular geometries, or in the presence of free boundaries. In this approach,
the irregular geometry is represented on a rectangular grid by specifying the intersection of
each grid cell with the region on one or the other side of the boundary. This leads to a natural
conservative discretization of the solution to the PDE on either side of the boundary. Stable
and robust hyperbolic and linear elliptic/parabolic solvers have been designed and implemented.
Example applications of this approach are shown for compressible and incompressible gas
dynamics problems in complex geometries, and for surface diffusion in a cell membrane.

1. Introduction
Structured grid numerical methods based on the finite-volume approach have a number of
significant computational and numerical advantages: regular predictable memory access, implicit
structure (thus saving the memory and computation required for data interpretation), higher
accuracy for less computation due to stencil error term cancellation, fast and robust geometric
multigrid solvers, and efficient extensions to block-structured locally refined grids to provide
multiresolution capabilities. To provide comparable simulation capabilities in the presence of
complex geometry, we use the embedded boundary (EB) approach. Domains with irregular
boundaries are represented by the intersection of the domain with Cartesian cells, thus
forming irregular control volume(s). Partial differential operators in conservation form are then
approximated by using a finite-volume discretization of the divergence operator, i.e. as a sum of
fluxes through faces. For hyperbolic PDEs the fluxes are functions of the conserved variables,
while for elliptic/parabolic PDEs they are proportional to the gradient of the solution. Both
take as the basis of their discretization
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(figure 1, left). Fluxes on faces that have area fractions α that are not equal to unity are
constructed by interpolating fluxes centered at the centers of the Cartesian faces, shown in 2D
in figure 1, right. The figures in 1 illustrates the kinds of geometric data we need to compute
accurate simulations: boundary centroid, boundary normal ~n, face centroids: [x̄, ȳ, z̄], aperture
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Figure 1. Left: fluxes that make up a conservative update of an irregular cell. Right:
constructing a non-unit area fraction aperture flux by interpolation.

area fractions: α, volume fractions: κ. The computation of these quantities is the analogue of
mesh generation for body-fitted grid methods.

2. Mesh generation
The volume centroids, volume fractions, area centroids, area fractions, and boundary normal
required in (1) can be extracted from surface triangulations through careful application of
computational geometry in a very general fashion (as done in [5]). We have developed an
alternative approach, based on representing the irregular domain Ω in terms of an implicit
function φ : RD → R

Ω = {x : φ(x) < 0} , ∂Ω = {x : φ(x) = 0}. (2)

Implicit functions are standard representations for image data, where they are constructed using
level-set methods for segmentation of discrete representations of images; and in geophysical data,
in the form of digital elevation maps. It is also straghtforward to build complex domains out
of simpler ones using composition. Given two domains represented by implicit functions φ1 and
φ2, then the union of these domains is represented by the implicit function φ = min(φ1, φ2), and
the intersection by φ = max(φ1, φ2). In addition, the EB mesh generation problem for domains
defined by implicit functions can be reduced, by means of repeated applications of the divergence
theorem, to finding the intersection of coordinate lines with the zero set of φ, together with a
set of well-conditioned linear least-squares problems for the moments for all higher dimensions.
The details of this algorithm are described elsewhere in these proceedings [2].

In addition to the real-valued quantities associated with each control volume and cell face,
we also need to compute and store the topological information describing the entire collection
of control volumes and their connectivity. Every [i, j, k] Cartesian cell in the index space is
classified as either Inside, Outside or Irregular. Cells Outside have have a positive value for
the the implicit function everywhere and are outside the computational domain. The opposite
holds for all Inside cells. Inside cells have unit volume fraction and unit aperture area fractions
and centroids on the zero axis. In Irregular cells the implicit function change sign. In a similar
fashion, boxes in the Cartesian index space [i, j, k]low, [i, j, k]high can also be classified as Outside
if every cell in the region is outside, Inside if every cell is inside, or Irregular if any cell in the
region is irregular.
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Figure 2. (a) EBIndexSpace database object. Colors represent processor assignments. White
represents box boundaries. Black represents the zero of the implicit function. The implicit
function in this case is a composite solid geometry fractal design created from recursive unions
of spheres. (b) Plot of the max norm of the partial volume-weighted residual versus W-cycle
iteration. The graphs are for meshes of size 64 (�), 128 (*), and 256(-)

