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Interactive Analysis of Large Network Data 
Collections Using Query-Driven Visualization

E. Wes Bethel, Scott Campbell, Eli Dart, Jason Lee, Steven A. Smith, Kurt Stockinger, Brian Tierney, 
Kesheng Wu

Abstract—Realizing operational analytics solutions where large and complex data must be analyzed in a time-critical fashion entails 
integrating many different types of technology. Considering the extreme scale of contemporary datasets, one significant challenge is 
to reduce the duty cycle in the analytics discourse process. This paper focuses on an interdisciplinary combination of scientific data 
management and visualization/analysis technologies targeted at reducing the duty cycle in hypothesis testing and knowledge 
discovery. We present an application of such a combination in the problem domain of network traffic data analysis. Our performance 
experiment results, including both serial and parallel scalability tests, show that the combination can dramatically decrease the 
analytics duty cycle for this particular application. The combination is effectively applied to the analysis of network traffic data to 
detect slow and distributed scans, which is a difficult-to-detect form of cyberattack. Our approach is sufficiently general to be applied 
to a diverse set of data understanding problems as well as used in conjunction with a diverse set of analysis and visualization tools.

Index Terms— (H.2.8.h) Interactive data exploration and discovery, (I.6.9.d) Multivariate visualization, (K.6.M.b) Security, (J.8.o) 
Traffic Analysis.

——————————      ——————————

1 INTRODUCTION

isual Analytics is defined in [Thomas2005] as “the sci-
ence of analytical reasoning facilitated by active visual 

interfaces.” It is motivated by the need to gain understand-
ing of features, trends and anomalies present in large and 
complex data collections.  While a thorough discussion of 
the immense scope of all possible technical challenge areas 
and motivations is well beyond the scope of this paper, in-
terested readers are directed towards [Thomas2005], which 
is a broad survey of the current state of research and devel-
opment challenges in the field. From that broad set of chal-
lenges, one in particular is the focus of this paper: how to 
quickly find “interesting” data in large, multidimensional 
collections of information. We explore this topic within the 
context of a cybersecurity application, namely network traf-
fic analysis.

V

Network traffic datasets consist of records containing a 
number of variables that summarize a particular network 
connection, or “conversation” between two hosts on a net-
work. These data – known as “connection records” – are 
generated by  border  routers,  traffic  analyzers  or  security 
systems, and contain such information as source and desti-
nation IP address of the conversing hosts, the source and 
destination ports, duration of connection, number of bytes 
exchanged and so forth. There is no information about the 
actual traffic content, only information about the two hosts 
participating in the transmission,  duration of  the connec-
tion and related data. With the explosive growth of the In-

ternet, there is a corresponding rise in the amount of infor-
mation collected about network connections as well as an 
increase in the number of anomalous events. Such events 
may be indicative of a misconfigured host or network, an 
inappropriate  use  of  resources,  an  attack  on  a  computer 
system or network, a compromised host,  or any one of a 
number of other items of interest. Collecting, managing and 
understanding the growing amount of network connection 
data in a timely fashion all present substantial challenges 
for network operations personnel. 

A  broad view of  the  network traffic  analysis  problem 
would necessarily include data collection, data storage and 
management, automatic feature detection, event characteri-
zation, analytical discourse to understand features and dis-
cover their  relationships along with timely response to  a 
particular incident. The work we present here explores a of 
subset  the  complete  network  traffic  analysis  problem. 
Namely, we focus on a multidisciplinary approach to fea-
ture mining and hypothesis testing by combining scientific 
data  management  tools  for  indexing  and  querying  with 
simple visualization tools. The overall objective of our work 
is to reduce the duty cycle in hypothesis testing and feature 
mining. This paper describes how we achieve that objective 
within the context of a network traffic analysis case study. 
The  results  are  particularly  relevant  given  the  explosive 
growth in network traffic and network traffic data. To be ef-
fective, a complete visual analytics solution will need to ad-
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dress problems of scale, to make effective use of high per-
formance computing resources, and to quickly provide an-
swers to analysts. Arguably, effective data management is 
the cornerstone for all such applications. 

The rest of this paper is structured as follows.  Section 
Two presents a survey of previous work in fields related to 
the topic of this paper. Since our work realizes new capabil-
ity by integrating and applying ideas from several different 
fields in a multi- and inter-disciplinary fashion, we discuss 
prior work from several different but related fields. Next, 
we present a series of  performance studies that  focus on 
highlighting the relevance of our approach to realistic-sized 
collections  of  network  connection  data.  Specifically,  we 
conduct a serial performance test that shows an order-of-
magnitude decrease in the time required to answer a typi-
cal query on a realistic-sized network connection dataset. 
We follow with a series of tests that show the scalability 
characteristics of our approach. Next, we present a network 
data analysis case study conducted by network analysts us-
ing  the  technology we present  in this  paper.  Finally,  we 
conclude with general comments and potential future re-
search directions.

