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Abstract

In Sussman, Smereka and Osher (1994), a numerical method using the level set approach
was formulated for solving incompressible two-phase 
ow with surface tension. In the level
set approach, the interface is represented as the zero level set of a smooth function; this has
the e�ect of replacing the advection of density, which has steep gradients at the interface,
with the advection of the level set function, which is smooth. In addition, the interface
can merge or break up with no special treatment. We maintain the level set function as
the signed distance from the interface in order to robustly compute 
ows with high density
ratios and sti� surface tension e�ects. In this work, we couple the level set scheme to
an adaptive projection method for the incompressible Navier-Stokes equations, in order to
achieve higher resolution of the interface with a minimum of additional expense. We present
two-dimensional axisymmetric and fully three-dimensional results of air bubble and water
drop computations.

1 Introduction

The ability to compute incompressible two-phase 
ows has many applications. In a paper
by Oguz and Prosperetti [23], the boundary integral method was used to study the cause of
noise due to raindrops. A necessary capability of their method was the ability to compute
air and water 
ow (density ratio of 1:816) and to compute with sti� surface tension e�ects.
The problem of an air bubble rising up to the water surface and then bursting was studied
by Boulton-Stone and Blake [9], also using the boundary integral method. This particular
problem was studied in order to better understand the death of cells in a \bioreactor." The
numerical simulation of the bubble growth and collapse in a thermal ink-jet print-head was
described in a paper by Deshpande (1989) [14]. In that work, the volume-of-
uid method
was used to track the interface between the ink and the air. Viscosity was modeled in their
problems and the interface was allowed to break; both e�ects are di�cult (and sometimes
impossible) to model using the boundary integral method. In the work of Esmaeeli and
Tryggvason ([15]), a combination front-tracking plus Eulerian scheme is used to compute
the motion of many bubbles in a box. Like the volume-of-
uid scheme, their method [34]
is capable of computing 
ows with viscous e�ects and changes in topology. In addition to
applications involving bubbles and drops, there are many applications involving breaking
waves. An example is the motion of a wave breaking at the bow of a moving ship ([17]).
In the work of Longuet-Higgins and Cokelet [19], plunging breakers are studied using a
Lagrangian scheme in which an integral equation is solved at each time step. The wave
motion was created by an arti�cial pressure applied only at the surface. The pressure
varied in space and time. In recent work by Marcus et al. [11], the incompressible level set
formulation ([32]) was used to model wave growth due to wind. This formulation allowed
one to have the waves \forced" by wind; the horizontal velocity of the air was faster than
that of the water. Also, by using the level set formulation for computing the motion of the
interface, the motion of a breaking wave can be simulated beyond the time in which the
interface merges with itself.

In Figure 1, we display the adaptive computation of a 1cm water drop hitting the ground.
The density ratio is 816:1 and surface tension e�ects are predominant in keeping the drop
spherical until it hits the ground. With our method, we can compute beyond the point
of break-up of the interface with no extra coding. We model the motion of the interface
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using the level set method. The velocity �eld is computed using an approximate projection
formulation (see [3]) for variable density problems (see [6] and [25]). The projection formu-
lation allows us to include e�ects such as wind and viscosity. The level set method enables
robust interface \capturing" where interfacial e�ects such as surface tension, steep density
gradients and the merger and break-up of 
uid mass come into play (see, e.g., Sussman et
al. [30] and Osher and Sethian [24]).

Other methods used to solve problems similar to our \drop" example include boundary
integral methods (see e.g. [21], [20], and [9]), front tracking methods (see Unverdi and
Tryggvason [34]), and volume-of-
uid methods (see Brackbill,Kothe and Zemach [10] and
Puckett et al. [25]). An advantage of the boundary integral method is the fact that only
grid points on the interface need to be discretized. A similar advantage exists for the front
tracking method of Unverdi and Tryggvason. They discretize the interface in the Lagrangian
frame of reference. Unlike the boundary integral scheme, they discretize the velocity �eld on
an Eulerian grid. Volume-of-
uid schemes track both the velocity �eld and the interface on
an Eulerian grid. Only those cells next to cells with a volume fraction between 0 and 1 come
into play when advancing the interface. By the nature of most volume-of-
uid schemes, the
volume is conserved for all time.

Here we describe the level set method as combined with an adaptive projection method.
In the level set formulation, the interface is implicitly represented as the zero level set of
a smooth function �; thus merging and breaking up of the interface are handled naturally
since the level set function does not become ill-de�ned during a topology change (Osher and
Sethian, 1988). In our implementation of the level set method, � is the signed distance from
the interface for all time, thus quantities such as the gradient of � and the curvature can be
accurately computed using high-order schemes. Since the interface need never be explicitly
reconstructed, implementations of level set schemes are relatively easy to program and easily
generalizable from two to three dimensions. Problems involving gas bubbles, water drops,
and wave growth due to wind have been computed using the level set scheme on a single
grid (Sussman et al., [32, 31, 30]), (Marcus et al., [11]).

The level set method lends itself well to being computed on an adaptive grid. For
problems with interfaces it is natural to re�ne around the interface; the re�nement criterion
can then easily be de�ned in terms of the level set function, which is also the distance
from the interface. Since most of the vorticity in these 
ows is concentrated on or near
the interface, re�nement around the interface should yield not only �ner resolution of the
interface itself but also reduced numerical di�usion of the velocity �eld. In this work, we
present results from calculations of bubbles and drops on an adaptive grid in order to
demonstrate the �ne-scale structure revealed by the improved resolution due to adaptivity.
The adaptive algorithm uses a hierarchical structured grid approach �rst developed by
Berger and Oliger [7] for hyperbolic partial di�erential equations. In particular, AMR
is based on a sequence of nested grids with successively �ner spacing in both time and
space. Increasingly �ner grids are recursively embedded in coarse grids until the solution is
su�ciently resolved. An error estimation procedure based on user-speci�ed criteria evaluates
where additional re�nement is needed and grid generation procedures dynamically create or
remove rectangular �ne grid patches as resolution requirements change. Recently, Almgren
et al. ([2]) developed a conservative, variable density incompressible adaptive mesh method
based on the approximate projection algorithm developed in Almgren, Bell and Szymczak
([3]). In this paper we generalize the work of Almgren et al. to incompressible two-phase

ows in which the jumps in density and viscosity between 
uids are sharp and can be large.
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Also, surface tension is included in our formulation.

2 Numerical Formulation

2.1 Governing Equations

At each time step we solve the following dimensionless evolution equations for the velocity
~u = (u; v; w), pressure gradient rp and the level set function �;

�t = �r � (~u�) (1)

~ut = �
1

�
rp+ ~F (~u; �) (2)

r � ~u = 0

where

~F (~u; �) = �

0
B@ r � (u~u)
r � (v~u)
r � (w~u)

1
CA�

ẑ

F r
+
r � (2�D)

R�
�
�(�)rH(�)

W�

�(�) = r �
r�

jr�j

D = 1=2((r~u) + (r~u)T )

H(�) �

8><
>:

1 if � > 0
0 if � < 0
1=2 if � = 0

�(�) = H(�) + (�2=�1)(1�H(�)) (3)

�(�) = H(�) + (�2=�1)(1 �H(�))

The dimensionless parameters used are Reynolds number (R = �1LU
�1

), Froude number

(Fr = U2

gL ) and Weber number (W = �1LU
2

� ).

In our computations, we will always assume that � is less than zero in the gas. The
dimensionless density and viscosity of the liquid will be identically one. The value for �1
will be the actual liquid density (1:00g/cm3 for water) and the value for �2 will be the actual
gas density (0:001225g/cm3 for air). The density ratio for air/water problems is �2

�1
which

is 1 : 816. For air/water problems the values for �1, �2 and the viscosity ratio are 0:01g/cm
s, 0:00018 g/cm s and 1 : 56, respectively.

The formulation we present here is the \continuum" formulation. The free-surface
boundary conditions due to viscosity and surface tension are implicitly enforced through
the force ~F . Further information on our \continuum" formulation can be found in the work
of Brackbill, Zemach and Kothe [10] and in the work of Chang et al. [12].

2.2 Projection Methodology

The method used to update the velocity and pressure is a variable density extension of the
approximate projection method described by Almgren et al. [3]. A projection method is
a fractional step scheme in which a discretization of (2) is �rst used to approximate the
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velocity at the new time, then an elliptic equation for pressure, which results from taking
the divergence of (2), is used to impose the divergence constraint on the new velocity and
to update the pressure. Brie
y, we may rewrite (2) as:

~ut +
1

�
rp = ~F (~u; �):

The resulting equation for pressure is then

r � (
1

�
rp) = r � ~F

The divergence of the surface tension term as it appears in (2) is ill-de�ned; we rewrite this
term as:

�
1

�
�(�)rH(�) � �

1

�
r(�H) +

1

�
r(�)H (4)

The �rst term on the right-hand-side can be incorporated in the pressure gradient term;
the remaining term is now well-de�ned.

