
LBNL-59166 1

Interactive Analysis of Large Network Data
Collections Using Query-Driven Visualization

E. Wes Bethel, Scott Campbell, Eli Dart, Jason Lee, Steven A. Smith, Kurt Stockinger, Brian Tierney,
Kesheng Wu

Abstract—Realizing operational analytics solutions where large and complex data must be analyzed in a time-critical fashion entails
integrating many different types of technology. Considering the extreme scale of contemporary datasets, one significant challenge is
to reduce the duty cycle in the analytics discourse process. This paper focuses on an interdisciplinary combination of scientific data
management and visualization/analysis technologies targeted at reducing the duty cycle in hypothesis testing and knowledge
discovery. We present an application of such a combination in the problem domain of network traffic data analysis. Our performance
experiment results, including both serial and parallel scalability tests, show that the combination can dramatically decrease the
analytics duty cycle for this particular application. The combination is effectively applied to the analysis of network traffic data to
detect slow and distributed scans, which is a difficult-to-detect form of cyberattack. Our approach is sufficiently general to be applied
to a diverse set of data understanding problems as well as used in conjunction with a diverse set of analysis and visualization tools.

Index Terms— (H.2.8.h) Interactive data exploration and discovery, (I.6.9.d) Multivariate visualization, (K.6.M.b) Security, (J.8.o)
Traffic Analysis.

—————————— ——————————

1 INTRODUCTION

isual Analytics is defined in [Thomas2005] as “the sci-
ence of analytical reasoning facilitated by active visual

interfaces.” It is motivated by the need to gain understand-
ing of features, trends and anomalies present in large and
complex data collections. While a thorough discussion of
the immense scope of all possible technical challenge areas
and motivations is well beyond the scope of this paper, in-
terested readers are directed towards [Thomas2005], which
is a broad survey of the current state of research and devel-
opment challenges in the field. From that broad set of chal-
lenges, one in particular is the focus of this paper: how to
quickly find “interesting” data in large, multidimensional
collections of information. We explore this topic within the
context of a cybersecurity application, namely network traf-
fic analysis.

V

Network traffic datasets consist of records containing a
number of variables that summarize a particular network
connection, or “conversation” between two hosts on a net-
work. These data – known as “connection records” – are
generated by border routers, traffic analyzers or security
systems, and contain such information as source and desti-
nation IP address of the conversing hosts, the source and
destination ports, duration of connection, number of bytes
exchanged and so forth. There is no information about the
actual traffic content, only information about the two hosts
participating in the transmission, duration of the connec-
tion and related data. With the explosive growth of the In-

ternet, there is a corresponding rise in the amount of infor-
mation collected about network connections as well as an
increase in the number of anomalous events. Such events
may be indicative of a misconfigured host or network, an
inappropriate use of resources, an attack on a computer
system or network, a compromised host, or any one of a
number of other items of interest. Collecting, managing and
understanding the growing amount of network connection
data in a timely fashion all present substantial challenges
for network operations personnel.

A broad view of the network traffic analysis problem
would necessarily include data collection, data storage and
management, automatic feature detection, event characteri-
zation, analytical discourse to understand features and dis-
cover their relationships along with timely response to a
particular incident. The work we present here explores a of
subset the complete network traffic analysis problem.
Namely, we focus on a multidisciplinary approach to fea-
ture mining and hypothesis testing by combining scientific
data management tools for indexing and querying with
simple visualization tools. The overall objective of our work
is to reduce the duty cycle in hypothesis testing and feature
mining. This paper describes how we achieve that objective
within the context of a network traffic analysis case study.
The results are particularly relevant given the explosive
growth in network traffic and network traffic data. To be ef-
fective, a complete visual analytics solution will need to ad-

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

• Bethel, Campbell, Lee, Stockinger, Tierney and Wu are Computer Scientists at Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA
94720. E-mail: [ewbethel | scampbell | jrlee | kstockinger | bltierney | kwu]@lbl.gov.

• Dart is a Network Engineer with the Energy Sciences Network (ESnet) at Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720
USA. Email: dart@es.net.

• Smith is a Computer Scientist at Los Alamos National Laboratory, P.O. Box 1663, Los Alamos NM, 87545 USA. E-mail:sas@lanl.gov.

Manuscript received November 2005.

mailto:dart@es.net

2 LBNL-59166

dress problems of scale, to make effective use of high per-
formance computing resources, and to quickly provide an-
swers to analysts. Arguably, effective data management is
the cornerstone for all such applications.

The rest of this paper is structured as follows. Section
Two presents a survey of previous work in fields related to
the topic of this paper. Since our work realizes new capabil-
ity by integrating and applying ideas from several different
fields in a multi- and inter-disciplinary fashion, we discuss
prior work from several different but related fields. Next,
we present a series of performance studies that focus on
highlighting the relevance of our approach to realistic-sized
collections of network connection data. Specifically, we
conduct a serial performance test that shows an order-of-
magnitude decrease in the time required to answer a typi-
cal query on a realistic-sized network connection dataset.
We follow with a series of tests that show the scalability
characteristics of our approach. Next, we present a network
data analysis case study conducted by network analysts us-
ing the technology we present in this paper. Finally, we
conclude with general comments and potential future re-
search directions.

2 BACKGROUND AND RELATED WORK

In recent years, there has been a tremendous increase in re-
search and development projects in the areas of network
traffic analysis and visualization. Related to the material we
present here is previous work in the fields of scientific data
management, particularly techniques for efficient indexing
and querying, as well as visualization systems that focus on
limiting visual processing only to data deemed to be “of in-
terest” to the viewer.