3. Parallel Computation
Embedded boundary methods admit a straightforward extension of the domain-decomposition
approach used in other structured-grid and block-structured AMR methods [6]. The
computational domain at a given level of refinement is covered by a collection of boxes in the
Cartesian index space, each of which is assigned to a processor. For each box, one can define
the corresponding EB data. Then the organization of parallel computation is the same as for
the non-EB case, for example, applying operators by iterating over the boxes on each processor,
exchanging ghost cell values.

Chombo does not compute the geometric moments on-the-fly, but builds a distributed
database based on a recursive bisection parallel decomposition of the Cartesian index space.
Starting with the overall problem domain we query the implicit function if the box covering
the domain is Inside/Outside/Irregular. In a typical complex geometry problem this will be
Irregular. The box is divided into into two equal subboxes, and the algorithm recurses into each
subbox. The recursion stops when a region is either Inside or Outside or a minimum box size is
reached.

This algorithm creates a covering set of the domain. A space-filling curve is constructed
for this collection. These boxes are then assigned to processors with a heuristic load-balancing
algorithm. Each processor then visits each of its Irregular boxes and proceeds to query each
[i, j, k] cell in the box and make the Inside/Outside/Irregular query. Irregular cells have their
geometry moments computed and stored. A sample distribution to processors, shown by colors,
is given in figure 2a. Inside and Outside boxes are represented sparsely, with just an integer flag.
Irregular boxes are stored as a dense mask of cell flags. Irregular cell data is stored in auxiliary
sparse data structures. This then forms the EBIndexSpace object.

The data distribution for the EB grid generation is not same as for the simulation unknowns.
After each regridding operation in an AMR simulation there is a geometry data localization
operation. Each level of grids has an associated EBISLayout that represents a locally cached
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Figure 3. (a) Redistribution of nonconservative update to neighboring cells (b) Coarsened
EBIndexSpace showing a multivalued cell

duplication of the geometric data for the grids that are on-processor.

4. Solvers
In the applications being developed using the EB algorithms and software, we have typically
used semi-implicit methods. These are based on expressing the governing partial differential
equations are as a decomposition in terms of operators of classical type, i.e. hyperbolic, elliptic
and parabolic. Explicit methods are used for discretizing hyperbolic operators, while fast linear
solvers are required for elliptic PDEs and for implicit discretizations of parabolic terms. These
are combined with implicit methods for advancing parabolic systems and implicit solvers for
elliptic constraints. The overall algorithms are robust and efficient with stability properties that
are insensitive to the resolution of the geometric details.

4.1. Hyperbolic Solvers
For hyperbolic operators, we are solving

∂U

∂t
+∇ · ~F = 0. (3)

We would like to discretize (3) in time using an explicit method, with (1) for the spatial
discretization. As written there is a severe restriction on the explicit time step because the
volume fraction κ can be arbitrarily small. This is the “small cell problem” that appears in
most cut/embedded cell methods. The approach we have taken [9] is to compute two different
approximations of ∇·F : a nonconservative approximation that ignores the embedded boundary
and is known to be stable for the regular grid spacing CFL condition(∇·F )NC , and a conservative
but possibly unstable approximation (∇ ·F )C . A lineaqr combination of these fluxes is a stable
discretization, but adding a conservative and nonconservative update results in a nonconservative
update. To recover conservation there is a redistribution of the nonconservative update to
neighboring cells (see figure 3a).

To compute the stable nonconservative update can require the computation of a flux on an
aperture that is entirely outside the simulation domain. The details are complicated but involve
the existence of smooth extensions of solution derivatives normal to the boundary face.
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4.2. Elliptic Solvers
One of the principal advantages of Cartesian grid discretizations of elliptic PDEs is the efficacy
of geometric multigrid in providing algorithmically efficient, high-performance solvers [4]. This
advantage persists in the case of EB discretizations(fig. 2b), but leads to a more complicated
implementation [7].