Note that the level set approach di�ers from a standard variable density projection
method in that the quantity advected is �; which is smooth at the air/water interface,
rather than �; which initially is discontinuous across the interface. The density is then
de�ned by (3).

2.3 Interface Thickness

In order to robustly compute 
ows with steep density gradients and surface tension, we
need to give the interface a �xed thickness that is proportional to the spatial mesh size.
The analytic Heaviside function H(�) is replaced by a smoothed Heaviside function H"(�):

H"(�) =

8><
>:

0 if � < �"
1
2
[1 + �

" +
1
� sin(��=")] if j�j � "

1 if � > "

(5)

It is clear from (5) that the thickness of the interface is approximately

2"

jr�j
(6)

In our algorithm the front will have a uniform thickness which means we require jr�j = 1
when j�j � ". A function that satis�es

jrdj = 1 for x 2 
 with d = 0 for x 2 � (7)

is called a distance function. This is because d is the signed normal distance to the interface,
�.

If the level set function is equal to a distance function, then it follows from (5) that the
thickness of the interface is 2". In our numerical calculation we shall take " = ��x where
�x is the grid size.
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In the work by Sussman et al. [32], it was found necessary to maintain � as a distance
function in order to compute 
ows characterized by large density and viscosity jumps across
the free-surface and also in order to compute 
ows in which surface tension e�ects are
predominant. In that paper, an e�cient redistance scheme was presented. In this paper, we
will use the improved scheme as developed by Sussman and Fatemi [29]. In section 4.6.1,
we will discuss some issues associated with including the redistance scheme as part of an
adaptive mesh algorithm.

It is clear that we can choose �(x; 0) to be a distance function; however, under the
evolution of (1) it will not necessarily remain one. This means we must be able to solve the
following problem: given a level set function �(x; t), reinitialize it so that it is a distance
function without changing its zero level set.

This is achieved by solving the following partial di�erential equation

@d

@�
= sign(�)(1 � jrdj) (8)

with initial conditions
d(x; 0) = �(x; t)

where

sign(�) =

8><
>:
�1 if � < 0
0 if � = 0
1 if � > 0

(9)

and � is an arti�cial time. The steady solutions of (8) are distance functions. Furthermore,
since sign(0) = 0, then d(x; �) has the same zero level set as �(x; t).

A nice feature of using this procedure to reinitialize is that the level set function is
reinitialized near the front �rst. To see this we rewrite (8) as

d� +w � rd = sign(�) (10)

where

w = sign(�)
rd

jrdj

It is evident that (10) is a nonlinear hyperbolic equation with the characteristic velocities
pointing outwards from the interface in the direction of the normal. This means that d will
be reinitialized to jrdj = 1 near the interface �rst. Since we only need the level set function
to be a distance function near the interface, it is only necessary to solve (10) for � = 0 to
� = ".

3 Single-grid Discretization

Given initial state values ~Sn = (~un; �n) de�ned at cell centers and an initial pressure �eld

p
n� 1

2 de�ned at nodes, the following steps are taken to compute ~Sn+1 and pn+
1=2:

1. Predictor step:

� Use the source terms ~F (~un; �n) and rpn�
1

2 =�
n to compute face-centered quan-

tities u
L;n+1=2
i+1=2;j;k

, u
R;n+1=2
i+1=2;j;k

, v
B;n+1=2
i;j+1=2;k

, v
T;n+1=2
i;j+1=2;k

and w
D;n+1=2
i;j;k+1=2

, w
U;n+1=2
i;j;k+1=2

by extrapolation
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from cell centers. Decide between the two states at each face by upwinding to

de�ne de�ne ~u
n+1=2
i+1=2;j;k

, ~v
n+1=2
i;j+1=2;k

and ~w
n+1=2
i;j;k+1=2

:

� Perform a MAC projection of ~~u to construct time-centered face-centered dis-

cretely divergence-free advection velocities, u
ADV;n+1=2
i+1=2;j;k

, v
ADV;n+1=2
i;j+1=2;k

and w
ADV;n+1=2
i;j;k+1=2

:

� Use the source terms ~F (~un; �n), rpn�
1

2 =�
n and r � (~un�n) to compute face-

centered quantities ~S
L;n+1=2
i+1=2;j;k

, ~S
R;n+1=2
i+1=2;j;k

, ~S
B;n+1=2
i;j+1=2;k

, ~S
T;n+1=2
i;j+1=2;k

and ~S
D;n+1=2
i;j;k+1=2

, ~S
U;n+1=2
i;j;k+1=2

by

extrapolation from cell centers. Decide between the two states at each face by
upwinding (using ~uADV ) to de�ne the time-centered face-centered state values
~S
n+1=2
i+1=2;j;k

; ~S
n+1=2
i;j+1=2;k

; ~S
n+1=2
i;j;k+1=2

:

� Construct r � (~u�)n+
1=2 and r � (~u~u)n+

1=2 using the MAC-projected advection
velocity and the time-centered face-centered values of ~u and �

2. Level set update:

�
n+1 = �

n ��tr � (~u�)n+
1=2

3. Semi-implicit solve for velocity incorporating (r � (2�D))n+
1=2.

4. Projection: decompose ~F n+1=2 into two components, ~u
n+1=2
t and rpn+

1=2=�
n+1=2.

5. Velocity update:

~u
n+1 = ~u

n +�t~u
n+1=2
t

6. Redistance operation: drive jr�n+1j to one.

The steps described here are almost identical to the single-grid method found in Almgren
et al. [2]. In our formulation, we include changes speci�c to the two-phase problems we
wish to solve:

� Instead of advecting density �, we advect the smooth level set function �.

� We assume the viscous coe�cient � is non-constant (1:63 jump for air/water). This
entails the use of a tensor representation for the viscous force term ~Fvisc(~u).

� We include e�ects of surface tension. We denote the surface tension forcing term as
~Fsurf (�).

� Our only body force is due to gravity: ~Fgrav(�) = (0; 0; �=(Fr)).

� We perform a redistance step at the end of every timestep.

3.1 Predictor Step

Our goal in this step is to construct the advective update terms, r�(~u�)n+
1=2 andr�(~u~u)n+

1=2:

In the predictor we �rst extrapolate the normal velocities to cell faces at tn+
1=2 using a
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second-order Taylor series expansion in space and time. The time derivative is replaced
using Eq. (2). For face (i+ 1

2
; j; k) this gives

~u
L;n+1=2
i+1=2;j;k

� u
n
i;j;k +

�x

2
ux +

�t

2
ut

= u
n
i;j;k + (

�x

2
� u

n
i;j;k

�t

2
)(un;limx )i;j;k +

�t

2
(�(dvuy)i;j;k � (dwuz)i;j;k+ (11)

1

�ni;j;k

(�(Gp)
n� 1

2

i;j;k + (~Fvisc(~u
n))i;j;k + (~Fsurf (�

n))i;j;k + (~Fgrav(�(�
n)))i;j;k):

extrapolated from (i; j; k), and

~u
R;n+1=2
i+1=2;j;k

� u
n
i+1;j;k �

�x

2
ux +

�t

2
ut

= u
n
i+1;j;k � (

�x

2
+ u

n
i+1;j;k

�t

2
)(un;limx )i+1;j;k +

�t

2
(�(dvuy)i+1;j;k � (dwuz)i+1;j;k+ (12)

1

�ni+1;j;k

(�(Gp)
n� 1

2

i+1;j;k + (~Fvisc(~u
n))i+1;j;k + (~Fsurf (�

n))i+1;j;k + (~Fgrav(�(�
n)))i+1;j;k)

extrapolated from (i+ 1; j; k):

Here, G is a discretization of the gradient operator. Fvisc(~u)i;j for the two-dimensional
case is discretized as:

2

R�x2
(�i+1=2;j(ui+1;j � ui;j)� �i�1=2;j(ui;j � ui�1;j))+

1

R�y2
(�i;j+1=2(ui;j+1 � ui;j)� �i;j�1=2(ui;j � ui;j�1)) +

1

R�x�y
(�i;j+1=2(vi+1;j+1 � vi�1;j+1 + vi+1;j � vi�1;j)�

�i;j�1=2(vi+1;j � vi�1;j + vi+1;j�1 � vi�1;j�1));

where

�i+1=2;j =
1

2
(�(�i;j) + �(�i+1;j)):

(We have not yet implemented the three-dimensional case with variable viscosity.) The
surface tension term is given by the second term on the right-hand-side of (4):

~Fsurf (�) = r�(�)H(�)=W (13)

The curvature �(�) = r� ( r�
jr�j

) is discretized using central di�erencing as described in [30].
The gradient of the curvature is also computed with centered di�erences. Our interface has
a thickness " thus we discretize H(�) as H"(�). In all of our computations, � is negative
in the gas making H(�)=�(�) less than one. If � were positive in the gas, then H(�)=�(�)
would have a large jump at the interface. In preliminary tests, this caused the algorithm to
fail. Another solution to the latter case is to replace H by (H � 1) in (13). This is allowed
since the term �r�(�)(�1) can also be incorporated into the pressure term.
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Analogous formulae are used to predict values for ~v
F=B;n+1=2
i;j+1=2;k

and ~w
U=D;n+1=2
i;j;k+1=2

at the other

faces of the cell. In evaluating these terms the �rst derivatives normal to the face (in this
case un;limx ) are evaluated using a monotonicity-limited fourth-order slope approximation
[13]. The limiting is done on each component of the velocity at time n individually.