2.1 Network Traffic Analysis
There exists an increasing need for visual analytics tools in
the fields of network analysis and forensics. Raw traffic
logs have long been too large and complex for a human to
digest and understand. In particular, there is a need for
tools that provide insight into patterns in data sets that are
large in volume, time or both. Intrusion Detection Systems
(IDS) are typically good at analyzing events that are closely
correlated in time, and where analysis can rapidly yield ac-
tionable results. However, over large time scales and/or
very large data sets, the design decisions that make IDS
software appropriate for rapid response limit applicability
to problems of scale. Typical failure modes include memory
consumption that grows without bound, or computational
overload that inhibits a rapid response. Moreover, connec-
tion analysis lends itself to visual analytics, since features
and patterns that are easily visible to a skilled analyst are
often difficult to quantify precisely or to detect program-
matically. Therefore, visual analytics tools are best thought
of as a complement to IDS software, and part of a broad
technology portfolio in the network analyst’s toolbox.

Traditional network traffic analysis usually begins when
the IDS provides an alert, such as one or more IP addresses
associated with a possible attack. If the analyst will be ex-
amining short-term connection data – less than 24 hours’
worth of data – then the connection logs are dumped

straight to local disk. These logs can usually be obtained in
10 seconds or less. For analysis that spans a longer range of
time, a dedicated system is available that can process con-
nection logs at the rate of 5-7 minutes per month for a sin-
gle IP address. Multiple IP addresses can be processed si-
multaneously. In all cases, the tool used for the search step
is grep. Once the subset of interesting connection data have
been extracted from the larger set of logs, the analyst per-
forms more specialized processing pursuant to the particu-
lar line of inquiry. Initial queries – search terms – based on
anything other than a single column are rarely performed.
Post-processing of search results is performed using perl,
shell scripts and gnuplot. The time required for these steps
is proportional to the amount of script development and
analysis required for the particular incident.

Historically, the problem with large-scale analysis tools
for network traffic has been that the duty cycle for testing a
given hypothesis is measured in hours for non-trivial data
sets. Therefore, a reduction in turnaround time from hours
to seconds represents an unprecedented new capability.
The new capability migrates large-scale network connection
analysis from the realm of overnight batch jobs to that of in-
teractive tools.

Visualization techniques permit an analyst to look at
thousands or hundreds of thousands of connections simul-
taneously. Simple data filtering is both valuable and neces-
sary to deal with the huge volume of data and the large dy-
namic range exhibited by many of the attributes. Applying
multi-dimensional transformations, deriving statistical
quantities and applying clustering techniques provides new
and often more relevant quantities to visualize, as well as
more relevant keys for indexing and querying.

A network connection can be thought of as a set of pack-
ets passing a point on a network within a given time inter-
val that have common characteristics. An example of a net-
work connection is a single communication session or an
interaction between two hosts on the Internet. For this dis-
cussion we describe connection dynamics in terms of TCP
session characteristics. Several standard tools exist for cap-
turing network connection data. Tcpdump is one of the most
commonly used; it is a pcap-based application that can run
on most operating systems and logs network traffic based
on a filtering expression ([JLM89] [MLJ94]). For larger envi-
ronments, routers and switches provide NetFlow [Net-
Flow05], LFAP [LFAP97] or SFlow data [Sflow2001]. Such
data contains either complete or sampled profiles of traffic
observed by the network device. Special purpose systems
and software have been implemented for various reasons,
including efficient and flexible handling of the huge data
rates and volumes seen on larger networks ([Uphoff04],
[Smacq02], [Bro]). Individual network services like HTTP
are application-level services built atop transport-level pro-
tocols (TCP, UDP). Some network connection data collec-
tion and reporting systems generate a separate record for
each direction of bidirectional connection [Bro]. Other sys-
tems generate a single full-duplex connection record that
also contains byte and packet counts for the reverse direc-
tion [Uphoff04]. Complicating the job of network analysts is
a growing number of ad-hoc application level protocols not
associated with normal services.

QDV 3

A network connection record generally contains at least
the following information:

1. Source IP address,
2. Destination IP address,
3. Source Port,
4. Destination Port,
5. Byte and packet count sent by source,
6. Byte and packet count sent by destination,
7. Start and End time in milliseconds.

A typical day’s worth of traffic at an “average” govern-
ment research laboratory might involve tens of millions of
such connections comprising multiple gigabytes worth of
connection records. A year’s worth of such data currently
requires on the order of tens of terabytes or more of storage.
According to [Burrescia05], traffic volume over ESnet, a
production network servicing the U. S. Department of Ener-
gy’s research laboratories, has increased by an order of
magnitude every 46 months since 1990. This trend is ex-
pected to continue into the foreseeable future.

2.2 Network Traffic Visualization
There has been a good deal of work in recent years in the
area of interactive network traffic visualization. A thorough
survey of such work is outside the scope of this paper since
we are focusing on coupling data management technology
with network traffic visualization and analysis tools. See
[Livnat2005] for a good survey of previous work in this
area. Generally speaking, previous work has focused on fil-
tering and visual presentation of different types of network
traffic data, including connection data, routing information,
IDS alerts and so forth.

Visualization applications aimed at providing overall sit-
uational awareness by visualization network connection
data are described in ([Lau04], [McPherson04]). These ap-
plications map network connection variables to axes, then
present activity, or lack thereof, at the appropriate grid lo-
cation. The basic idea is to facilitate rapid visual discovery
of incidents or other features. [McPherson04] offers the abil-
ity to reduce the amount of data displayed by allowing the
user to interactively manipulate filters. In this way, a user
can focus visual inspection only on data that matches the
filtering criteria. In both these examples, the problem size
consists of datasets comprised of a few thousand unique
network connections.

Komlodi et al. [Komlodi05] describe an Intrusion Detec-
tion Toolkit that supports a number of different visualiza-
tion techniques for viewing alert or packet data. This sys-
tem implements a form of data reduction through filtering,
either as part of the interactive visualization activity or as a
separate process. This work is silent on the subject of filter-
ing, or query methodology and performance, and shows
examples of what appear to be small datasets.