2 BACKGROUND AND RELATED WORK

In recent years, there has been a tremendous increase in re-
search and development projects  in the areas of network 
traffic analysis and visualization. Related to the material we 
present here is previous work in the fields of scientific data 
management, particularly techniques for efficient indexing 
and querying, as well as visualization systems that focus on 
limiting visual processing only to data deemed to be “of in-
terest” to the viewer. 

2.1 Network Traffic Analysis
There exists an increasing need for visual analytics tools in 
the  fields  of  network  analysis  and  forensics.  Raw traffic 
logs have long been too large and complex for a human to 
digest  and understand.  In  particular,  there  is  a  need for 
tools that provide insight into patterns in data sets that are 
large in volume, time or both. Intrusion Detection Systems 
(IDS) are typically good at analyzing events that are closely 
correlated in time, and where analysis can rapidly yield ac-
tionable  results.  However,  over  large  time scales  and/or 
very large  data  sets,  the  design decisions  that  make IDS 
software appropriate for rapid response limit applicability 
to problems of scale. Typical failure modes include memory 
consumption that grows without bound, or computational 
overload that inhibits a rapid response. Moreover, connec-
tion analysis lends itself to visual analytics, since features 
and patterns that are easily visible to a skilled analyst are 
often difficult to quantify precisely or to detect program-
matically. Therefore, visual analytics tools are best thought 
of as a complement to IDS software, and part of a broad 
technology portfolio in the network analyst’s toolbox.

Traditional network traffic analysis usually begins when 
the IDS provides an alert, such as one or more IP addresses 
associated with a possible attack. If the analyst will be ex-
amining short-term connection data – less than 24 hours’ 
worth  of  data  –  then  the  connection  logs  are  dumped 

straight to local disk. These logs can usually be obtained in 
10 seconds or less. For analysis that spans a longer range of 
time, a dedicated system is available that can process con-
nection logs at the rate of 5-7 minutes per month for a sin-
gle IP address. Multiple IP addresses can be processed si-
multaneously. In all cases, the tool used for the search step 
is grep. Once the subset of interesting connection data have 
been extracted from the larger set of logs, the analyst per-
forms more specialized processing pursuant to the particu-
lar line of inquiry. Initial queries – search terms – based on 
anything other than a single column are rarely performed. 
Post-processing of  search results is  performed using  perl, 
shell scripts and gnuplot. The time required for these steps 
is  proportional to the amount of  script  development and 
analysis required for the particular incident.

Historically, the problem with large-scale analysis tools 
for network traffic has been that the duty cycle for testing a 
given hypothesis is measured in hours for non-trivial data 
sets. Therefore, a reduction in turnaround time from hours 
to  seconds  represents  an  unprecedented  new  capability. 
The new capability migrates large-scale network connection 
analysis from the realm of overnight batch jobs to that of in-
teractive tools.

Visualization  techniques  permit  an  analyst  to  look  at 
thousands or hundreds of thousands of connections simul-
taneously. Simple data filtering is both valuable and neces-
sary to deal with the huge volume of data and the large dy-
namic range exhibited by many of the attributes. Applying 
multi-dimensional  transformations,  deriving  statistical 
quantities and applying clustering techniques provides new 
and often more relevant quantities to visualize, as well as 
more relevant keys for indexing and querying.

A network connection can be thought of as a set of pack-
ets passing a point on a network within a given time inter-
val that have common characteristics. An example of a net-
work connection is a single communication session or an 
interaction between two hosts on the Internet. For this dis-
cussion we describe connection dynamics in terms of TCP 
session characteristics. Several standard tools exist for cap-
turing network connection data. Tcpdump is one of the most 
commonly used; it is a pcap-based application that can run 
on most operating systems and logs network traffic based 
on a filtering expression ([JLM89] [MLJ94]). For larger envi-
ronments,  routers  and  switches  provide  NetFlow  [Net-
Flow05], LFAP [LFAP97] or SFlow data [Sflow2001]. Such 
data contains either complete or sampled profiles of traffic 
observed by the network device. Special purpose systems 
and software have been implemented for various reasons, 
including efficient and flexible handling of the huge data 
rates  and  volumes  seen  on  larger  networks  ([Uphoff04], 
[Smacq02],  [Bro]).  Individual  network services like HTTP 
are application-level services built atop transport-level pro-
tocols (TCP, UDP). Some network connection data collec-
tion and reporting systems generate a separate record for 
each direction of bidirectional connection [Bro]. Other sys-
tems generate a single full-duplex connection record that 
also contains byte and packet counts for the reverse direc-
tion [Uphoff04]. Complicating the job of network analysts is 
a growing number of ad-hoc application level protocols not 
associated with normal services.
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A network connection record generally contains at least 
the following information:

1. Source IP address,
2. Destination IP address,
3. Source Port,
4. Destination Port,
5. Byte and packet count sent by source,
6. Byte and packet count sent by destination,
7. Start and End time in milliseconds.