The transverse derivative terms (dvuy and dwuz in this case) are evaluated by �rst extrap-
olating all velocity components to the transverse faces from the cell centers on either side,
then choosing between these states using the upwinding procedure as described in detail by
Almgren et al. ( [2]).

The normal velocity at each face (preliminary face-centered advection velocities) is then
determined by an upwinding procedure based on the states predicted from the cell centers
on either side. The procedure is similar to that described in [2], i.e. (suppressing the
(i+ 1=2; j; k) indices)

~ui+ 1

2
;j;k =

8><
>:

~uL;n+
1=2 if ~uL;n+

1=2 > 0 and ~uL;n+
1=2 + ~uR;n+

1=2 > 0

0 if ~uL;n+
1=2 � 0; ~uR;n+

1=2 � 0 or ~uL;n+
1=2 + ~uR;n+

1=2 = 0

~uR;n+
1=2 if ~uR;n+

1=2 < 0 and ~uL;n+
1=2 + ~uR;n+

1=2 < 0

We follow a similar procedure to construct ~v
n+1=2
i;j+1=2;k

and ~w
n+1=2
i;j;k+1=2

:

The normal velocities on cell faces are now centered in time and second-order accurate,
but do not, in general, satisfy the divergence constraint. In order to enforce the constraint
at this intermediate time, we apply the MAC projection (see [5]) to the face-based velocity
�eld before construction of the conservative updates. The equation

D
MAC(

1

�n
G
MAC

p
MAC) = D

MAC(~~u
n+1=2

) (14)

is solved for pMAC , where

D
MAC(~~u

n+1=2
) �

~u
n+1=2

i+ 1

2
;j;k

� ~u
n+1=2

i� 1

2
;j;k

�x
+

~v
n+1=2

i;j+ 1

2
;k
� ~v

n+1=2

i;j� 1

2
;k

�y
+

~w
n+1=2

i;j;k+ 1

2

� ~w
n+1=2

i;j;k� 1

2

�z

and GMAC = �(DMAC)T so that

(GMAC
x p

MAC)i+1=2;j;k =
(pMAC

i+1;j;k � p
MAC
i;j;k )

�x

with GMAC
y and GMAC

z de�ned analogously.

Equation (14) represents a matrix system which is solved using the multigrid-preconditioned
conjugate gradient method [33]. This elliptic solve is described in more detail in section 4.4.

The face-based advection velocities are then de�ned by

u
ADV
i+ 1

2
;j;k

= ~u
n+1=2

i+ 1

2
;j;k

�
1

�n
i+ 1

2
;j;k

(GMAC
x �

MAC)i+1=2;j;k

with vADV
i;j+1=2;k

and wADV
i;j;k+1=2

de�ned analogously. Here and in (14), � on the faces is averaged
geometrically from the cell centers at time n:

At this point the tracing is performed for the tangential velocity components and level
set function from cell centers to all cell faces. Let ~S = (~u; �). The extrapolation of the

10



normal velocity components has been described above; the tracing of the level set function
and tangential velocity components is analogous, with the time derivatives replaced using
(1) and (2).

Time-centered values ~Sn+
1=2 at each face (i.e. ~�n+

1=2 and ~~u
n+1=2

including the normal
velocity component) are now determined by upwinding, as follows:

~Si+ 1

2
;j;k =

8>>><
>>>:

~SL if uADV
i+ 1

2
;j;k

> 0

1=2( ~SL + ~SR) if uADV
i+ 1

2
;j;k

= 0

~SR if uADV
i+ 1

2
;j;k

< 0

The conservative update terms can now be de�ned by

[r � (S~u)]
n+1=2
i;j;k = [r � (~uADV ~Sn+

1=2)]i;j;k =
1

�x
( ~Si+ 1

2
;j;ku

ADV
i+ 1

2
;j;k

� ~Si� 1

2
;j;ku

ADV
i� 1

2
;j;k

)+

1

�y
( ~Si;j+ 1

2
;kv

ADV
i;j+ 1

2
;k
� ~Si;j� 1

2
;kv

ADV
i;j� 1

2
;k
) +

1

�z
( ~Si;j;k+ 1

2

w
ADV
i;j;k+ 1

2

� ~Si;j;k� 1

2

w
ADV
i;j;k� 1

2

)

3.2 Level set update

We now update the level set � using the advective term constructed above:

�
n+1 = �

n ��t[r � (�~u)]n+
1=2

We de�ne �n+
1=2 and �n+

1=2 to be:

�
n+1=2 = 1=2(�(�

n+1) + �(�n))

�
n+1=2 = 1=2(�

n+1 + �
n)

3.3 Viscous Solve

We solve the following equation for ~u�:

~u
� � ~u

n

�t
= �[r � (~u~u)]n+

1=2 +
1

�n+
1=2
(�rpn�

1=2 + ~Fvisc(
(~un + ~u

�)

2
) + ~Fsurf (�

n+1=2) + ~Fgrav(�
n+1=2))(15)

Equation (15) in n dimensions is a coupled parabolic system of n equations and n un-
knowns. The forcing terms and advective update terms are treated as explicit source terms
(computed in previous steps). These coupled linear equations are solved using multigrid on
all components simultaneously; this solve is described in more detail in Section 4.5.

3.4 Discretization of the Projection

In the projection step, a vector �eld decomposition is applied to (~u�� ~un)=�t to obtain an
update to the velocity �eld, (~un+1� ~un)=�t; and an update for the pressure. In particular,
if P represents the projection then

~u
n+1 � ~u

n

�t
= P

�
~u
� � ~u

n

�t

�
(16)
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1

�n+
1=2
rpn+

1=2 =
1

�n+
1=2
rpn�

1

2 + (I�P)

�
~u
� � ~u

n

�t

�
:

Note that the vector �eld we project is not ~u�, it is an approximation to ~ut. This distinction
is signi�cant when the projection is not exact. Discretely, the projection is computed by
solving for the appropriately weighted gradient component of (~u��~un)=�t which we denote
by (1=�)Gp. We determine p by solving

L
n+1=2
� p = D

�
~u
� � ~u

n

�t

�

where D is a discrete nodal approximation to the divergence operator and L
n+1=2
� p is a

second-order accurate nodal approximation to r �
�

1
�n+1=2

rp
�
.

In two dimensions the projection discretization can be derived directly from the varia-
tional form

Z
1

�
rp(x) � r (x) dx =

Z
~u
� � ~u

n

�t
� r (x) dx; 8 (x) (17)

where dx is the volume element dx dy, r dr d� or dx dy dz as appropriate. If this variational
form is used in conjunction with standard piecewise bilinear or piecewise linear (on a stan-
dard triangulation of a mesh) �nite element basis functions, the resulting discrete problem

corresponds to standard nine-point and �ve-point discretizations of L
n+1=2
� , respectively. (In

this paper we use the nine-point discretization for all two-dimensional problems.) We then
de�ne

~u
n+1 � ~u

n

�t
=
~u
� � ~u

n

�t
�

1

�n+
1=2
Gp; (18)

where Gp is the cell average of rp, and de�ne

p
n+1=2 = p

n�1=2 + p:

In two dimensions, the discrete representations for D~u, Gp and L�p are:

(D~u)i+1=2;j+1=2 =
ui+1;j + ui+1;j+1 � ui;j � ui;j+1

�x
+

vi+1;j+1 � vi+1;j � vi;j + vi;j+1

�y

(Gp)ij �

 pi+1=2;j+1=2+pi+1=2;j�1=2�pi�1=2;j+1=2�pi�1=2;j�1=2
2�x

pi+1=2;j+1=2�pi+1=2;j�1=2+pi�1=2;j+1=2�pi�1=2;j�1=2
2�y

!