The VisAlert system described in [Livnat2005] presents a
visualization paradigm for correlating network alerts gen-
erated by multiple sensors deployed across a network. The
paradigm is based on the observation that every network
alert must possess three fundamental attributes – what,
when and where – that in turn provide a consistent basis
for correlation. VisAlert uses a unique and flexible two-di-

mensional display metaphor that is effective in helping
users to switch between context/focus modes of inspection.
For their results, they use a dataset consisting of 12-hours’
worth of network traffic.

While these previous works in network traffic visualiza-
tion have produced novel and useful presentation and in-
teraction techniques, they were tested using only small
amounts of network data. Our approach in this paper is
complementary to these works: we extend the idea of filter-
ing out of the visualization application and into the domain
of high performance scientific data management systems.
We believe such an approach is required to gain traction on
analysis and visualization of realistic-sized volumes of net-
work traffic and thus offers a completely new and comple-
mentary capability to the field of network traffic analysis
and visualization.

2.3 Query-Driven Visualization
The term “Query-Driven Visualization” refers to the pro-
cess of limiting visualization processing and subsequent vi-
sual interpretation to data that is deemed to be “interest-
ing.” This idea has been implemented in a diverse range of
research projects and applications. Several factors con-
tribute to the overall motivation for the query-driven visu-
alization approach. As data grows larger and more com-
plex, simply building larger, more scalable visualization
systems produces a greater amount of output, which in
turn increases the cognitive load on the viewer. In some
cases, increasing the amount of visible output may actually
hinder understanding as depth complexity increases, im-
portant features are “hidden,” and so forth. Similarly, with
increasing data size and complexity, finding and displaying
relevant data becomes increasingly important to foster sci-
entific understanding and insight. The query-driven visual-
ization approach also offers a new foothold for gaining
traction on the challenges of temporal and multidimension-
al visualization and analysis as processing can be focused
on “sets” of data that satisfy the conditions of a given line
of scientific inquiry. An example here might be “what is the
average electrical charge of particles in an accelerator mod-
el that that spin away from the main beamline and strike
the accelerator wall over the course of the entire
simulation?”

The VisDB system combines a guided query-formulation
facility with relevance-based visualization [Keim94B]. Each
data item in a dataset is ranked in terms of its relevance to a
query, and the top quartile of results is then input to a visu-
alization and rendering pipeline. Data is presented in a way
to cluster more relevant items closer together, and less rele-
vant items further apart. It is especially well-suited to dis-
play the results of “fuzzy queries” in that inexact matches
are ranked and visually displayed in a way to convey rele-
vance.

The TimeFinder system described in [Hoscheiser01] sup-
ports interactive exploration of time-varying data sets by
providing the ability to quickly construct queries, modify
parameters, and visualize query results. A query is formed
by manually “drawing” a rectangular box on a 2D plot
where the x-axis represents time and the y-axis represents
the data range. Each such rectangular box is called a “time-

4 LBNL-59166

box” and each comprises a range query. A user forms a
multidimensional range query through the union of several
timeboxes. The query results are presented in a fashion that
implements a form of data mining – more detailed informa-
tion about the items satisfying the query are presented in a
separate window. TimeFinder reads all data into memory
and is therefore able to operate on only modest-sized
datasets.

The Scout software system provides the ability to per-
form expression-based queries using a simple program-
ming language along with visualization, where both
queries and visualization are executed entirely on a GPU
[McCormick04]. A Scout program, which is realized as frag-
ment assembler, operates on source data that is loaded as
an OpenGL texture on the GPU. The program is executed
during rendering: two-dimensional data is rendered as a
single quadrilateral and three-dimensional data is rendered
as view-aligned slices in back-to-front order as direct vol-
ume rendering. As described, Scout is limited in data size
by the amount of GPU memory and is subject to the float-
ing-point accuracy of the GPU.

Recently, the idea of coupling a visualization pipeline
with a high performance index and query system was de-
scribed in [Stockinger05]. That work shows that the compu-
tational complexity of visualization processing can be con-
strained to the number of items returned by a query. As
such, that approach is the most suitable for use in query-
driven visualization and analysis of very large multidimen-
sional datasets.

We are extending the work of [Stockinger05] in this pa-
per by applying indexing and querying techniques to net-
work connection data, by providing a preliminary study of
parallel performance and scalability, and by demonstrating
their applicability within the context of a “hero-sized” net-
work connection data analysis problem.

2.4 Indexing and Querying
One approach for examining a large amount of network
connection data is to focus attention on a relatively small
number of “interesting” connections. The naïve approach of
checking every connection to see if it satisfies the definition
of “interesting” may take too long or be impractical. The
basic strategy to accelerate the selection process is to use an
indexing structure [Knuth98]. Most well known indexing
structures are designed for data that are frequently updat-
ed, like bank transactions. In banking applications, when
some arbitrary record is modified, the index structure must
be similarly updated. In this type of application, the two
main functions that an indexing structure provides – query-
ing and updating – both need to be very efficient. In fact,
for many tree-based indexing structures, the time required
for updating a record is nearly the same as the time re-
quired for locating a record. Network connection data is
different from these types of transactional databases in that
the existing records are never modified. The only change to
the data is the addition of new records. For this type of data
it is possible to sacrifice some update efficiency in favor of a
significant gain in query efficiency. Bitmap indexing tech-
nology is an excellent example of this tradeoff.

Bitmap indexing has been implemented in commercial

database systems and it is well accepted that it is efficient
for low cardinality attributes where there are few distinct
values [O’Neil87]. Recently, it was shown that such efficien-
cy can be extended to high cardinality attributes with Word
Aligned Hybrid coding (WAH) [Wu04]. FastBit [FastBit] is
a research code that implements a number of different
forms of bitmap index compression, including WAH.

