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1. INTRODUCTION: THE PDN THEOREM 
 Well-known advances in geometry have been made with experimental, or computer-
aided techniques. The first was the proof of the Four-Color Conjecture, and the second was the 
presumed proof of the Kepler Conjecture. Less well known was Kimberling’s computerized 
search for new special points, lines, and circles in triangles.  

I will present another example of advancing geometry experimentally. First, I need to 
establish a starting point. About 40 years ago I found and proved a theorem about constructions 
on plane n-gons, but it had been found and proved as early as 1908. Writers have described this 
Petr-Douglas-Neumann (PDN) theorem as “beautiful” and “remarkable;” agreeing with that 
assessment, I took it up again a few years ago.  

On each side of a general plane n-gon At-1 we place isosceles triangles with apex angles 
2πt/n, making another n-gon, At, from those apices. The theorem states that if this is done n−1 
times with t = 1,2,…,n−1, a single point or degenerate n-gon will result. It follows that n-gon 
n−2 is regular. I will illustrate in Fig. 1 with n=5. In the following material, vertices of n-gon At 
are denoted At,0,At,1,…,At,n-1. Vertex subscripts are taken modulo n. 
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Fig. 1: Model triangles and target polygon 

The triangles on the left are prototypes, or “models,” for those used in the stages t of 
construction. The yellow model triangle corresponds to t = 1, and so on down to model t = n−1. 
Fig. 1 shows the model triangles mounted on all four stages of the target, which is the right hand 
figure. According to the theorem, the angles of polygon A3 and the single-point property o f A4 
are invariant with changes in A0 . Penultimate polygon A3 (bright red) stays regular but may 



translate, rotate, and dilate. Here n=5, but n can have any value greater than 2, and there will be 
n−1 stages of construction. 

I’ll say a word about proofs, which have all been algebraic. We can express, for example, 
point A10 as a linear function of points A00 and A01, and similarly for the other vertices of A1. In 
the usual way, we represent polygons by column vectors, and each construction stage 
corresponds to a square matrix with exactly two nonzero elements per row. (Eq. 1a)  This shows 
two of the n−1 matrix multiplies. 
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Equation 1: Sample matrices 
All n-1 operations are represented as shown here: 

A1 = M1A0 = M1A0 = Q1A0

A2 = M2A1 = M2M1A0 = Q2A0

A3 = M3A2 = M3M2M1A0 = Q3A0

A4 = M4A3 = M4M3M2M1A0 = Q4A0

Equation 1a: Matrix operations 
The product Q4 of the four specific matrices Mt has identical rows; this implies that every 

vertex of the final polygon A4 is the same function of the vertices of A0, so A4 is a single point. 
Working backwards, the previous polygon A3 must be regular. The constants ft are functions 
only of the model angles. 

For the final polygon to have a special shape, the construction must be irreversible, which 
in algebraic terms means that all the Qt’s and Mt’s are singular. Also, for origin independence of 
the algebraic representation of the construction, any row of any Mt must sum to 1. 

 
2. COMPLETING THE MODELS  

It’s productive to draw the five triangles used in stage t = 1 assembled together, forming a 
pentagon (in yellow). Triangles for the other stages are also assembled into pentagons, some 
reflexive. The vertex common to the stage t model is denoted Yt. I’ve varied the shades of yellow 
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so the target and model match. The construction for stage t can be represented as follows, where 
k increments from 0 to n−1 as we go around the model and target together. 

Zk Zk+tYt   At−1,k+1At−1,kAt,k

Eq. 1b: Typical vertex correspondence 
For example in stage t =2, triangles are transferred as follows: Z0Z2Y2 A11A10A20, Z1Z3Y2  
A12A11A21, etc. Similarly, the triangles used in stages t =3,4 are respectively arranged around Y3 
and Y4. (I’ll show a complete construction key below.) Figure 2 illustrates the n-1 stages and 
their polygons. The triangles come from generally nonadjacent model vertices but always go to 
adjacent target vertices. 
 For a constructed polygon At to have a special shape, such as being regular or degenerate, 
stage t of construction must be irreversible, otherwise we could always find a polygon At−1 on 
which the construction would give At, so a constructed polygon could be regular, degenerate, etc. 
It can be shown that the geometric criterion  for irreversibility of stage t is that the construction 
triangles can be assembled to form a closed n-gon with a continuous perimeter, like all n−1 
models shown here. 
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Fig. 2 All n−1 “completed” models and construction stage t=1 on the target. 

 
3. THEOREMS 1 AND 2 

Inspired by this type of model display, we can try moving all the Yt points together away 
from the model centroids. Even though the construction triangles are no longer similar, A3 stays 
regular, and A4 is still one point. If always true, this is clearly a generalization of the PDN 
theorem. For a second experiment, we modify the shape of the model pentagons themselves, all 
together. Now A3 is no longer regular, but is still similar to the models. This is a second 
generalization, which with the arbitrary location of the Yt, is called Theorem 1, appearing in the 
March 2003 American Mathematical Monthly [1]. Finally, if we move the common vertices 
separately, the shapes of An−2 and An−1 are invariant. That’s a third generalization, called 
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Theorem 2, which I found and proved after the paper was accepted by the Monthly. (I couldn’t 
revise the paper at that point because I had already annoyed the editor enough.) 