(L�p)i+1=2;j+1=2 =
1

6h2
( 1

�i;j
(2pi�1=2;j�1=2 + pi+1=2;j�1=2 + pi�1=2;j+1=2 � 4pi+1=2;j+1=2) +

1
�i;j+1

(2pi�1=2;j+3=2 + pi+1=2;j+3=2 + pi�1=2;j+1=2 � 4pi+1=2;j+1=2) +

1
�i+1;j

(2pi+3=2;j�1=2
+ pi+1=2;j�1=2

+ pi+3=2;j+1=2
� 4pi+1=2;j+1=2

) +

1
�i+1;j+1

(2pi+3=2;j+3=2 + pi+1=2;j+3=2 + pi+3=2;j+1=2 � 4pi+1=2;j+1=2))

We note that this is not a discrete orthogonal projection; in fact, D~un+1 6= 0. However,
the projection as de�ned by Eqs. (16) and (17) is a discrete orthogonal projection onto
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a larger velocity space (in the �nite element sense) which is then averaged onto the grid.
The resulting approximate projection satis�es the divergence constraint to second-order
accuracy and the overall algorithm is stable. The reader is referred to Almgren et al. [3] for
a detailed discussion of this approximate projection.

In three dimensions, instead of using the 27-point analog to the nine-point stencil pre-
sented here, we use a seven-point stencil as discussed in [2].

3.5 Redistance Operation

In section 2.3, we stated the importance of maintaining our level set function as the signed
distance from the interface. We describe in this section the two-dimensional details for
discretizing (8). The three-dimensional analog case is a natural extension.

Analytically, equation (8) does not change the position of the zero level set of �. Unfor-
tunately in numerical computation this may not be true. In recent work [29], a \constraint"
was developed that signi�cantly improves the accuracy of solving (8). We use the fact that

@�

Z

ij

H(d) = 0 (19)

in every grid cell 
ij = ((x; y)jxi�1=2 < x < xi+1=2 and yj�1=2 < y < yj+1=2). That is, since the
interface should not move, the volume should not change either. We modify (8):

@d

@�
= sign(�)(1 � jrdj) + �ijf(�) � L(�; d) + �ijf(�) (20)

d(x; 0) = �(x; t) (21)

�ij is constant in each cell 
ij and is determined using,

@�

Z

ij

H(d) =

Z

ij

H
0(d)d� �

Z

ij

H
0(�)d� =

Z

ij

H
0(�)(L(�; d) + �ijf(�)) = 0:

�ij is calculated to be

�ij =
�
R

ij

H
0(�)L(�; d)R


ij
H 0(�)f(�)

(22)

In our calculations we choose

f(�) � H
0(�)jr�j:

This ensures that we only correct at the interface without disturbing the distance function
property away from the interface.

For ease of notation, we will denote �n+1;(0) as �, �n+1;(k) as dk and �x as h. If we want
to recover the distance function at a distance �h from the zero level set of �, we need to
solve (8) for � = 0 to � = �h: As noted in section 2.3, we can rewrite (8) in the form of an
advection equation with velocity w (see (10)). In light of this, we shall use a second-order
ENO upwind scheme (see [28, 16]) for solving (10). The discretization presented here is a
second-order generalization of a �rst-order scheme presented in [26].

Given dk we solve for ~dk+1 as follows:
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1. Compute an approximation to j rdk j using second-order ENO as described below.
Let L(dk) = signh(�)(1� j rdk j). We use a sign function with thickness h:

signh(�) � 2(Hh(�)� 1=2)

2. Let dk+1=2 = dk +��(L(dk)).

3. Compute j rdk+1=2 j.

4. Let ~dk+1 = dk + (��=2)(L(dk) + L(dk+1=2))

In order to compute j rdk j=
q
d2x + d2y + d2z (or

q
d2x + d2y in two dimensions) we use the

following process:
For (dx)ij we have:

1. Approximate d�x

a =
di+1;j � 2di;j + di�1;j

h2

b =
di;j � 2di�1;j + di�2;j

h2

c =

(
a if jaj � jbj

b otherwise

d
�
x =

di;j � di�1;j

h
+ ch=2

2. Approximate d+x

a =
di+1;j � 2di;j + di�1;j

h2

b =
di+2;j � 2di+1;j + di;j

h2

c =

(
a if jaj � jbj

b otherwise

d
+
x =

di+1;j � di;j

h
� ch=2

3. Upwind

dx �

8><
>:
d
+
x if d+x sign(�) < 0 and d�x sign(�) < �d+x sign(�)
d
�
x if d�x sign(�) > 0 and d+x sign(�) > �d�x sign(�)
0 if d�x sign(�) < 0 and d+x sign(�) > 0

In two or three dimensions, one computes dy and dz in a similar manner.

We modify the above discretization in order to include the constraint as described in
equations (20) through (22). Given dk, we compute ~dk+1 as described above. Then we
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compute �ij (see (22)) where:

L( ~dk+1) � ( ~dk+1 � �)=�k+1

H
0(�) � @H�(�)=@�

f(�) � H
0(�) j r� j

�( ~dk+1) �
�
R

ij

H
0(�)L( ~dk+1)R


ij
H 0(�)f(�)

The numerical integration over the domain


ij = ((x; y)jxi�1=2 < x < xi+1=2 and yj�1=2 < y < yj+1=2)

is computed using a nine-point stencil:

Z

ij

f � ((
1X

m=�1

1X
n=�1

fi+m;j+n) + 15fij)h
2
=24:

Our new updated dk+1 is

dk+1 = ~dk+1 + �k+1�ijf(�):

In [29] we showed that the constraint eliminated the lower order term in the mass error:Z

ij

H�(dk+1)�H�(�):

As stated before, we only solve up to � = �h where � is the number of grid points away
from the interface at which we wish d to represent a signed distance from the interface. For
an interfacial thickness of four points, we would require only four iterations, each with a
time step of h=2.

3.6 Initialization of the Data

Speci�cation of the problem must include values for U and � at time t0 = 0 and values
for the initial pressure p at time t

1=2. The pressure is not initially prescribed, and must be
calculated in an initial iterative step.

To begin the calculation, the initial velocity �eld is �rst projected to ensure that it
satis�es the divergence constraint at t=0: Then an initial iteration is performed to calculate
an approximation to the pressure at t = �t

2
: If this process were iterated to convergence and

the projection were exact, then U1 � U
� in the �rst step, because the pressure used in Eq.

(15) would in fact be p
1=2; not p�

1=2: However, in practice we typically perform only a few
iterations, since what is needed for second-order accuracy in Eq. (15) is only a �rst-order

accurate approximation to pn+
1=2; which in a standard time step is approximated by pn�

1

2 :

In each step of the iteration we follow the procedure described in the above subsections.
In the �rst iteration we use p�

1=2 = 0: At the end of each iteration we have calculated a
value of U1 and a pressure p

1=2: During the iteration procedure, we discard the value of U1
;

but de�ne p�
1=2 = p

1=2: Once the iteration is completed, we use the value of p�
1=2 in Eq. (15)

along with the values of U0 and �0:
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3.7 Timestep

The timestep �t is determined by restrictions due to CFL condition, gravity, viscosity and
surface tension ([32, 10]):

�ts �

s
(�1 + �2)W

8�
�x3=2

�tv � min


((

3

14
)
�R�x2

�
)

�tc � min


(
�x

j u j
;�xFr)

�tn+1 = 1=2min(�tv;�ts;�tc)

We note here that even though we handle the viscous terms semi-implicitly, we have still
found a need for the stringent timestep constraint when it comes to problems with large
density ratios. One reason for this, as pointed out in [2], is the fact that viscous terms are
not included in de�ning the states used in the transverse derivatives. In a paper by Minion
([22]), the issues dealing with stability in the presence of sti� viscous e�ects are covered.

4 Adaptive Mesh Re�nement

In this section we present the extension of the single-grid algorithm described above to an
adaptive hierarchy of nested rectangular grids. The basic adaptive framework is as described
by Almgren et al. [2]; here we focus on the changes necessary for the level set formulation.
These changes include:

� The curvature of the interface along with vorticity are used as criteria for determin-
ing grid placement at the �nest level. The location of the interface determines grid
locations at coarser levels.

� A redistance synchronization step is necessary to account for errors resulting from
doing the redistance operation separately on coarse and �ne levels. This allows for
robust computation even if part of the interface crosses a coarse/�ne grid boundary.
Other synchronization steps related to the level set function are also necessary for
maintaining the regularity of not only the level set function � across a coarse/�ne
grid boundary, but also the regularity of the curvature �(�).

� Because of the large density ratios, the multigrid solver is replaced by a multigrid-
preconditioned conjugate gradient solver [33] for all of the \level" and \sync" projec-
tions. (The viscous solve is still done with multigrid.)