A typical day’s worth of traffic at an “average” govern-
ment research laboratory might involve tens of millions of 
such connections comprising multiple gigabytes worth of 
connection records. A year’s worth of such data currently 
requires on the order of tens of terabytes or more of storage. 
According  to  [Burrescia05],  traffic  volume  over  ESnet,  a 
production network servicing the U. S. Department of Ener-
gy’s  research  laboratories,  has  increased  by  an  order  of 
magnitude every 46 months since 1990.  This  trend is  ex-
pected to continue into the foreseeable future. 

2.2 Network Traffic Visualization
There has been a good deal of work in recent years in the 
area of interactive network traffic visualization. A thorough 
survey of such work is outside the scope of this paper since 
we are focusing on coupling data management technology 
with  network traffic  visualization and analysis  tools.  See 
[Livnat2005]  for  a  good survey of  previous  work in  this 
area. Generally speaking, previous work has focused on fil-
tering and visual presentation of different types of network 
traffic data, including connection data, routing information, 
IDS alerts and so forth.

Visualization applications aimed at providing overall sit-
uational  awareness  by  visualization  network  connection 
data are described in ([Lau04], [McPherson04]). These ap-
plications map network connection variables to axes, then 
present activity, or lack thereof, at the appropriate grid lo-
cation. The basic idea is to facilitate rapid visual discovery 
of incidents or other features. [McPherson04] offers the abil-
ity to reduce the amount of data displayed by allowing the 
user to interactively manipulate filters. In this way, a user 
can focus visual inspection only on data that matches the 
filtering criteria. In both these examples, the problem size 
consists  of  datasets  comprised of  a  few thousand unique 
network connections.

Komlodi et al. [Komlodi05] describe an Intrusion Detec-
tion Toolkit that supports a number of different visualiza-
tion techniques for viewing alert or packet data. This sys-
tem implements a form of data reduction through filtering, 
either as part of the interactive visualization activity or as a 
separate process. This work is silent on the subject of filter-
ing,  or  query methodology and performance,  and shows 
examples of what appear to be small datasets.

The VisAlert system described in [Livnat2005] presents a 
visualization paradigm for correlating network alerts gen-
erated by multiple sensors deployed across a network. The 
paradigm is based on the observation that every network 
alert  must  possess  three  fundamental  attributes  –  what, 
when and where – that in turn provide a consistent basis 
for correlation. VisAlert uses a unique and flexible two-di-

mensional  display  metaphor  that  is  effective  in  helping 
users to switch between context/focus modes of inspection. 
For their results, they use a dataset consisting of 12-hours’ 
worth of network traffic.

While these previous works in network traffic visualiza-
tion have produced novel and useful presentation and in-
teraction  techniques,  they  were  tested  using  only  small 
amounts  of  network data.  Our approach in  this  paper is 
complementary to these works: we extend the idea of filter-
ing out of the visualization application and into the domain 
of high performance scientific data management systems. 
We believe such an approach is required to gain traction on 
analysis and visualization of realistic-sized volumes of net-
work traffic and thus offers a completely new and comple-
mentary capability to the field of network traffic analysis 
and visualization.

2.3 Query-Driven Visualization
The term “Query-Driven Visualization” refers to the pro-
cess of limiting visualization processing and subsequent vi-
sual interpretation to data that is deemed to be “interest-
ing.” This idea has been implemented in a diverse range of 
research  projects  and  applications.  Several  factors  con-
tribute to the overall motivation for the query-driven visu-
alization approach.  As data grows larger and more com-
plex,  simply  building  larger,  more  scalable  visualization 
systems  produces  a  greater  amount  of  output,  which  in 
turn increases the cognitive load on the viewer.  In some 
cases, increasing the amount of visible output may actually 
hinder understanding as depth complexity increases,  im-
portant features are “hidden,” and so forth. Similarly, with 
increasing data size and complexity, finding and displaying 
relevant data becomes increasingly important to foster sci-
entific understanding and insight. The query-driven visual-
ization  approach  also  offers  a  new  foothold  for  gaining 
traction on the challenges of temporal and multidimension-
al visualization and analysis as processing can be focused 
on “sets” of data that satisfy the conditions of a given line 
of scientific inquiry. An example here might be “what is the 
average electrical charge of particles in an accelerator mod-
el that that spin away from the main beamline and strike 
the  accelerator  wall  over  the  course  of  the  entire 
simulation?”

The VisDB system combines a guided query-formulation 
facility with relevance-based visualization [Keim94B]. Each 
data item in a dataset is ranked in terms of its relevance to a 
query, and the top quartile of results is then input to a visu-
alization and rendering pipeline. Data is presented in a way 
to cluster more relevant items closer together, and less rele-
vant items further apart. It is especially well-suited to dis-
play the results of “fuzzy queries” in that inexact matches 
are ranked and visually displayed in a way to convey rele-
vance.