In a basic bitmap index, one bitmap is allocated for each
distinct value of the indexed attribute, where each bitmap
has as many bits as the number of records in the indexed
dataset. The size of the index grows linearly with the at-
tribute cardinality and is small only for low cardinality at-
tributes. A number of strategies have been proposed to re-
duce the size of a bitmap index, including binning
([Shoshani99], [Stockinger00]), multi-component encoding
[Chan98], and compression ([Johnson99], [Wu01]). In partic-
ular, WAH compression was proven to keep the index sizes
compact as well as to significantly reduce the query pro-
cessing time compared to other indexing schemes [Wu04].

In this paper, we compare the performance of a WAH
compressed bitmap index with one called a projection index
[ONeil97]. The projection index extracts the attribute values
and stores them separately so that when answering a query,
only the attributes involved in the query are read into
memory. This approach is known to work well for range
queries, which are commonly used for analysis of large
datasets.

While exploring network connection data, an analyst
might use a query of the form “StartTime > 20050501 and
10.102.0.0 <= SourceIP <= 10.105.255.255.” In this example,
each term like “StartTime > 20050501” is called a range con-
dition. In a typical exploration, the analyst may specify a
number of different range conditions on different at-
tributes. Such queries are typically referred to as ad hoc
since they do not follow a predefined pattern. With ad hoc
queries, the bitmap index has a unique advantage over tree-
based indexing structures because the answers to individu-
al range condition can be efficiently combined.

Most tree-based indexing methods suffer from the
“curse of dimensionality.” As the number of attributes in a
dataset increases, tree-based indices become progressively
less competitive against the projection index. Typical multi-
dimensional indexing tree-based – kd-trees, for example
[Bentley75] – usually index all variables or dimensions of a
dataset. When answering an ad hoc range query involving
only a few variables, or dimensions, tree-based multi-di-
mensional indices are much less efficient than the projec-
tion and bitmap indices, which do not suffer from the
“curse of dimensionality.”

To answer multidimensional range queries, we first use
the bitmap indices to resolve each individual range condi-
tion and then combine the partial solutions with bitwise
logical operations. The time required to resolve each range
condition is proportional to the size of the bitmaps in-
volved. Moreover, the overall query processing time grows
linearly with the number of range conditions specified. The
time required by the projection indices also scales linearly
with the number of range conditions, however, the time re-
quired to resolve each individual range condition using a
projection index is typically much longer than that of a

QDV 5

bitmap index as we will empirically show later in Section
3.3, Performance Study. Additionally, the query response
time of both the bitmap index and the projection index
scales linearly as the number of records increase [Wu04].
These scaling properties indicate that both projection and
bitmap indexing are well suited for large datasets like those
encountered in network connection analyses.

3 QUERY-DRIVEN NETWORK TRAFFIC ANALYSIS
PERFORMANCE STUDY

In this section we analyze the performance of our prototype
query-driven network traffic analysis application. We begin
with a brief description of the network traffic data we use
in our experiments. Next, we present details about the
query and display implementation. Finally, the perfor-
mance studies indicate excellent serial performance of Fast-
Bit compared to a projection index system, as well as favor-
able scalability characteristics. These results show that by
combining visualization with high performance scientific
data management technology, we are able to perform inter-
active queries – one of the fundamental elements of visual
analytics – on realistic-sized network connection datasets.

3.1 The Network Traffic Data
For our performance study, we run queries on two different
datasets. One consists of 24 weeks’ worth of network con-
nection data collected from Bro at LBNL containing about
1.1 billion records. The other consists of 42 weeks’ worth of
network connection data, also collected from Bro at LBNL,
containing about 2.5 billion records. Each of the two data
sets contains 25 attributes, including the source IP address,
the destination IP address, source port, destination port,
start time, duration, number of bytes sent along with addi-
tional network connection information. The total sizes of
each are 146.5 GB for the 24-week dataset and 281.7 GB for
the 42-week dataset. Each week’s worth of network traffic
data is stored as a separate file. Note that this distribution
of data is not necessarily the most efficient for parallel com-
puting but is convenient for the analysts who manage the
data and interpret the query results.

Given the raw data, we construct bitmap indices for each
attribute. The total index size for each of the two datasets is
44.4 GB and 78.6 GB, respectively. Note that in both cases
the size of the bitmap indices is about a third of the size of
the raw data. This is fairly small compared to B-trees,
which are the most commonly used index for transactional
database systems. B-tree index structures are often three
times larger than the raw data.

3.2 Query and Visual Display Implementation
The prototype implementation of our query and display
system is based on ROOT [Brun97], which is an object-ori-
ented data analysis system originally developed for scien-
tific analysis and data management of large volumes of
high-energy physics data. The ROOT system has a compre-
hensive set of analysis capabilities and basic visualization
features. ROOT is straightforward to extend through load-
able modules. We extended ROOT so that it can answer
multidimensional range queries using FastBit.

In the database community, most data are viewed as ta-
bles where each row represents one record or a data object.
Most existing data management systems physically cluster
attributes of a record both on disk and in memory. This
storage organization is called “horizontal data organiza-
tion”. In addition, ROOT also supports “vertical data orga-
nization,” which is commonly known as a “projection in-
dex”. Since the projection index is efficient for the type of
multidimensional range queries that an analyst would re-
quest when studying network connection data, we have or-
ganized all of our data into projection indices to ensure the
best possible query processing performance when using the
ROOT-only query engine in our performance study.

The analyst’s multidimensional range queries on net-
work connection data select a subset of records and return
the values of a small number of attributes for further study.
In the database community, this type of operation is known
as “selection and projection.” The selections and projections
can be parallelized in a straightforward manner by dis-
tributing records amongst a number of processors. Because
the number of traffic sessions can vary significantly from
week to week, our per-week data decomposition is not nec-
essarily balanced. We are currently preparing a detailed
study of load and data balance as well as other issues relat-
ed to scalability. In this paper, we will focus on single pro-
cessor performance and provide an early glimpse of Fast-
Bit’s scalability characteristics.