In the �rst subsection we describe the creation of the grid hierarchy and the regridding
procedure used to adjust the hierarchy during the computation. Then we present a brief
description of the time step algorithm for the grid system that subcycles in time, and
describe the initialization procedure used to begin a multilevel calculation. Next we describe
the multigrid-preconditioned conjugate gradient algorithm, both for the MAC projections
and the nodal projections, giving the details necessary for e�cient convergence for large
density ratios. Finally, we discuss the details of the adaptive time step procedure, focusing
on the synchronization between di�erent levels of re�nement.
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4.1 Creating and Managing the Grid Hierarchy

The grid hierarchy is composed of di�erent levels of re�nement ranging from coarsest (` = 0)
to �nest (` = `max). The coarsest level (` = 0) covers the whole computational domain
while successively higher levels (` + 1) lie on top of the level underneath them (level `).
Each level is represented as the union of rectangular grid patches of a given resolution. In
our computations the re�nement ratio r between levels can be either 2 or 4. Thus we have
�x`+1 = �y`+1 = �z`+1 = 1

r
�x`: The grids are properly nested, in the sense that the

union of grids at level ` + 1 is contained in the union of grids at level ` for 0 � ` < `max.
Furthermore, the containment is strict in the sense that, except at physical boundaries, the
level ` grids are large enough to guarantee that there is a border at least one level ` cell
wide surrounding each level ` + 1 grid. (Grids at all levels are allowed to extend to the
physical boundaries so the proper nesting is not strict there.)

The initial creation of the grid hierarchy and the subsequent regridding operations in
which the grids are dynamically changed to re
ect changing 
ow conditions use the same
procedures as were used by Bell et al. [4] for hyperbolic conservation laws. In the problems
we compute here, we shall \tag" cells which contain part of the air/water interface, i.e.
those in which the level set function changes sign. For some problems, in order to generate
the �nest level of re�nement, we require not only that that cells contain the interface, but
also that the curvature or vorticity in those cells exceed a preset threshold in order to be
\tagged." Once cells on a speci�ed level are \tagged" for re�nement, the grids at the next
higher level can be constructed. The tagged cells are grouped into rectangular patches using
the clustering algorithm given in Berger and Rigoustsos [8]. These rectangular patches are
re�ned to form the grids at the next level. The process is repeated until either the error
tolerance criteria are satis�ed or a speci�ed maximum level is reached.

At t = 0 the initial data is used to create grids at level 0 through `max: (Grids have
a user-speci�ed maximum size, therefore more than one grid may be needed to cover the
physical domain.) As the solution advances in time, the regridding algorithm is called every
k` (k` is also user-speci�ed) level ` steps to rede�ne grids at levels ` + 1 to `max. Level 0
grids remain unchanged throughout the calculation. Grids at level `+ 1 are only modi�ed
at the end of level ` time steps, but because we subcycle in time, i.e. �t`+1 =

1
r
�t`; level

`+ 2 grids can be created and/or modi�ed in the middle of a level ` time step if k`+1 < r:

When new grids are created at level `+1; the data on these new grids are copied from the
previous grids at level `+1 if possible, otherwise interpolated in space from the underlying
level ` grids.

We note here that while there is a user-speci�ed limit to the number of levels allowed,
at any given time in the calculation there may not be that many levels in the hierarchy, i.e.
`max can change dynamically as the calculation proceeds, as long as it does not exceed the
user-speci�ed limit.

4.2 Overview of Time-Stepping Procedure

The adaptive projection algorithm can most easily be thought of as a recursive procedure,
in which to advance level `; 0 � ` � `max the following steps are taken:

� Advance level ` in time as if it is the only level. Supply boundary conditions for the
velocity, level set function and pressure from level ` � 1 if level ` > 0, and from the
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physical domain boundaries.

� If ` < `max

{ Advance level (` + 1) r times with time step �t`+1 = 1
r�t

`
: Use boundary

conditions for the velocity, level set function and pressure from level `; and from
the physical domain boundaries.

{ Synchronize the data between levels ` and ` + 1, and interpolate corrections to
higher levels if `+ 1 < `max:

As in the adaptive mesh technique for hyperbolic systems, the evaluation of the con-
servative derivatives in (1) and (2) can be performed one grid at a time, with boundary
data copied from other �ne grids, interpolated from underlying coarse grids, or supplied
from physical boundary conditions. These correspond to steps found in section 3 for the
single grid scheme. Since the redistance operation is discretized as an advection equation,
the same procedure as for handling the conservative derivatives may be applied to handling
these equations too. The parabolic and single-level elliptic solves require that the solution
be computed on all grids at a level at one time, since these are no longer explicit operations.
Boundary data for these solves are interpolated from underlying coarse grids or supplied
from physical boundary conditions. The interpolation and solution procedure for these
equations are discussed in Sections 4.4 and 4.5.

Once the level ` + 1 data have been advanced to the same point in time as the level `
data using grid-by-grid or level operations, synchronization of the data between levels is
required. This synchronization attempts to correct for the di�erence in the solution gen-
erated by performing the update operations sequentially on coarse then �ne grids, rather
than simultaneously on a composite hierarchy.

The synchronization has several components. In order to correct for the 
ux mismatches
resulting from the hyperbolic and parabolic components of the updates, the data on the
�ne grids is averaged onto the coarse grids beneath them, and the data on the coarse grids
immediately outside the �ne grids is updated using corrected advective and viscous 
uxes
at the coarse/�ne interface (i.e., \re
uxing"). (In the case of variable viscosity, the viscous
solve is a tensor solve rather than decoupled equations for each component of velocity, but
this can still be written in 
ux form.)

Because of the incompressibility constraint, steps must also be taken to account for
the mismatch in the MAC-projected advection velocity (~uADV ) and the mismatch in the
projected new-time velocity (~un+1) which result from not having satis�ed the full elliptic
matching conditions at the coarse/�ne interface. When performing the MAC and nodal
projections we impose Dirichlet boundary conditions from level ` for the level ` + 1 grids.
Consequently, the �elds computed in the elliptic solves match in value at coarse/�ne in-
terfaces but do not, in general, match normal derivatives. It is this mismatch in normal
derivatives which de�nes the source for the correction solves (\sync projections"). One
\sync projection" is done for each type of \level projection" (i.e. MAC and nodal).

Finally, when using our level set formulation, we must also include synchronization steps
in order to maintain the regularity of the level set function � and curvature �(�) across
a coarse-�ne grid interface. Typically, the position of the zero level set on the �ne level
will be di�erent from that on the coarse level. Thus, after an averaging down of the �ne
data onto the coarse level, the distance function � on the coarse level outside of the �ne
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level will no longer represent the distance from the zero level set. We thus include a sync-
redistance step in order to correct the level set function on the coarse level. We have found
that the sync-redistance procedure is not enough to ensure smoothness of curvature �(�)
across a coarse-�ne interface. In order to avoid computing the curvature across a coarse-�ne
interface, we only compute the curvature at points where j�j < ��x (i.e. only compute
curvature when within the thickness of the interface). The curvature is then extended in an
iterative fashion from the interface. The iteration procedure, like the redistance procedure,
is only � steps long.

4.3 Initialization of the Multilevel Data

As in the single grid projection method, we must �rst project the given velocity �eld to
enforce the divergence constraint, and iterate with the initial data in order to de�ne an initial
pressure �eld. For accuracy, the initial projection is done as a full multilevel composite solve
over all levels, using the stencils given in Section 3.4, as well as coarse-�ne interface stencils
where appropriate. As a result, the velocity resulting from this projection satis�es the
divergence constraint not only at each level but also at all the coarse/�ne interfaces. After
the projection all quantities other than pressure are averaged down from �ne grids onto the
coarser cells underlying them, to ensure that any level ` data, 0 � ` < `max; is the average
of the �ner values overlying it.

For the iteration used to de�ne the initial pressure, we compute the time step on the
�nest level currently de�ned, and iterate all levels with that time step (�t`max); i.e. without
sub-cycling. Here, however, the velocity is advanced on each level without being projected
at that level, i.e. ~u�;` but not ~u1;` is de�ned for 0 � ` � `max: One multilevel composite
solve is then done on the �eld (~u� � ~u

0)=�t`max to compute the pressure update on all
levels simultaneously. Here again the constraint is satis�ed not only on each level but also
at all the coarse/�ne interfaces. As in the single grid case, during the iteration procedure
the values of ~u1 computed by the projection are discarded, and the new value of pressure
is used for the next iteration. When the iteration is complete, the regular time-stepping
procedure (i.e. with sub-cycling) is begun.

4.4 The Multigrid-Preconditioned Conjugate Gradient Solvers

As described above, to advance a single level requires both a MAC level projection (to
de�ne divergence-free intermediate advection velocities) and a nodal level projection (to
approximately enforce incompressibility of the new-time velocity �eld). In a multilevel
calculation, we also require sync projections at the end of each coarse time step, both a
MAC sync projection and a nodal sync projection.