The TimeFinder system described in [Hoscheiser01] sup-
ports interactive exploration of  time-varying data sets  by 
providing the ability to quickly construct queries, modify 
parameters, and visualize query results. A query is formed 
by  manually  “drawing”  a  rectangular  box  on  a  2D  plot 
where the x-axis represents time and the y-axis represents 
the data range. Each such rectangular box is called a “time-
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box” and each comprises  a range query.  A user  forms a 
multidimensional range query through the union of several 
timeboxes. The query results are presented in a fashion that 
implements a form of data mining – more detailed informa-
tion about the items satisfying the query are presented in a 
separate window. TimeFinder reads all data into memory 
and  is  therefore  able  to  operate  on  only  modest-sized 
datasets. 

The Scout software system provides the ability to per-
form  expression-based  queries  using  a  simple  program-
ming  language  along  with  visualization,  where  both 
queries and visualization are executed entirely on a GPU 
[McCormick04]. A Scout program, which is realized as frag-
ment assembler, operates on source data that is loaded as 
an OpenGL texture on the GPU. The program is executed 
during rendering:  two-dimensional  data  is  rendered as  a 
single quadrilateral and three-dimensional data is rendered 
as view-aligned slices in back-to-front order as direct vol-
ume rendering. As described, Scout is limited in data size 
by the amount of GPU memory and is subject to the float-
ing-point accuracy of the GPU.

Recently,  the  idea  of  coupling  a  visualization pipeline 
with a high performance index and query system was de-
scribed in [Stockinger05]. That work shows that the compu-
tational complexity of visualization processing can be con-
strained to the number of items returned by a query.  As 
such, that approach is the most suitable for use in query-
driven visualization and analysis of very large multidimen-
sional datasets.

We are extending the work of [Stockinger05] in this pa-
per by applying indexing and querying techniques to net-
work connection data, by providing a preliminary study of 
parallel performance and scalability, and by demonstrating 
their applicability within the context of a “hero-sized” net-
work connection data analysis problem. 

2.4 Indexing and Querying
One approach for  examining a  large  amount  of  network 
connection data is to focus attention on a relatively small 
number of “interesting” connections. The naïve approach of 
checking every connection to see if it satisfies the definition 
of “interesting” may take too long or be impractical.  The 
basic strategy to accelerate the selection process is to use an 
indexing structure [Knuth98].  Most well  known indexing 
structures are designed for data that are frequently updat-
ed,  like bank transactions. In banking applications,  when 
some arbitrary record is modified, the index structure must 
be similarly updated. In this type of  application,  the two 
main functions that an indexing structure provides – query-
ing and updating – both need to be very efficient. In fact, 
for many tree-based indexing structures, the time required 
for updating a  record is  nearly the  same as  the  time re-
quired for locating a record.  Network connection data  is 
different from these types of transactional databases in that 
the existing records are never modified. The only change to 
the data is the addition of new records. For this type of data 
it is possible to sacrifice some update efficiency in favor of a 
significant gain in query efficiency. Bitmap indexing tech-
nology is an excellent example of this tradeoff.

Bitmap indexing has been implemented in commercial 

database systems and it is well accepted that it is efficient 
for low cardinality attributes where there are few distinct 
values [O’Neil87]. Recently, it was shown that such efficien-
cy can be extended to high cardinality attributes with Word 
Aligned Hybrid coding (WAH) [Wu04]. FastBit [FastBit] is 
a  research  code  that  implements  a  number  of  different 
forms of bitmap index compression, including WAH.

In a basic bitmap index, one bitmap is allocated for each 
distinct value of the indexed attribute, where each bitmap 
has as many bits as the number of records in the indexed 
dataset. The size of the index grows linearly with the at-
tribute cardinality and is small only for low cardinality at-
tributes. A number of strategies have been proposed to re-
duce  the  size  of  a  bitmap  index,  including  binning 
([Shoshani99],  [Stockinger00]),  multi-component  encoding 
[Chan98], and compression ([Johnson99], [Wu01]). In partic-
ular, WAH compression was proven to keep the index sizes 
compact as well as to significantly reduce the query pro-
cessing time compared to other indexing schemes [Wu04]. 

In this paper, we compare the performance of a WAH 
compressed bitmap index with one called a projection index 
[ONeil97]. The projection index extracts the attribute values 
and stores them separately so that when answering a query, 
only  the  attributes  involved  in  the  query  are  read  into 
memory. This approach is known to work well for range 
queries,  which  are  commonly  used  for  analysis  of  large 
datasets.

While  exploring  network  connection  data,  an  analyst 
might use a query of the form “StartTime > 20050501 and 
10.102.0.0 <= SourceIP <= 10.105.255.255.” In this example, 
each term like “StartTime > 20050501” is called a range con-
dition.  In a typical  exploration, the analyst may specify a 
number  of  different  range  conditions  on  different  at-
tributes.  Such  queries  are  typically  referred  to  as  ad  hoc 
since they do not follow a predefined pattern. With ad hoc 
queries, the bitmap index has a unique advantage over tree-
based indexing structures because the answers to individu-
al range condition can be efficiently combined.