3.3 Performance Study
In this subsection, we present three separate performance
measurements to show the efficiency of our ROOT-FastBit
implementation. The first test compares the time required
by projection and bitmap indices to answer a query on 24
weeks’ worth of network connection data. The second test
is a scalability study reporting ROOT-FastBit’s parallel exe-
cution performance on 24 weeks’ worth of network connec-
tion data. The third is a more extensive ROOT-FastBit scala-
bility study using 42 weeks’ worth of network connection
data.

For the first two performance tests, we used Platform
“J,” which is an SGI Onyx3700 comprised of twelve 600Mhz
R14000 MIPS processors, 24GB of RAM, and a 5TB fiber-
channel RAID capable of delivering about 600MB/s in ef-
fective sustained I/O bandwidth. For the third test, we
used Platform “D,” which is an SGI Altix comprised of 32
1.4 Ghz IA64 processors, 192GB of RAM, 23TB of fiberchan-
nel RAID capable of delivering about 500MB/s in effective
sustained I/O bandwidth.

3.3.1 Serial Performance Comparison
For the first test, we compare the time required to an-

swer a query for projection and bitmap index implementa-
tions on Platform “J.” We use a typical query over three
variables –“select IPS_B, IPS_C, IPS_D where IBS_B < 100
and IPS_C < 100 and IPS_D = 128.” For the projection index
test, we use ROOT with only its projection indices, i.e.,
without FastBit. The time required to answer the query
above is 2467 seconds. By using FastBit’s bitmap indices in
our ROOT application, the same query was answered in
309 seconds. This represents an order of magnitude in per-

6 LBNL-59166

formance gain simply by migrating from projection to
bitmap indices. While these results were run using network
connection data as the source, we have observed a similar
performance gain in similar performance experiments us-
ing high-energy physics data in which the average perfor-
mance gain of FastBit for processing multi-dimensional
queries is about a factor of 10 [Stockinger2005b].

3.3.2 First Scalability Test
Next we measured the parallel query performance of
ROOT-FastBit on the 12-processor Platform “J”. As we
mentioned previously, the 24-week data set that we use for
our performance evaluation is divided into weekly chunks.
Thus, each processor is responsible for executing queries on
two weeks’ worth of data. Using 12 processors, the ROOT-
FastBit system answers query shown in Section 3.3.1 in 22.8
seconds – as opposed to 309 seconds when run on a single
processor.

In order to better understand the ROOT-FastBit scalabili-
ty characteristics, we performed the following experiment.
First, we executed the query from Section 3.3.1 on twelve
weeks’ worth of data and varied the number of processors
between one and six. Next, we ran the same query on 24
weeks’ worth of data. Again, we measured the performance
with one to six processors. Figure 1 shows an effective par-
allel speedup of about 80% when using two processors,
about 70% when using four processors and about 60%
when using six processors. We believe that the decrease in
parallel efficiency with increasing processors is due primar-
ily to load imbalance. Data is distributed such that each
processor receives the same number of weeks’ worth of da-
ta. A close examination of the data reveals that some weeks
contain up to 10 times more data than others. Therefore, as-
signing an identical number of weeks’ worth of data to each
processor will result in processing and I/O load imbalance.

Figure 1. Parallel speedup factor when processing three-dimensional
queries on Platform “J”. For these tests, we measured the time re-
quired to answer the query specific in Section 3.3.1 for both 12 and 24
weeks’ worth of data using varying numbers of processors. One six
processors, we are realizing an effective parallel speedup of about
60%. The decrease in speedup results from processing and I/O imbal-
ance caused by the fact that some weeks have up to 10 times more
traffic than others.

3.3.3 Second Scalability Test
Over the course of this project – after conducting the pre-
liminary serial and parallel tests – we wanted to expand
our scope of testing to perform queries on ever-larger col-
lections of network data to test our approach with “hero-
sized” collections of network connection data. To that end,
we collected and prepared indices for 42 weeks of network
connection data.

In the second scalability test, we run queries of several
different levels of complexity and a dataset twice as large
and over a larger number of processors than in the first test.
We ran tests that measure query response time over one,
two, three and four variables when executed on up to twen-
ty-one CPUs of Platform “D.” As with the first set of paral-
lelism tests, we used a weekly decomposition of data, and
in each of the second set of scalability tests, each processor
was assigned the same number of weeks. Also as with the
first set of tests, this approach to data distribution does not
ensure even balance of computation or I/O load since some
network traffic is not evenly distributed from week to
week. In these tests, we generated a set of random one-,
two-, three- and four-dimensional range queries. There
were a total of 320 unique one-dimensional, 271 two-di-
mensional, 223 three-dimensional and 223 four-dimension-
al queries.

Figure 2 shows the average speedup factor for these ran-
dom one-, two-, three- and four-dimensional queries as
well as the ideal speedup. We can see that with up to seven
processors, the parallel query performance is close to ideal.
The speedup factor decreases for a larger number of proces-
sors due to the load imbalance resulting from variance in
the amount of traffic in each chunk of weekly connection
data. Despite the processing and I/O load imbalance, the
speedup factor is still significant. The average elapsed time
to answer a large random collection of three-dimensional
queries on 2.5 billions records using 21 processors is 19.34
seconds compared to 224.11 seconds using a single proces-
sor.

Figure 2. Speedup factor for multi-dimensional queries over 2.5 billion
records on Platform “D”. “Dim 1” means the query is over one variable,
“Dim 2” means the query is over two variables, and so forth.