A key step in multigrid algorithms is coarsening. To restrict the residual to the next multigrid
level, one performs geometric averaging of the grid by a small interger factor, usually two. In
the non-EB case, computing the relationship between the locations of the coarse and fine data
involves simple integer arithmetic. In the EB case, both the data access and the averaging
operations are more complicated. Coarser geometry moments are generated by sums and
averages of the finest geometry values. The volume fraction in a coarse cell must be the sum
of the volume fractions of the finer covering cells, similar for area apertures, and so on. This
prevents spurious residual sources during restriction and prolongation. It is also essential that
coarsening a geometry preserves the topology of the finer EB representation. The consequence
of this requirement is that geometric features at coarser levels of the EBIndexSpace will have
a length scale that is smaller the grid spacing, which leads to the “thin body problem”. The
field needs to maintain separate smooth extensions for each boundary face. Thus the cell shown
in figure 3b has more than one value. These multicells must be preserved and not merged
during coarsening. Merging these cells results in multigrid that does not converge because the
coarser level generates corrections that do not respect the finer level’s boundary conditions.
EBIndexSpace must maintain these cells in auxiliary sparse data structures at each level of
multigrid refinement. All this means the EBIndexSpace needs to maintain successively coarsened
representations of the geometry as part of the database.

5. Results
In figure 4a, we show an inviscid gas dynamics calculation solved using the explicit EB method
based on a second-order unsplit Godunov scheme [9], in r-z coordinates. This problem is
motivated by the problem of gas jet formation in novel laser wakefield accelerator designs.

In figure 4b, we show a calculation of a viscous incompressible flow problem using a semi-
implicit projection method. The hyperbolic advective terms are computed using a version
of the method in [9]. These are then used as a right-hand side for a second-order implicit
Runge-Kutta scheme [10] for the parabolic viscous terms to create a second-order accurate
stable approximation for the viscous forces, and requiring the solution of a Helmholtz equation.
Finally, an approximate update for the velocity field obtained from the incrementing the velocity
at the old time by the advective and viscous terms is projected to extract its divergence-free
part, requiring the solution of a Poisson equation. There are additional operations that appear
in the non-EB algorithms for supporting the use of AMR, similar to those described in [12].
This algorithm permits us to take time steps that are only limited by the CFL condition
4t = O(h/vmax).

Finally, we show an example that illustrates the value of an implicit function representation
of the geometry. In this case, microscopy data is turned into signed distance function of a cell
membrane. This allows us to generate an EBIndexSpace corresponding to an annular region of
fixed thickness around the membrane. If the annulus has a thickness on the order of the grid
spacing h, then applying homogeneous Neumann boundary conditions on the surfaces of this
region and solving the 3D parabolic diffusion equation results in an O(h2) approximation of
diffusion within the membrane [13].

6. Future work
The embedded boundary approach can be extended to all regimes of existing APDEC simulation
capabilities. The first major new technology will be the use of the Allspeed approach
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Figure 4. (a) Compressible gas dynamics flow from high pressure reservoir into a vacuum
through a nozzle. (b) Kármán vortex street behind cylinder at Re=300. Effective fine grid
resolution 2048x4096. Color scaled for magnitude of vorticity [-175, 175]. Images made with the
VisIt visualization package.
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Figure 5. (a) 2D slices through a gray-scale image of an hl-60 cell obtained by using
deconvolution microscopy. Image is ≈2,000 times actual size. (b) Solution for surface diffusion
at time = 50 s. The time step is 5.0 s.

to compressible flows with significant acoustic energy modes [14]. Originally developed to
handle transonic flows, the APDEC center is now using this approach to handle a range of
multiwavescale physics.

With Allspeed in place we will be able to bring together the combustion modeling effort in
APDEC with the embedded boundary approach and start performing full engineering device
combustion modeling with full chemistry and at resolutions that do not utilize sub-grid models.

The EB boundary can also represent a defined or tracked interface. Development of a
multifluid modeling capability is underway, as well as basic research into using EB for moving
interfaces A movinf interface creates higher dimension space-time apertures, which are easily
handled with the divergence theorem concepts.

Embedded Boundary Chombo, an open-source software release containing all the features and
examples shown in this paper, is expected by the end of FY08.
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