Most  tree-based  indexing  methods  suffer  from  the 
“curse of dimensionality.” As the number of attributes in a 
dataset increases, tree-based indices become progressively 
less competitive against the projection index. Typical multi-
dimensional  indexing  tree-based  –  kd-trees,  for  example 
[Bentley75] – usually index all variables or dimensions of a 
dataset. When answering an ad hoc range query involving 
only a  few variables,  or  dimensions,  tree-based multi-di-
mensional indices are much less efficient than the projec-
tion  and  bitmap  indices,  which  do  not  suffer  from  the 
“curse of dimensionality.” 

To answer multidimensional range queries, we first use 
the bitmap indices to resolve each individual range condi-
tion and then combine the  partial  solutions  with  bitwise 
logical operations. The time required to resolve each range 
condition  is  proportional  to  the  size  of  the  bitmaps  in-
volved. Moreover, the overall query processing time grows 
linearly with the number of range conditions specified. The 
time required by the projection indices also scales linearly 
with the number of range conditions, however, the time re-
quired to resolve each individual range condition using a 
projection  index  is  typically  much  longer  than  that  of  a 
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bitmap index as we will empirically show later in Section 
3.3,  Performance  Study.  Additionally,  the  query  response 
time  of  both  the  bitmap  index  and  the  projection  index 
scales linearly as the number of records increase [Wu04]. 
These scaling properties indicate that both projection and 
bitmap indexing are well suited for large datasets like those 
encountered in network connection analyses. 

3 QUERY-DRIVEN NETWORK TRAFFIC ANALYSIS 
PERFORMANCE STUDY

In this section we analyze the performance of our prototype 
query-driven network traffic analysis application. We begin 
with a brief description of the network traffic data we use 
in  our  experiments.  Next,  we  present  details  about  the 
query  and  display  implementation.  Finally,  the  perfor-
mance studies indicate excellent serial performance of Fast-
Bit compared to a projection index system, as well as favor-
able scalability characteristics. These results show that by 
combining  visualization  with  high  performance  scientific 
data management technology, we are able to perform inter-
active queries – one of the fundamental elements of visual 
analytics – on realistic-sized network connection datasets. 

3.1 The Network Traffic Data
For our performance study, we run queries on two different 
datasets. One consists of 24 weeks’ worth of network con-
nection data collected from Bro at LBNL containing about 
1.1 billion records. The other consists of 42 weeks’ worth of 
network connection data, also collected from Bro at LBNL, 
containing about 2.5 billion records. Each of the two data 
sets contains 25 attributes, including the source IP address, 
the  destination IP  address,  source  port,  destination  port, 
start time, duration, number of bytes sent along with addi-
tional  network connection information.  The total  sizes  of 
each are 146.5 GB for the 24-week dataset and 281.7 GB for 
the 42-week dataset. Each week’s worth of network traffic 
data is stored as a separate file. Note that this distribution 
of data is not necessarily the most efficient for parallel com-
puting but is convenient for the analysts who manage the 
data and interpret the query results. 

Given the raw data, we construct bitmap indices for each 
attribute. The total index size for each of the two datasets is 
44.4 GB and 78.6 GB, respectively. Note that in both cases 
the size of the bitmap indices is about a third of the size of 
the  raw  data.  This  is  fairly  small  compared  to  B-trees, 
which are the most commonly used index for transactional 
database  systems.  B-tree  index  structures  are  often  three 
times larger than the raw data.

3.2 Query and Visual Display Implementation
The prototype implementation of  our  query and display 
system is based on ROOT [Brun97], which is an object-ori-
ented data analysis system originally developed for scien-
tific  analysis  and  data  management  of  large  volumes  of 
high-energy physics data. The ROOT system has a compre-
hensive set of analysis capabilities and basic visualization 
features. ROOT is straightforward to extend through load-
able  modules.  We extended ROOT so that  it  can answer 
multidimensional range queries using FastBit. 

In the database community, most data are viewed as ta-
bles where each row represents one record or a data object. 
Most existing data management systems physically cluster 
attributes of  a  record both on disk and in memory.  This 
storage  organization  is  called  “horizontal  data  organiza-
tion”. In addition, ROOT also supports “vertical data orga-
nization,” which is commonly known as a “projection in-
dex”. Since the projection index is efficient for the type of 
multidimensional range queries that an analyst would re-
quest when studying network connection data, we have or-
ganized all of our data into projection indices to ensure the 
best possible query processing performance when using the 
ROOT-only query engine in our performance study.

The  analyst’s  multidimensional  range  queries  on  net-
work connection data select a subset of records and return 
the values of a small number of attributes for further study. 
In the database community, this type of operation is known 
as “selection and projection.” The selections and projections 
can  be  parallelized  in  a  straightforward  manner  by  dis-
tributing records amongst a number of processors. Because 
the number of traffic sessions can vary significantly from 
week to week, our per-week data decomposition is not nec-
essarily  balanced.  We are  currently  preparing  a  detailed 
study of load and data balance as well as other issues relat-
ed to scalability. In this paper, we will focus on single pro-
cessor performance and provide an early glimpse of Fast-
Bit’s scalability characteristics.