In Figure 2 we also see that the speedup for high dimen-

0

5

10

15

20

25

0 5 10 15 20 25

Number of Processors

1-D Query 2-D Query 3-D Query
4-D Query Ideal Speedup

0

1

2

3

4

5

6

7

0 2 4 6 8

Number of processors

12 weeks 24 weeks Ideal Speedup

QDV 7

sional queries is more significant than for low-dimensional
ones. The reason is that the measurements include the time
for processing the bitmap index (Step 1 of responding to the
query) as well the as the time for retrieving the results (Step
2). We know that for high dimensional queries the result
size accumulated over all dimensions is higher than for low
dimensional queries. In other words, for high dimensional
queries, there are more data elements to be read in Step 2.
Since our experiments are executed on a parallel file sys-
tem, Step 2 is automatically parallelized.

We can draw the following conclusions from our experi-
ments: (1) FastBit performs better than projection indices by
an order of magnitude; (2) the two scalability studies show
that the queries parallelize well even for large load imbal-
ances, (3) using parallelization allows us to perform queries
on a hero-sized data set in 19.34 seconds on average for a
three-dimensional query using 21 processors.

4 NETWORK TRAFFIC ANALYSIS CASE STUDY

Within visual analytics, a growing problem space is the
field of network security. The analytics challenge presented
by this field are significant – large sites will often have be-
tween 50 million connection attempts per each day, and
some types of analysis require examining weeks’ or
months’ worth of log data. Interactive exploration of this
data can help identify compromised hosts and can also aid
in the understanding the nature of attacks.

4.1 ANALYSIS OF SCAN DATA

For an example of the interactive analysis, we look at the
details surrounding a suspected distributed scan. Any open
site is constantly being probed for open, unpatched services
that might be exploited. Most of these probes come from
relatively unsophisticated attackers who use simple tools
that naïvely locate and target unpatched systems or ser-
vices. Somewhat more sophisticated attackers may use
“botnets”, which are collections of hosts that search using
more subtle means – the task of scanning can be distributed
across the entire botnet collective. These types of scans are
described as distributed since each component host takes a
small fraction of the destination address space and identifi-
cation of the scanning activity is therefore more difficult.

In this example, we are interested in determining if a set
of hosts from a remote subnet is taking part in such a dis-
tributed scan. We have reason to think that this may be the
case since all the identified hostile addresses are within the
same class-C subnet and are scanning for the same service.
Note that we have not specified how we arrived at the con-
clusion that a scan is underway – such is typically the job of
IDS facilities. Instead, we are focusing on the forensics part
of the analysis in these examples.

To see if there are other, unidentified hosts from the
same subnet, we look at the third and fourth octet of the
source IP address for all hosts coming in from the suspect
address range and attempting to connect on a particular
destination port. If the source subnet is 10.95.C.D, we create
a scatterplot such that two of the axes correspond to the C
and D address octets, and the third axis corresponds to

time. This plot, which is shown in Figure 3, clearly indicates
that there are many unique hosts that seem to be involved
with this incident. To create this plot, we pose a four-di-
mensional query of the form “IPS_A = 10 AND IPS_B = 95
AND T1 <= Time <= T2 AND DestPort = P” and then dis-
play the results.
Figure 3. Shows the results of a three dimensional query where we are
focusing on activity from a specific /16 address group within a given
time range where connection attempts are made on a specified port.

While Figure 3 displays what amounts to only about one
week’s worth of data, we are extracting that week’s worth
of data from a total of 24 weeks worth of source data. To ex-
tract the temporal subset of data used as the basis for the
query and plot shown in Figure 3, we used the ROOT-Fast-
Bit implementation to create a smaller subset from the 24-
week dataset. While it is certainly possible to broaden the
query to display connections from the suspect /16 address
range attempting to connect to the particular port, doing so
would not be beneficial in this case since we are interested
in activity within a particular range of time. From the
smaller subset, which contains about one days’ worth of
connection data, the time required to perform the query
and generate Figures 3, 4 and 5 was about two seconds on a
single processor of Platform “J.”

For a larger view of how the local network block is being
scanned, we transform the view so that all connection at-
tempts from the (hostile) 10.95.0.0/16 subnet are plotted in
terms of the destination octets into the local 10.1.0.0/16 net
block. If a connection goes to 10.1.2.3, we plot (2,3) in the
one plane with time along the third axis. As seen in Figure
4, we make several observations. Line-like features indicate
linear trolling along one specific subnet (such as
10.1.2.0/24), while the larger planar or box structures may
be wholesale scanning of the entire subnet. The “dust” sur-
rounding these general forms could be noise, or part of a
structure that falls outside of the selection criteria.

8 LBNL-59166

Figure 4. This scatterplot shows connection attempts on a specified
port where two of the axes are the destination addresses and the third
axis is time. Linear structures indicate scans through an address range
on the local (target) network, while the plane-like structure indicates
wholesale scanning of the entire subnet.

Now that there is a general understanding as to what the
connections look like in terms of time, we can link together
source and destination for all the connections to the target
port to see what relations can be found. To do so, we keep
the X- and Y- axes exactly the same as before, but spread
out the range of source addresses in the following manner.
If a connection has a source address of 10.95.A.B, the last
two octets can be expressed on a single axis by multiplying
the third octet by a constant, and adding the fourth. In this
case we have Z=(255*A)+B. The results of this can be seen
in Figure 5.

Looking at Figure 5, we see that several naïve scans com-
pletely cover entire subnets or net blocks as shown in Fig-
ure 4. In addition there are at least four discrete addresses
that seem to be associated with a distributed scan by the de-
gree of overlap coupled with the relative small number of
connection attempts per source IP. Plotting the density of
connection attempts across destination addresses provides
the final indication that this is in fact a distributed scan. If it
were not, than the relative variation in density across the lo-
cal address space would be significantly higher.

Figure 5. By further transformation and encoding, we observe naïve
scans from a large number of hosts, and distributed scans associated
with only a few hosts.