These extensions of the original PDN theorem became possible to find only because of 
my introducing the model vs. target  idea. This separates these theorems into two figures, making 
it much clearer, and allowing it to be treated in two parts. I have not seen this idea before. 

 
4. A FURTHER GENERALIZATION; THE DISCRETE PARAMETERS 

To generalize this class of theorems further, I need to introduce some constgruction 
parameters, shown in the green rows of Table 1. We’ve already discussed internal variables are t 
and k as well as n. In the model, pt determines which vertex is used first (that is, when k=0). 
Next, qt is the model vertex separation parameter for stage t: if qt = 1, construction triangles come 
from adjacent vertices of model t. If qt =2 (the green model in Fig. 2), triangles come from 
vertices k and k+2. Note that for Theorems 1 and 2, qt = t, but this is not so in other results. 

Qty. Range Meaning 
n 3 ≤ n # sides of polygons in model and target 
t 1 ≤ t ≤ n−1 Stage (of construction) counter 
k 0 ≤ k  ≤ n−1 Vertex counter, increments during “scan” of model and target 
pt 0 ≤ pt ≤ n−1 On the model, which vertex is used first (that is, when k=0). 
qt 1 ≤ qt ≤ n−1 On the model, the spacing of each triangle’s base vertices. 
rt 0 ≤ rt  ≤ n−1 On the target, which vertex is used first (that is, when k=0). 
st 1 ≤ st ≤ n−1 On the target, the spacing of each triangle’s base vertices. 

Table 1: Discrete parameters and variables  
In Theorems 1 and 2 we always use rt = 0; that is, we start (when k=0) placing triangles 

on the target at vertex At0. Parameters rt and st are to the target as pt and qt are in the model. In 
Theorems 1 and 2 we also have st = 1, so triangles go on adjacent target vertices in all stages t. 
During the traverse for a given stage t, as k increments, the model and target triangles may be 
placed on vertices as shown in the examples of Table 2. Example 1 here corresponds to Fig. 2 
above. As k increments, all subscripts always increment by 1. 

Example 1 (see Fig. 2)  Example 2 

pt=0, qt=1, rt=0, st=1. k pt=1, qt=2, rt=3, st=4. 

Z0Z1Yt   At−1,1 At−1,0 At,0 0 Z1Z3Yt   At−1,2 At−1,3 At,3

Z1Z2Yt   At−1,2 At−1,1 At,1 1 Z2Z4Yt   At−1,3 At−1,4 At,4

Z2Z3Yt   At−1,3 At−1,2 At,2 2 Z3Z0Yt   At−1,4 At−1,0 At,0

Z3Z4Yt   At−1,4 At−1,3 At,3 3 Z4Z1Yt   At−1,0 At−1,1 At,1

Z4Z0Yt   At−1,0 At−1,4 At,4 4 Z0Z2Yt   At−1,1 At−1,2 At,2

Table 2: Z-A vertex correspondences 
5. THE ALGEBRA 

The matrices are based on the similarity of target and model triangles. In Fig. 2a, 
equating corresponding side ratios gives the equation shown. This figure shows a general model 
and its associated target triangle (in blue), for stage t, at a particular place k in the traversal; it 
also shows the next triangle, corresponding to k+1, with dashed lines. On the left, the “trailing” 



vertex is Zp+k because the traversal starts at model vertex pt and so far we have traversed k 
vertices. The leading vertex is just qt places beyond, because that’s the spacing being used at 
stage t. Similarly, at the same time in the target we started at vertex r and have gone through k 
vertices there. The leading vertex is, by definition, s vertices beyond. The general transfer of a 
triangle from model to target for given t, k, p, q, r, and s is shown in Eq. 1c (t sub-subscripts are 
omitted): 

Zp+k Zp+q+k Yt   At−1,r+s+k At−1,r+k At,r+k

Eq. 1c: Generalized vertex correspondence 
In Fig. 2a, similarity of the model and target blue triangles gives the equation shown. 
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Fig. 2a: Similar triangles and ratios of sides 

That equation is solved for the new target vertex At,r+k in terms of the known model and the two 
target At-1 vertices of the previously derived stage. With the substitution i=rt+k (mod n), the 
general matrix entry becomes that of Eq. 3. 
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Equation 3: Matrix elements 

 
6. MORE GENERALITY; SEARCHING OVER THE DISCRETE PARAMETERS 

I wanted to try to find the most general theorem of this type, limited only by the 
restriction that the construction be described by pt, qt, rt, and st. I searched for parameter sets 
which yielded final polygons which degenerated to single points, or ones whose shape was 
constant with changes in A0. I wanted the theorems to be broad enough to include non-regular 
models (with the restriction that no two vertices of Z coincide, because of the denominators in 
Eq. 3). I also wanted to allow general and independent positions of the common vertices Yt, as 
well as completely general starting target polygons A0. Each of the four parameter sets (p), (q), 
(r), and (s) has has n−1 members, where a member of (p) or (r) can take on n values, and a 
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member of (q) or (s) can take on n−1 values. For a complete, naïve search, we would have to go 
through (n2− n )2(n−1) combinations, which even for the smallest interesting case of n=5 is about 
25 billion. Therefore I looked for ways to reduce the search space. 