3.3 Performance Study
In this subsection, we present three separate performance 
measurements to show the efficiency of our ROOT-FastBit 
implementation. The first test compares the time required 
by projection and bitmap indices to answer a query on 24 
weeks’ worth of network connection data. The second test 
is a scalability study reporting ROOT-FastBit’s parallel exe-
cution performance on 24 weeks’ worth of network connec-
tion data. The third is a more extensive ROOT-FastBit scala-
bility study using 42 weeks’ worth of network connection 
data. 

For the  first  two performance tests,  we used Platform 
“J,” which is an SGI Onyx3700 comprised of twelve 600Mhz 
R14000 MIPS processors, 24GB of RAM, and a 5TB fiber-
channel RAID capable of delivering about 600MB/s in ef-
fective  sustained  I/O  bandwidth.  For  the  third  test,  we 
used Platform “D,” which is an SGI Altix comprised of 32 
1.4 Ghz IA64 processors, 192GB of RAM, 23TB of fiberchan-
nel RAID capable of delivering about 500MB/s in effective 
sustained I/O bandwidth.

3.3.1 Serial Performance Comparison
For the first test,  we compare the time required to an-

swer a query for projection and bitmap index implementa-
tions on Platform “J.”  We use a typical  query over three 
variables –“select IPS_B, IPS_C, IPS_D where IBS_B < 100 
and IPS_C < 100 and IPS_D = 128.” For the projection index 
test,  we  use  ROOT  with  only  its  projection  indices,  i.e., 
without  FastBit.  The  time  required  to  answer  the  query 
above is 2467 seconds. By using FastBit’s bitmap indices in 
our  ROOT application,  the same query was answered in 
309 seconds. This represents an order of magnitude in per-
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formance  gain  simply  by  migrating  from  projection  to 
bitmap indices. While these results were run using network 
connection data as the source, we have observed a similar 
performance gain in similar performance experiments us-
ing high-energy physics data in which the average perfor-
mance  gain  of  FastBit  for  processing  multi-dimensional 
queries is about a factor of 10 [Stockinger2005b].

3.3.2 First Scalability Test
Next  we  measured  the  parallel  query  performance  of 
ROOT-FastBit  on  the  12-processor  Platform  “J”.  As  we 
mentioned previously, the 24-week data set that we use for 
our performance evaluation is divided into weekly chunks. 
Thus, each processor is responsible for executing queries on 
two weeks’ worth of data. Using 12 processors, the ROOT-
FastBit system answers query shown in Section 3.3.1 in 22.8 
seconds – as opposed to 309 seconds when run on a single 
processor. 

In order to better understand the ROOT-FastBit scalabili-
ty characteristics, we performed the following experiment. 
First, we executed the query from Section 3.3.1 on twelve 
weeks’ worth of data and varied the number of processors 
between one and six. Next, we ran the same query on 24 
weeks’ worth of data. Again, we measured the performance 
with one to six processors. Figure 1 shows an effective par-
allel  speedup  of  about  80% when  using  two  processors, 
about  70%  when  using  four  processors  and  about  60% 
when using six processors. We believe that the decrease in 
parallel efficiency with increasing processors is due primar-
ily  to  load imbalance.  Data  is  distributed such that  each 
processor receives the same number of weeks’ worth of da-
ta. A close examination of the data reveals that some weeks 
contain up to 10 times more data than others. Therefore, as-
signing an identical number of weeks’ worth of data to each 
processor will result in processing and I/O load imbalance. 

Figure 1. Parallel speedup factor when processing three-dimensional 
queries  on Platform “J”.  For these tests,  we measured the time re-
quired to answer the query specific in Section 3.3.1 for both 12 and 24 
weeks’ worth of data using varying numbers of processors. One six 
processors,  we are  realizing  an  effective  parallel  speedup of  about 
60%. The decrease in speedup results from processing and I/O imbal-
ance caused by the fact that some weeks have up to 10 times more 
traffic than others.

3.3.3 Second Scalability Test
Over the course of this project – after conducting the pre-
liminary serial  and parallel  tests – we wanted to expand 
our scope of testing to perform queries on ever-larger col-
lections of network data to test our approach with “hero-
sized” collections of network connection data. To that end, 
we collected and prepared indices for 42 weeks of network 
connection data. 

In the second scalability test, we run queries of several 
different levels of complexity and a dataset twice as large 
and over a larger number of processors than in the first test. 
We ran tests that measure query response time over one, 
two, three and four variables when executed on up to twen-
ty-one CPUs of Platform “D.” As with the first set of paral-
lelism tests, we used a weekly decomposition of data, and 
in each of the second set of scalability tests, each processor 
was assigned the same number of weeks. Also as with the 
first set of tests, this approach to data distribution does not 
ensure even balance of computation or I/O load since some 
network  traffic  is  not  evenly  distributed  from  week  to 
week.  In these tests,  we generated a set of  random one-, 
two-,  three-  and  four-dimensional  range  queries.  There 
were  a  total  of  320  unique  one-dimensional,  271  two-di-
mensional, 223 three-dimensional and 223 four-dimension-
al queries.