5 CONCLUSION AND FUTURE WORK

The main point of this work is to demonstrate a new capa-
bility for network connection data analysis. This new capa-
bility results from combining technologies from different
fields in an interdisciplinary fashion. Our work combines
technology from scientific data management, data analysis
and visualization. The results we present here show an or-
der of magnitude in performance gains are possible in seri-
al configurations through the new technology combination,
and that an additional order of magnitude in performance
gain is realized through parallelization. In terms of network
security analysis, the significance of our work is that two
network engineers on our team demonstrate interactive
analysis of network connection data on realistic-sized
datasets using the technology described in this paper.

The work we present here is best viewed as proof-of-
concept. It does not address several important issues that
would impact general usability. For instance, it offers no
help in formulating the initial query. There is some previ-
ous work in this area, and extending those prior works to
use the information easily obtainable from the bitmap in-
dices would be a helpful part of an assisted query formula-
tion facility. The work we present here uses rudimentary
visualization techniques as part of the analysis. There are
many useful and interesting network data visualization and
analysis applications that would stand to benefit from ad-
vanced index and query capability – they would benefit
from the ability to process realistic-sized datasets. Related,
there are a number of different tools and techniques for per-
forming automatic clustering, feature identification and
tracking. Coupling those tools and techniques with ad-
vanced index and query capabilities is a promising area in
terms of analyzing larger and more complex data.

The scalability studies we present here are best viewed
as preliminary but hopeful glimpses of the potential of our
approach. More detailed scalability and performance stud-
ies with different types of scientific data would provide a
well-rounded characterization of its capabilities.

Another important future application of the work we
present here is in the area of generating “anonymized”
datasets for use in algorithm testing. A long-standing diffi-
culty in the field of network analysis algorithm develop-
ment is striking a balance between privacy concerns and
the need for developers to have access to “live” data. Typi-
cally, a researcher is interested in performing analysis or al-
gorithmic development on a subset of the entire connection
collection since many results do not require accessing the
entire set at the same time. Such subsets may be defined by
port use, IP or time slice. For example, to characterize mail
server traffic, one might only be interested in mail related
ports in one-month blocks over some particular time peri-
od. Index and query engines – like FastBit – would be high-
ly instrumental in quickly creating smaller, portable data
sets that contain all relevant connection information. The
portable data sets could be in the same format as the larger
one so that tools that are designed to run against one would
be able to run against the other without modification.

QDV 9

ACKNOWLEDGMENT

This work was supported by the Director, Office of Science
of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231, the National Nuclear Security Adminis-
tration, and the Department of Homeland Security National
Visualization and Analytics Center. The authors would also
like to thank the Computational Systems Group at the Na-
tional Energy Research Scientific Computing Center, the
University of New Mexico Center for High Performance
Computing, and to Rene Brun of CERN and the ROOT
project for assistance porting ROOT to one of the computer
systems used in our performance study.

REFERENCES

[1] [Bentley75] J. L. Bentley. “Multidimensional Binary Search Trees Used
for Associative Search,” Comm. ACM, 18(9):509–516, 1975.

[2] [Bro] V. Paxson. "Bro: A System for Detecting Network Intruders
In Real-Time." Proceedings of the 7th USENIX S ecurity Sympo-
sium, San Antonio TX, January 1998.

[3] [Brun97] R. Brun and F. Rademakers, “ROOT – An Object Oriented
Data Analysis Framework,” in Proceedings of the AIHENP’96 Work-
shop, Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81-86, Lausanne
Switzerland.

[4] [Burrescia05] J. Burrescia and W. Johnston, “ESnet Status Update,” In-
ternet2 International Meeting, Philadelphia PA, September 2005.

[5] [FastBit] URL http://sdm.lbl.gov/fastbit, 2005.
[6] [Hinneburg99] A. Hinneburg, D. Keim, M. Wawryniuk. “HD-Eye: Visu-

al Mining of High Dimensional Data.” IEEE Computer Graphics and
Applications, 19(5), September/October 1999, pp. 22-31.

[7] [Hochheiser01] H. Hochheiser and B. Shneiderman. “Visual Specifica-
tion of Queries for Finding Patterns in Time-Series Data,” Proceedings
of Discovery Science 2001, pp441-446, Washington DC USA, 2001.

[8] [JLM89] V. Jacobsen, C. Leres, and S. McCanne, “tcpdump”’, URL:
ftp://ftp.ee.lbl.gov, 1989.

[9] [Johnson99] Johnson, T. 1999. Performance measurements of com-
pressed bitmap indices. In VLDB99, Proceedings of 25th International
Conference on Very Large Data Bases, September 7-10, 1999, Edin-
burgh, Scotland, UK.

[10] [Keim94] D. Keim. Visual Support for Query Specification and Data
Mining, Dissertation, July 1994, Shaker Publishing Company, 1995,
ISBN 3-8265-0594-8.

[11] [Keim94B] D. Keim and H. P. Kriegel, “VisDB: Database Exploration
Using Multidimensional Visualization,” IEEE Computer Graphics and
Applications, 14(5):40-49. 1994.

[12] [Knuth98] D. E. Knuth, 1998. The Art of Computer Programming, 2nd

ed. Vol. 3. Addison Wesley.
[13] [Komlodi05] A. Komlodi, P. Rheingans, U. Ayachit, J. Goodall, A. Joshi,

“A User-centered Look at Glyph-based Security Visualization,” in Pro-
ceedings of the 2005 Workshop on Visualization for Computer Security,
Minneapolis MN USA, pp21-28, 2005.

[14] [Lau04] S. Lau, “The Spinning Cube of Potential Doom,” Communica-
tions of the ACM, 47(6):25-26, 2004.

[15] [LFAP97] P. Amsden, J. Amweg, P. Calato, S. Bensley, G. Lyons, “Ca-
bletron’s Leightweight Flow Admission Protocol Specification, Version
1.0,” IETF RFC#2124, http://www.ietf.org/rfc/rfc2124.txt, 1997.

[16] [Livnat2005] Y. Livnat, J. Agutter, S. Moon, R. Erbacher, S. Foresti. “A
Visual Paradigm for Network Intrusion Detection.” Proceedings of the
2005 IEEE Workshop on Information Assurance and Security, United
States Military Academy, West Point NY, 17-19 June 2005.