The right-hand-sides for the level projections are created using single-level operations;
they do not \see" data at another level. The right-hand-sides for the sync projections,
however, are accumulated using multilevel operators, i.e. the right-hand-side \sees" both
the coarse and the �ne data. However, for the sake of computational e�ciency, in the
form of the algorithm presented here, the elliptic equations resulting from the MAC sync
projection and the nodal sync projection are solved only on the coarse level. Both of these
projections are solved using the multigrid-preconditioned conjugate gradient method [33].
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In each case we solve an equation of the form

r �
1

�
rp = RHS (23)

If we have an initial guess p0 to the solution p, we put this in \residual-correction" form for
the solver. Thus we solve

r �
1

�
rpdi� = RHS �r �

1

�
rp0 (24)

The boundary conditions for the resulting system on the union of grids at a given level
will be homogeneous Neumann (such as at a solid wall or axis of symmetry) or homogeneous
Dirichlet (such as at a coarse-�ne grid boundary or at out
ow). At the coarse/�ne interface,
the solution is speci�ed by linear interpolation from the coarse grids for the nodal solves,
and quadratic or higher interpolation from the coarser level for the cell-centered solves.

In preliminary development, we attempted to use standard multigrid techniques to solve
the resulting linear systems. These standard multigrid techniques used the coe�cients in
de�ning the interpolation operator (see [2] for the details or [1] for background information
on the weighting), but would not converge for many problems with high density ratios. For
an axisymmetric bubble rise problem with two levels of adaptivity, for example, we could
not compute with density ratios greater than 10:1.

As a result, we have implemented the multigrid-preconditioned conjugate gradient method
(MGPCG, [33]) to solve the linear systems. This allows us to run the bubble and drop prob-
lems that previously failed at the proper density ratio (816:1).

The preconditioner is a single multigrid V-cycle (see [35] for an introduction to multigrid)
with the following properties, motivated by the need for the preconditioner to a conjugate
gradient solve to be symmetric:

� The interpolation and restriction operators have no coe�cient-weighting, and satisfy
cR

T = I (i.e. the restriction operator equals the transpose of the interpolant)

� Symmetric multicolor Gauss-Seidel relaxation is used as the smoother at each level of
the V-cycle. For the nodal nine-point stencil in two dimensions, we use a four-color
Gauss-Seidel relaxation step. On the way down the V-cycle, the order is RBGW.
On the way up, the order is WGBR. Likewise, for the three-dimensional seven-point
stencil, we use a multi-colored relaxation scheme in which the ordering is again re-
versed on the way up the V-cycle. For the MAC projections, red-black Gauss-Seidel
relaxation is used, with the ordering RB on the way down the V-cycle and BR on the
way back up.

� At the coarsest level of the V-cycle, the \bottom solver" is a preconditioned conju-
gate gradient solver. The preconditioner for this bottom solver is again symmetric
multicolor Gauss-Seidel relaxation as described above (i.e. RBGW then WGBR for
nodal, or RB then BR for cell-centered). The equation at the coarsest level must be
solved to a tolerance two orders of magnitude smaller than the tolerance of the overall
conjugate gradient solver, or the multigrid as preconditioner will not be su�ciently
symmetric.
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� If the boundary conditions are all homogeneous Neumann (only the case if the grids
cover the entire domain and the physical boundary conditions are all Neumann),
discrete solvability is enforced by ensuring that the sum of the right-hand-side is
discretely zero.

� The elliptic operator at each level of the V-cycle is identical in form but with coarsened
coe�cients from the �ner levels. The coe�cients � = 1

� are each associated with a
directional 
ux and are coarsened by doing an arithmetic average transverse to each
\
ux" and a harmonic average parallel to the 
ux (see [2] for the details).

4.5 Viscous Solve

Standard multigrid V-cycles are used to solve the parabolic linear equations resulting from
the Crank-Nicolson discretization of the viscous terms in the momentum equation. In the
case of variable viscosity (here implemented only in two dimensions), the equations are
coupled, and the stencil is a standard nine-point cell-centered discretization of the operator
which can be written in 
ux form, where the 
uxes now contain not only normal but
tangential derivatives. For constant viscosity, the equations are decoupled, and standard
�ve-point in two dimensions, seven-point in three-dimensions, cell-centered discretizations
are used exactly as in [2].

The issues in solving a �ve-point in two dimensions, seven-point in three dimensions,
cell-centered parabolic or elliptic equation on a union of �ne rectangles embedded in a
union of coarser grids (which provide Dirichlet boundary conditions) are described in detail
in Section 3.5 of [2]. Here we address the only additional issue, that of how to provide
boundary conditions for a nine-point (in two dimensions) rather than �ve-point stencil.
The di�culty here is merely in how to de�ne the value at each corner point of the stencil
when that point lies outside the �ne grid.

There are three possibilities for the corner ghost cell: 1) it lies in another �ne grid,
in which case the value is supplied by the other �ne grid; 2) it lies outside the physical
boundary, in which case the value is supplied by the physical boundary conditions, or 3)
the value must be interpolated from the coarse grids. The interpolation scheme for such
ghost cells is described in detail in [2] when the ghost cell is aligned with a row of �ne grid
cells, such as is always the case with a �ve-point stencil, and is the case for the nine-point
stencil except at the corner of the grid. At the �ne grid corners, rather than interpolate
between �ne grid and coarse grid points along a diagonal, the ghost cell value is �lled by
extrapolating from ghost cell values along one of the edges intersecting that corner. This
dependence then must be captured in the relaxation coe�cients within the Gauss-Seidel
relaxation.

4.6 Details of Time-Stepping Procedure

The details of the adaptive time-stepping and synchronization procedures for incompressible
variable-density 
ow are given in detail in [2]. Here we focus on the modi�cations necessary
for the level set formulation and give details just of the additional operations.

First, as noted earlier, the level set function rather than density is advected; the density
can be de�ned at any point as a function of �: As a result, advective 
ux registers (�F�;adv)
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are de�ned for the level set function as well as for velocity (but no longer for density).
Viscous 
ux registers (�F~u;visc) are de�ned for velocity only.

Assume now that we are advancing level `; 0 � ` � `max; one level ` time step. Let U
n;`

and �n;`; be the velocity and level set function at time n�t` on the level ` grid, where �t`

is the time step of the level ` grid. Let A` be the area of a face (assumed the same in each
coordinate direction) at level `; and let Vol ` be the volume of a grid cell at level `:

Once we complete the predictor step at level `; if ` < `max; we initialize the level `
advective 
ux registers (de�ned only at the faces on the ` / `+ 1 interface and indexed by
level ` indices) by

�F
`
�;adv := ��t`A`(~uADV;` ~�n+

1=2;`):

If ` > 0; we then update the level `� 1 advective 
ux registers (de�ned only at the faces
on the `� 1 / ` interface and indexed by level `� 1 indices) by

�F
`�1
�;adv := �F

`�1
�;adv +A

`�1
X
faces

�t`(~uADV;` ~�n+
1=2;`):

Note that one level ` � 1 face contains r2 (in two dimensions it would be r) level ` faces;
the sums above should be interpreted as summing over all level ` faces which are contained
in the level `� 1 face.

If ` < `max and r level ` + 1 time steps have just been completed, the level ` and
` + 1 data must now be synchronized. We average �n+1;`+1 down onto the level ` grids
wherever possible. This is a simple cell-centered averaging procedure, where for r = 2 in
three dimensions, e.g., the level ` value becomes the average of the eight level `+ 1 values
occupying that volume. Pressure is also coarsened appropriately.

In order to do the re
uxing of �, we now de�ne the cell-centered

S
`
sync = �

1

�t`Vol `
�F

`
�;adv

on cells in the rows of level ` cells immediately outside the level `+1 grids and set Ssync = 0
elsewhere. This part of the correction to �n+1;` will make the scheme conservative again.

A MAC \sync projection" is now performed to correct for the fact that the MAC-
projected velocities on the coarse and �ne grids do not satisfy an e�ective composite diver-
gence constraint. This results in a correction velocity �eld ~u`corr which is used to re-advect
~u and �: Ssync is then updated:

S
`
sync := S

`
sync +r � (~u`corr

~�n+
1=2;`):

If ` > 0, we must also modify the level ` � 1 
ux registers to account for the fact that
we will be adding S`sync to level �

`
: To do this, we set

�F
`�1
�;adv := �F

`�1
�;adv +A

`�1
X
faces

�t`(~u`corr
~�n+

1=2;`);

using the same summing convention.