Figure 2 shows the average speedup factor for these ran-
dom  one-,  two-,  three-  and  four-dimensional  queries  as 
well as the ideal speedup. We can see that with up to seven 
processors, the parallel query performance is close to ideal. 
The speedup factor decreases for a larger number of proces-
sors due to the load imbalance resulting from variance in 
the amount of traffic in each chunk of weekly connection 
data. Despite the processing and I/O load imbalance, the 
speedup factor is still significant. The average elapsed time 
to answer a large random collection of three-dimensional 
queries on 2.5 billions records using 21 processors is 19.34 
seconds compared to 224.11 seconds using a single proces-
sor. 

Figure 2. Speedup factor for multi-dimensional queries over 2.5 billion 
records on Platform “D”. “Dim 1” means the query is over one variable, 
“Dim 2” means the query is over two variables, and so forth. 

In Figure 2 we also see that the speedup for high dimen-
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sional queries is more significant than for low-dimensional 
ones. The reason is that the measurements include the time 
for processing the bitmap index (Step 1 of responding to the 
query) as well the as the time for retrieving the results (Step 
2).  We know that for high dimensional queries the result 
size accumulated over all dimensions is higher than for low 
dimensional queries. In other words, for high dimensional 
queries, there are more data elements to be read in Step 2. 
Since our experiments are executed on a parallel file sys-
tem, Step 2 is automatically parallelized.

We can draw the following conclusions from our experi-
ments: (1) FastBit performs better than projection indices by 
an order of magnitude; (2) the two scalability studies show 
that the queries parallelize well even for large load imbal-
ances, (3) using parallelization allows us to perform queries 
on a hero-sized data set in 19.34 seconds on average for a 
three-dimensional query using 21 processors. 

4 NETWORK TRAFFIC ANALYSIS CASE STUDY

Within  visual  analytics,  a  growing  problem space  is  the 
field of network security. The analytics challenge presented 
by this field are significant – large sites will often have be-
tween 50  million connection attempts  per  each day,  and 
some  types  of  analysis  require  examining  weeks’  or 
months’ worth of log data. Interactive exploration of this 
data can help identify compromised hosts and can also aid 
in the understanding the nature of attacks. 

4.1 ANALYSIS OF SCAN DATA

For an example of the interactive analysis, we look at the 
details surrounding a suspected distributed scan. Any open 
site is constantly being probed for open, unpatched services 
that might be exploited. Most of these probes come from 
relatively unsophisticated attackers  who use simple  tools 
that  naïvely  locate  and target  unpatched  systems or  ser-
vices.  Somewhat  more  sophisticated  attackers  may  use 
“botnets”, which are collections of hosts that search using 
more subtle means – the task of scanning can be distributed 
across the entire botnet collective. These types of scans are 
described as distributed since each component host takes a 
small fraction of the destination address space and identifi-
cation of the scanning activity is therefore more difficult.

In this example, we are interested in determining if a set 
of hosts from a remote subnet is taking part in such a dis-
tributed scan. We have reason to think that this may be the 
case since all the identified hostile addresses are within the 
same class-C subnet and are scanning for the same service. 
Note that we have not specified how we arrived at the con-
clusion that a scan is underway – such is typically the job of 
IDS facilities. Instead, we are focusing on the forensics part 
of the analysis in these examples.

To  see  if  there  are  other,  unidentified  hosts  from  the 
same subnet, we look at the third and fourth octet of the 
source IP address for all hosts coming in from the suspect 
address  range and attempting to connect  on a particular 
destination port. If the source subnet is 10.95.C.D, we create 
a scatterplot such that two of the axes correspond to the C 
and  D address  octets,  and the  third  axis  corresponds  to 

time. This plot, which is shown in Figure 3, clearly indicates 
that there are many unique hosts that seem to be involved 
with this incident. To create this plot,  we pose a four-di-
mensional query of the form “IPS_A = 10 AND IPS_B = 95 
AND T1 <= Time <= T2 AND DestPort = P” and then dis-
play the results.
Figure 3. Shows the results of a three dimensional query where we are 
focusing on activity from a specific /16 address group within a given 
time range where connection attempts are made on a specified port.

While Figure 3 displays what amounts to only about one 
week’s worth of data, we are extracting that week’s worth 
of data from a total of 24 weeks worth of source data. To ex-
tract the temporal subset of data used as the basis for the 
query and plot shown in Figure 3, we used the ROOT-Fast-
Bit implementation to create a smaller subset from the 24-
week dataset. While it is certainly possible to broaden the 
query to display connections from the suspect /16 address 
range attempting to connect to the particular port, doing so 
would not be beneficial in this case since we are interested 
in  activity  within  a  particular  range  of  time.  From  the 
smaller  subset,  which contains about  one days’  worth of 
connection data,  the  time required to  perform the  query 
and generate Figures 3, 4 and 5 was about two seconds on a 
single processor of Platform “J.” 