[17] [McCormick04] P. McCormick, J. Inma, J. Ahrens, C. Hansen and G.
Roth, “Scout: A Hardware-Accelerated System for Quantitatively Driven
Visualization and Analysis,” in Proceedings of IEEE Visualization 2004,
pp171-178, Washington DC USA, 2004. IEEE Computer Society Press.

[18] [McPherson04] J. McPherson, K. L. Ma, P. Krystosk, T. Bartoletti, M.
Christensen, “PortVis: A Tool for Port-Based Detection of Security
Events,” in Proceedings of CCS Workshop on Visualization and Data Mining
for Computer Security, ACM Conference on Computer and Communica-
tions Security, October 2004.

[19] [MLJ94] S. McCanne, C. Leres and V. Jacobson, “libpcap”, URL:
ftp://ftp.ee.lbl.gov, 1994.

[20] [NetFlow05] Cisco Systems, “Cisco Netflow Collection Engine,”
http://www.cisco.com/en/US/products/sw/netmgtsw/ps1964
/, 2005.

[21] [O’Niel87] P. O’Neil, 1987. Model 204 architecture and performance. In
2nd International Workshop in High Performance Transaction Systems,
Asilomar, CA. Lecture Notes in Computer Science, vol. 359. Springer-
Verlag, 4059.

[22] [O’Neil97] O’Neil, P. and Quass, D. 1997. Improved query performance
with variant indices. In Proceedings ACM SIGMOD International Con-
ference on Management of Data, May 13-15, 1997, Tucson, Arizona,
USA, J. Peckham, Ed. ACM Press, 3849.

[23] [Sflow2001] SFlow] InMon Corporation’s sFlow: A Method for Monitor-
ing Traffic in Switched and Routed Networks. Internet Engineering Task
Force Request for Comment. URL:
http://www.apps.ietf.org/rfc/rfc3176.html, 2001.

[24] [Shoshani99] Shoshani, A., Bernardo, L. M., Nordberg, H., Rotem, D.,
and Sim, A. 1999. Multidimensional indexing and query coordination
for tertiary storage management. In 11th International Conference on Sci-
entific and Statistical Database Management, Proceedings, Cleveland,
Ohio, USA, 28-30 July, 1999. IEEE Computer Society, 214225

[25] [Smacq02] Fisk, M. and Varghese, G. 2002. Agile and Scalable
Analysis of Network Events, In Proceedings ACM SIGCOMM In-
ternet Measurement Workshop, Marseille, France, 2002.

[26] [Stockinger00] Stockinger, K., Duellmann, D., Hoschek, W., and
Schikuta, E. 2000. Improving the performance of high-energy physics
analysis through bitmap indices. In 11th International Conference on
Database and Expert Systems Applications DEXA 2000, London,
Greenwich, UK.

[27] [Stockinger05] K. Stockinger, J. Shalf, K. Wu, E. W. Bethel, “Query-Driv-
en Visualization of Large Data Sets,” in Proceedings of IEEE Visualization
2005, pp 167-174, Minneapolis MN USA, October 2005.

[28] [Stockinger2005] K. Stockinger, J. Shalf, K. Wu, E. W. Bethel, “Query
Driven Visualization of Large Data Sets,” Proceedings of IEEE Visualiza-
tion 2005, pp 167-174, 2005. (Conference proceedings).

[29] [Stockinger2005b] K. Stockinger, K. Wu, R. Brun, P. Canal, “Bitmap In-
dices for Fast End-User Physics Analysis in ROOT,” to appear in Nucle-
ar Instruments and Methods in Physics Research, Section A – Accelera-
tors, Spectrometers, Detectors and Associated Equipment, Elsevier.

[30] [Thomas2005] J. J. Thomas and K. A. Cook, eds., Illuminating the Path
– The Rsearch and Development Agenda for Visual Analytics. IEEE
Computer Society Press, Los Alamitos, Califor.ia, 2005

[31] [Uphoff04] B. Uphoff and P. Criscuolo, “A Framework for Collection
and Management of Intrusion Detection Data Sets,” in Proceedings of
the 16th Annual FIRST Conference on Computer Security and Incident
Handling, Budapest Hungary, 2004.

[32] [Wu01]Wu, K., Otoo, E. J., and Shoshani, A. 2001. A performance com-
parison of bitmap indexes. In Proceedings of the 2001 ACM CIKM In-
ternational Conference on Information and Knowledge Management, At-
lanta, Georgia, USA, November 5-10, 2001. ACM, 559561.

[33] [Wu04] Kesheng Wu, Ekow Otoo, and Arie Shoshani, 2004. On the Per-
formance of Bitmap Indices for High Cardinality Attributes. In Proc.
VLDB 2004, pages 24 – 35.

http://www.apps.ietf.org/rfc/rfc3176.html
http://www.cisco.com/en/US/products/sw/netmgtsw/ps1964/
http://www.cisco.com/en/US/products/sw/netmgtsw/ps1964/
ftp://ftp.ee.lbl.gov/
http://www.ietf.org/rfc/rfc2124.txt
ftp://ftp.ee.lbl.gov/
http://sdm.lbl.gov/fastbit

	1	Introduction
	2	Background and Related Work
	2.1Network Traffic Analysis
	2.2Network Traffic Visualization
	2.3Query-Driven Visualization
	2.4Indexing and Querying

	3Query-Driven Network Traffic Analysis Performance Study
	3.1The Network Traffic Data
	3.2Query and Visual Display Implementation
	3.3	Performance Study
	3.3.1	Serial Performance Comparison
	3.3.2	First Scalability Test
	3.3.3	Second Scalability Test

	4Network Traffic Analysis Case Study
	4.1 Analysis Of Scan Data
	5Conclusion and Future Work