We can now add the corrections to the level set function:

�
n+1;` := �

n+1;` +�t`S`sync
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and if ` < `max, we interpolate the correction onto the �ne grids at all �ner levels, q;
` < q � `max using conservative interpolation:

�
n+1;q := �

n+1;q +�t`Interpcons(S
`
sync)

At this point the nodal sync projection is performed to correct the new-time velocity
and pressure. The sync-projection described here di�ers from that in [2] in that this is a
single-level operation rather than a two-level solve as in [2]. After one coarse level time
step on level ` and r �ne level time steps on level ` + 1, the velocity �eld on the coarse
level will be out of sync with the velocity �eld on the �ne level. That is to say, the discrete
divergence of the composite velocity �eld

~u
`;`+1 (25)

across coarse-�ne grid interfaces will not be divergence-free. A two-level sync-project is
described in [2] in which this composite velocity �eld ~u

`;`+1 is projected onto the space
of composite velocity �elds that are discretely divergence-free across coarse-�ne grid inter-
faces. Unfortunately, implementing a composite multigrid preconditioned conjugate gra-
dient method turns out to be quite a challenge (the solver implemented in [2] used just
multigrid). We implement a single level sync-project similar in nature to the single level
MAC sync-project. Consider the composite velocity �eld in (25). If we average down the
�ne level velocity ~u`+1 (where the �ne level exists) onto the coarse level, then the resulting
coarse level \composite" velocity �eld

~u
`;avgdown (26)

will undoubtedly not be divergence-free with respect to the discrete coarse level divergence
at cells neighboring coarse-�ne grid interfaces. A single level sync-project is used to project
the coarse level \composite" velocity �eld onto a divergence-free velocity with respect to
the coarse level. The resulting changes to the coarse level velocity �eld lying underneath
the �ne level are interpolated onto the �ne level in order to correct the �ne level velocity
�eld.

4.6.1 Level Set Synchronization

When using the level set formulation, we must include synchronization steps in order to
maintain the regularity of the level set function � and curvature �(�) across a coarse-�ne
grid interface. Typically, the position of the zero level set on the �ne level will be di�erent
from that on the coarse level. Thus, after an average down step of the �ne level to the
coarse level, the distance function � on the coarse level outside the �ne level will no longer
represent the distance from the zero level set.

The \sync-redistance" step is performed after the level ` + 1 data has been advanced
in time to reach the current time of the level ` data. At this time the level ` + 1 data is
averaged down onto the level ` data where possible. The following iteration is performed
until � = ��x`max :

1. perform a single-level redistance step at level `;

2. perform a single-level redistance step at level `+ 1;
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3. average the level `+ 1 level set function onto the level ` grids where possible.

4. Let � = � +�x`+1=2, return back to step 1.

As seen from the above iteration, the redistance equation is solved on two levels simultane-
ously without sub-cycling. Thus, the time-step �� will be �x`+1=2. The redistance step
on level ` acts to propagate information from the �ne level (where the interface lies) to
the coarse level. The redistance step on level `+ 1 is performed using improved boundary
conditions at the coarse-�ne interface due to the redistance-step on level `.

We have found that the \sync-redistance" step does not necessarily maintain su�cient
smoothness of the curvature �(�) across a coarse-�ne grid interface. The divergence of the
surface tension term (13) can have unphysical jumps at coarse-�ne grid boundaries since
the surface tension term contains the curvature gradient. An example of the e�ects of these
jumps are shown in Figure 2 (bottom row). The divergence of the surface tension term
(which contains the curvature gradient) has an unphysical jump across the grid boundary
causing an unphysical velocity �eld even after the �rst time step. In order to ameliorate
this problem, we only directly compute the curvature at points within the thickness of the
interface j�j < ��x`max . For curvature outside the thickness, we extend the curvature away
from the interface using an iteration scheme. Given the current iterate for curvature �(m)

we compute �(m+1) as follows:

1. for all grids cells (i; j; k) in which j�i;j;kj � ��x`max do the following:

�
(m+1)
i;j;k =

Pi0=1;j0=1;k0=1
i0=�1;j0=�1;k0=�1;j�i+i0;j+j0;k+k0 j<j�i;j;kj

�
(m)

i+i0;j+j0;k+k0Pi0=1;j0=1;k0=1
i0=�1;j0=�1;k0=�1;j�i+i0;j+j0;k+k0 j<j�i;j;kj

1
:

2. repeat step 1 for ��x`=�x`max times.

The iteration, as with the \sync-redistance" step, acts to propagate information on the
interface (under �ner levels) out onto the coarse levels, thus maintaining smoothness across
coarse-�ne grid boundaries. A few important notes:

� We store the curvature as a separate variable from the level set function. At t = 0, the
curvature �i;j;k is initialized as the curvature of the point on the interface (the zero
level set) that is closest to ~xi;j;k. At later times, the curvature variable is updated as
described in the iteration above. That is, we recompute the curvature near the zero
level set, and iteratively extend the new changes away from the zero level set.

� The curvature near the interface is computed as:

�(�) = r �
r�

jr�j

For 2-d problems, we use the following expression for the curvature �̂:

�̂(�) = �(�)=(1 � ��(�))

If � is a distance function, this method of computing curvature (see [36]) will give the
curvature for the point on the zero level set closest to the point in question.
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� In (13), we have the following expression for the surface tension force:

~Fsurf (�) = r�(�)H(�)=W

We replace �(�) in the above equation with ~�i;j;k where

~�i;j;k = H1=2(
1

2
� j�j)�i;j;k: (27)

�i;j;k is a result of computing the curvature near the interface and then extend-
ing the curvature outward. ~�i;j;k will represent the curvature of the interface near
the interface, but will gradually approach zero far from the interface. After non-
dimensionalization, the dimensional length scale L (e.g. the radius of a bubble) cor-
responds to a length of 1 using dimensionless parameters. Thus for the example of a
bubble or drop problem, (27) implies that ~� will be zero a length of half the bubble
radius from the zero level set.

In the top row of Figure 2, we display the initial velocity �eld using our new method for
handling the curvature as it appears in the surface tension term. In Figure 3, we display
the contours of the new curvature term ~� for a rising gas bubble. The contours are smooth
even across a coarse-�ne grid interface. In Figure 3 we also show the curvature contours for
the curvature �(�) as computed in the original single grid algorithm. Here, the contours
are not smooth across coarse-�ne grid boundaries.

5 Numerical Examples

We present gas/liquid computations on a two-dimensional axisymmetric (r-z) grid and on
a fully three-dimensional grid. In all our examples below, the density ratio is at least 714:1.
We validate our method via convergence checks, direct comparison with other numerical
methods, and �nally comparison with experiments. We show highly resolved computations
of a gas bubble rising in liquid and also of a drop splashing against a pool of water. As
seen by the results below, our method provides one with the capability of computing very
complicated 
ows on a modest machine (e.g. Pentium-Pro 200Mhz).

5.1 Convergence Check

Our test problem will be a rising inviscid air bubble in water with surface tension. For this
problem, we used an axisymmetric domain. The density ratio is 816 : 1 and the Weber
number is 200. In Figure 4, we display the bubble at times t = 0:0, t = 1:2 and t = 1:3.
The spatial mesh size on the �nest level is �x`max = 6=512 and the interfacial thickness
parameter is � = 3. The solid line represents results for the same problem except using the
boundary integral method [31]. In order to compare with the boundary integral method,
we use far-�eld boundary conditions on all sides of the domain except at r = 0. For our
boundary condition, we assume that the pressure on the walls is p = �lz=Fr. In Table I,
we show that the solution converges at a rate of O(h1:5) as progressively �ner levels are
added. The volume Vt=1:3 and error between successively re�ned computations Et=1:3 were
measured as:

Vt �

Z


(1�H(�(t))d
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Et �

Z


jH(�c(t))�H(�f (t))jd


�c is the result from a coarser computation, and �f is the result from the re�ned computa-
tion.

We have con�dence that our adaptive solution is converging to the proper solution.
First of all, we compare well with the boundary integral method (see [31] for single grid
comparison with the boundary integral method). Secondly, we compared the adaptive
results in which �x`max = 6=256 to the single grid results in which �x = 6=256 over the
whole domain. The error between these two computations at t = 1:3 is 0:003 which is
considerably less than the errors listed in table I. The speedup of the adaptive computation
over the corresponding single grid computation was a factor of 2:4.

Table I: Convergence study for W=200 and � = 3
�x`max V1:3 E1:3 order

6/64 4.111 N/A N/A

6/128 4.154 0.170 N/A

6/256 4.177 0.059 1.5

6/512 4.187 0.019 1.6

5.2 Computations in which the interface has corners

In this section, we compute problems in which the �nest levels of adaptivity are focused on
regions of high curvature (such as corners) and high vorticity. For these problems, the zero
level set does not necessarily have to be completely contained by the �nest level. In section
4.6.1 care was taken in order to maintain a smooth level set function even across coarse-�ne
grid boundaries. It is possible to have the zero level set cross a coarse-�ne grid boundary.
In choosing our criteria for which regions to adapt, our choice on the �rst few levels would
be to adapt in regions that contain the zero level set. In these regions there is a large jump
in density. Our strategy for adapting on �ner levels would be to focus attention to regions
of high curvature or high vorticity. These regions typically cross the zero level set.

On the left of Figure 5, we compute the calculation of an axisymmetric rising air bubble
in water in which the last two levels of re�nement focus on regions of high vorticity and high
curvature. Five levels of adaptivity are used for this problem. We compare these results to
the case where only three levels are used (right side). The interfacial thickness for these two
examples is the same. At time t = 1:44, we see that extra adaptivity allows us to resolve
the thin structure near the breaking up of the bubble.