For a larger view of how the local network block is being 
scanned, we transform the view so that all connection at-
tempts from the (hostile) 10.95.0.0/16 subnet are plotted in 
terms of the destination octets into the local 10.1.0.0/16 net 
block. If a connection goes to 10.1.2.3, we plot (2,3) in the 
one plane with time along the third axis. As seen in Figure 
4, we make several observations. Line-like features indicate 
linear  trolling  along  one  specific  subnet  (such  as 
10.1.2.0/24), while the larger planar or box structures may 
be wholesale scanning of the entire subnet. The “dust” sur-
rounding these general forms could be noise, or part of a 
structure that falls outside of the selection criteria.
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Figure 4. This scatterplot  shows connection attempts on a specified 
port where two of the axes are the destination addresses and the third 
axis is time. Linear structures indicate scans through an address range 
on the local (target) network, while the plane-like structure indicates 
wholesale scanning of the entire subnet. 

Now that there is a general understanding as to what the 
connections look like in terms of time, we can link together 
source and destination for all the connections to the target 
port to see what relations can be found. To do so, we keep 
the X- and Y- axes exactly the same as before, but spread 
out the range of source addresses in the following manner. 
If a connection has a source address of 10.95.A.B, the last 
two octets can be expressed on a single axis by multiplying 
the third octet by a constant, and adding the fourth. In this 
case we have Z=(255*A)+B. The results of this can be seen 
in Figure 5.

Looking at Figure 5, we see that several naïve scans com-
pletely cover entire subnets or net blocks as shown in Fig-
ure 4. In addition there are at least four discrete addresses 
that seem to be associated with a distributed scan by the de-
gree of overlap coupled with the relative small number of 
connection attempts per source IP. Plotting the density of 
connection attempts across destination addresses provides 
the final indication that this is in fact a distributed scan. If it 
were not, than the relative variation in density across the lo-
cal address space would be significantly higher.

Figure 5. By further transformation and encoding, we observe naïve 
scans from a large number of hosts, and distributed scans associated 
with only a few hosts.

5 CONCLUSION AND FUTURE WORK

The main point of this work is to demonstrate a new capa-
bility for network connection data analysis. This new capa-
bility  results  from combining technologies  from different 
fields in an interdisciplinary fashion. Our work combines 
technology from scientific data management, data analysis 
and visualization. The results we present here show an or-
der of magnitude in performance gains are possible in seri-
al configurations through the new technology combination, 
and that an additional order of magnitude in performance 
gain is realized through parallelization. In terms of network 
security analysis, the significance of our work is that two 
network  engineers  on  our  team  demonstrate  interactive 
analysis  of  network  connection  data  on  realistic-sized 
datasets using the technology described in this paper.

The work we present here is  best  viewed as  proof-of-
concept. It does not address several important issues that 
would impact  general usability.  For instance, it  offers  no 
help in formulating the initial query. There is some previ-
ous work in this area, and extending those prior works to 
use the information easily obtainable from the bitmap in-
dices would be a helpful part of an assisted query formula-
tion facility. The work we present here uses rudimentary 
visualization techniques as part of the analysis. There are 
many useful and interesting network data visualization and 
analysis applications that would stand to benefit from ad-
vanced index  and query  capability  –  they would  benefit 
from the ability to process realistic-sized datasets. Related, 
there are a number of different tools and techniques for per-
forming  automatic  clustering,  feature  identification  and 
tracking.  Coupling  those  tools  and  techniques  with  ad-
vanced index and query capabilities is a promising area in 
terms of analyzing larger and more complex data.

The scalability studies we present here are best viewed 
as preliminary but hopeful glimpses of the potential of our 
approach. More detailed scalability and performance stud-
ies with different types of scientific data would provide a 
well-rounded characterization of its capabilities.

Another  important  future  application of  the  work  we 
present  here  is  in  the  area  of  generating  “anonymized” 
datasets for use in algorithm testing. A long-standing diffi-
culty  in the field of  network analysis algorithm develop-
ment is  striking a balance between privacy concerns and 
the need for developers to have access to “live” data. Typi-
cally, a researcher is interested in performing analysis or al-
gorithmic development on a subset of the entire connection 
collection since many results do not require accessing the 
entire set at the same time. Such subsets may be defined by 
port use, IP or time slice. For example, to characterize mail 
server traffic, one might only be interested in mail related 
ports in one-month blocks over some particular time peri-
od. Index and query engines – like FastBit – would be high-
ly instrumental in quickly creating smaller,  portable data 
sets  that  contain all  relevant  connection information.  The 
portable data sets could be in the same format as the larger 
one so that tools that are designed to run against one would 
be able to run against the other without modification.
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