In Figure 6, we compute an axisymmetric gas bubble rising in a viscous liquid. As in the
previous example, we use far-�eld boundary conditions at the wall. For this problem the
density ratio is 714:1 and the viscosity ratio is 6667:1. The Reynolds number, Froude number
and Weber number are 9.7, 0.78, and 7.6, respectively. These are the same parameters used
in bubble experiments by Hnat and Buckmaster [18] and used in steady bubble computations
by Ryskin and Leal [27]. For this problem, we have an extra level of adaptivity in the region
of highest curvature. In Figure 7, we compare the volume of the bubble when computed
with the extra adaptivity as opposed to without. In Figure 8, we display the position of the
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center of mass of the bubble versus time. The average dimensionless rise speed for this case
was 1.006 which di�ers from the experiments by 0:6%: We believe that some of the error
in the computed steady rise-speed is attributable to the fact that we compute in a limited
domain and use far-�eld boundary conditions. When our computation was run in a domain
one quarter the size (each dimension cut in half) the average dimensionless rise speed was
1.036, a di�erence of 4% from the experiments. The advantage of adaptivity here is that
enlarging the domain adds cells (and therefore computational e�ort) only at the coarsest
level; the �ne grids covering the bubble remain the same size. The time to run from t = 0
to t = 6:25 in the large domain (5x20) was 6971 seconds (on a Pentium-Pro 200Mhz); the
time to run on the small domain (2.5x10) was 5784 seconds (for t > 6:25, the bubble starts
to exit the top end of the small domain).

5.3 Fully 3d simulations of rising gas bubble(s)

In this section we �rst show the computation of the rise of a fully three dimensional inviscid
air bubble in water (see Figure 9). The density ratio is 816:1 and the Weber number is 200.
The dimensions of the domain are 4x4x8 and the e�ective number of computational cells
on the �nest level of adaptivity (the third level) is 64x64x128. We use far-�eld boundary
conditions on all sides of the domain. In Figure 10, we display a cross-section of the bubble
at t = 1:2 and t = 1:4 and compare these results with the results of an axisymmetric bubble
problem in which the e�ective �ne grid resolution is 128x256. We point out here that we
do not have to do any extra programming in transitioning from a spherical cap bubble into
a toroidal bubble.

In Figure 11, we display the interaction of two inviscid gas bubbles in water. The density
ratio is 816:1 and there is no surface tension active. The dimensions of the domain are 4x4x8
and the e�ective number of computational cells on the �nest level of adaptivity (the second
level) is 32x32x64. We use far-�eld boundary conditions on all sides of the domain.

5.4 Water Splash Problem

In the work of Oguz & Prosperetti (1990) [23], the boundary integral method was used
to study the impact of drops on liquid surfaces and the subsequent entrainment of an air
bubble. Their work has important implications concerning the sound generated by rain.
In results shown here, we use our adaptive level set method to compute the impact of a
water drop on a pool of water along with the \splash" that comes afterward. With the
level set method, we automatically handle the merge of the drop with the pool of water
and also the break-up of the water splash. In our computations, we use dimensionless
parameters based on the impact velocity U and the radius of the drop L. In Figure 12,
we show results using L = 1 mm and U = 4:0 m/s. In Figure 13, we show results using
L = 1 mm and U = 7:6 m/s. The dimensionless impact velocity is 1; we accelerate the
drop with a �ctitious gravitational force term 1

Fr = 1=2 for a total dimensionless time 2.
At dimensionless time t = 2, the drop will be traveling with dimensionless speed of 1 and
will have traveled a dimensionless distance of 1 (which is the initial distance between the
drop and the pool). For U = 4:0m=s we have Re = 3518, Fr = 1633, and We = 220. For
U = 7:6m=s we have Re = 6684, Fr = 5895, andWe = 794. As suggested by the di�erence
in Weber number, the spray in the results for U = 4:0m=s (Figure 12) coagulates at the
tip whereas the spray in the results for U = 7:6m=s (Figure 13) breaks up. The results for
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U = 7:6m=s do concern us. Is it a physical phenomenon that the spray at t = 5:4 should
curl back towards r = 0? We ran the same problem using a uniform �ne 128x256 grid
(Figure 14) and obtained qualitatively the same results as when the problem is computed
on an adaptive grid. The uniform grid calculation used 22441 seconds (on a Pentium-Pro
200Mhz), four times more than the adaptive computation.

6 Summary

We have presented an adaptive level set method for computing free-surface 
ows in which
large jumps in density and viscosity occur at the free-surface. Surface tension forces are
included in our numerical model. We show examples in two and three dimensions in which
the arbitrary merging and break-up of 
uid mass may take place. We use adaptive mesh
methodology in order to focus computational e�ort on regions of high curvature or high
vorticity. We have validated our method against the bubble experiments of Hnat and
Buckmaster [18] and the boundary integral computations of Sussman and Smereka [31].
Finally, we have conducted a convergence study of our method in order to measure the
order of accuracy for the problem of a rising inviscid air bubble in water.
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List of Figures

1 Falling 1cm spherical water drop in air; density ratio 816:1, viscosity ratio
71:1 64 � 256, R = 2:75, W = 0:0135: The grid lines shown are the grid
boundaries of the level 1 grid, at later times, the level 2 grid as well. . . . 33
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t=0.0 t=3.0 t=3.6 t=3.8 t=4.0 t=4.1

Figure 1: Falling 1cm spherical water drop in air; density ratio 816:1, viscosity ratio 71:1
64 � 256, R = 2:75, W = 0:0135: The grid lines shown are the grid boundaries of the level
1 grid, at later times, the level 2 grid as well.
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t=0.002 velocity �eld 256x512 t=0.002 vorticity 256x512

t=0.002 velocity �eld 256x512 t=0.002 vorticity 256x512

Figure 2: Spherical gas bubble in liquid; density ratio 816:1; We=10. Bottom: initial
velocity �eld and vorticity after �rst time step due to irregularity in curvature across coarse-
�ne interface. Top: initial velocity �eld and vorticity after appropriate measures are taken
in order to keep the curvature smooth across coarse-�ne interface.
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t=0.002 curvature � t=0.002 smoothed curvature ~�

Figure 3: Spherical gas bubble in liquid; initial contours of curvature variable � before
(left) and modi�ed curvature variable ~� after (right) �x. Notice that ~� is smooth across
coarse-�ne grid boundaries.
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t=0 256x512 t=1.2 256x512 t=1.3 256x512

Figure 4: Spherical gas bubble in liquid: density ratio 816:1, We=200. Results computed
using the adaptive levelset method (thin contour) are compared to results computed using
the boundary integral method (thick contour)

36



t=1.44 512x1024 t=1.44 128x256

Figure 5: Spherical, inviscid gas bubble in liquid; Density ratio 816:1, We=200. For re-
sults on the left, two extra levels of adaptivity focus on regions of high vorticity and high
curvature.

37



t=0.0 t=4.8 t=8.9

Figure 6: Rise of an initially spherical gas bubble in viscous liquid. An extra level of
adaptivity is automatically added when corner forms in the ensuing cap bubble. density
ratio 714:1, viscosity ratio 6667:1, Re = 9:7, We = 7:6, Fr = 0:78
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Figure 7: Plot of mass of a rising cap bubble vs. time. Data corresponding to \128x512"
was computed in which an extra level of adaptivity was added when the corner formed on
the cap (about t = 2). For data corresponding to \64x256," an extra level of adaptivity
was not added.
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Figure 8: Plot of the center of mass of a rising cap bubble vs. time. We compare this data
with the linear best �t for 2 < time < 10. Expected slope is 1.
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t=0.0 t=1.4 t=3.0

Figure 9: Rise of inviscid air bubble in water. We = 200, e�ective �ne grid 64x64x128.
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t=1.2 t=1.2

t=1.4 t=1.4

Figure 10: Spherical gas bubble in liquid; density ratio 816:1; We=200. Left: Cross section
of three-dimensional results (y=2, x-z plane), e�ective �ne grid 64x64x128, dimensions of
domain: 4x4x8. Right: Axisymmetric results, e�ective �ne grid 128x256, dimensions of
domain 3x6.
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t=0.0 t=1.27 t=1.43

Figure 11: Merge of two inviscid gas bubbles, e�ective �ne grid 32x32x64.
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t=0.0 t=2.3

t=3.7 t=5.4

Figure 12: Falling 1mm spherical water drop onto pool of water; density ratio 1000:1,
128 � 256, impact speed U = 4m=s
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t=0.0 t=2.4

t=3.8 t=5.4

Figure 13: Falling 1mm spherical water drop onto pool of water; density ratio 1000:1,
128 � 256, impact speed U = 7:6m=s
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t=0.0 t=2.4

t=3.8 t=5.4

Figure 14: Falling 1mm spherical water drop onto pool of water; density ratio 1000:1,
128 � 256, impact speed U = 7:6m=s. Adaptive mesh re�nement turned o�.
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