Eq. 3 shows that p and r appear only as (pt−rt)(mod n), so without loss of generality we 
can assume pt=0. Next, notice that adding a constant c to all rt amounts to simply relabeling the 
target. Then if we want to investigate a certain set (r1, r2,…, rn-1), we just set c =− r1 and consider 
only sets with r1=0. There are n−2 remaining rt parameters, each admitting n values 0 ≤ rt ≤ n−1, 
so (r) as a whole has nn−2 possible values. In each of the sets qt and st, 1 ≤ t ≤ n−1, each member 
of which can take on n−1 values, so the possible combinations are (n−1)n-1 in number.  Together, 
q, r, and s can take (n−1)2n-2nn−2 values. Even for n=5 this amounts to 4853, over 8 million 
values, and for n=7, it’s over 36 trillion. Clearly, a general search is possible only for n=5. 

The main purpose of the search was to find all combinations that gave a final product 
matrix Qn−1 having all rows identical. Computing this final matrix requires finding the product of 
n matrices, each n.n; if done numerically, this involves doing n3 multiplications and additions. 
Initially I considered establishing the equal-row property purely symbolically, but Mathematica 
took much too long (using a 1GHz PC) even for n=5. 

 
7. CONTINUOUS PARAMETERS; SEARCHING 

Besides the discrete parameters of Table 1, the potential theorem I’m looking for has the 
following continuous position parameters, each one a complex number. See Table 3. 

Zk: Vertices of model, n in all, arbitrary except none may coincide. 

Yt: Common vertices of model, n−1 in all. Values are arbitrary. 

A0k: Vertices of initial target, n in all. Values are arbitrary. 
Table 3: Continuous parameters 

In the computer search for good values of the discrete parameters, I used high-precision 
numeric tests with independent random values for these 6n−2 continuous reals. I checked the 
equal-row numerically, which ran at least a thousand times faster than a symbolic test would. 
When I got this set up correctly, it was able to run over all combinations of (q), (r), and (s) for 
n=5. The results were surprising: the combinations giving row equality, and therefore a 
successful proposition, had the unexpected rules shown in Table 4:  

# Rule or constraint 
1.  pt = 0 (1 ≤ t ≤ n−1) and r1 = 0 can be assumed. 
2.  Set (s), target vertex spacing, is the independent variable, with q = q(s) and r = r(s). 
3.  All st  (1 ≤ t ≤ n−1) are relatively prime to n. 
4.  The last member of the set (s), sn-1, can have any value 1 ≤ sn−1 ≤ n−1 
5.  For 1≤ x ≤ n−1, all values in (s1…sn-2) must be either x or n−x  

Examples: Valid sets for n=5 are (1,4,4, y), (4,4,1, y), (2,3,2, y), (3,3,3, y), etc. For n = 7, s1 through sn-2 
can be any mixture of 1;6, 2;5, or 3;4. 

6.  (q) is given by qt = t st (mod n).  
Example for n = 5: If s = (1,4,1,3), q = (1,2,3,4)*(1,4,1,3) = (1,3,3,2). 
For n = 7, if s = (2,2,5,2,5,1), q = (1,2,3,4,5,6)*(2,2,5,2,5,1) = (2,4,1,1,4,6). 

Table 4: Constraints on q and s for Theorem 3 
Limiting the search with these constraints drastically cut the number of combinations to 

be tried, and it made the n = 7 case searchable. The final step was to find a rule for valid sets of rt 
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as a function of st. Initially the values of rt giving row equality, and therefore a valid hypothesis, 
had no apparent pattern. But knowing that its values had to be related to st in some logical way, I 
kept looking for this relation. Obviously the number of possible relationships would be huge, 
especially since I had no idea what one would look like. 

With the above constraints, the number of rt, st combinations to try was now nn-22n-1, 
which for n=7 is only 1.08 million; however each test still involved 343 multiplies and many 
other operations, so was still slow. I wanted to stay with prime n, because according to rule 3 
above, that would allow me to try more sets (s). 

 
8. COMPLETING THEOREM 3 

Table 5 shows a typical table of numbers for n=7 that I worked with. I selected a few 
rows from the much larger output of the actual computer search. In this section of the output 
data, s1,…,s5 are restricted to values 1 and 6, although combinations of 2,5 and 3,4 are also valid.  

# q1 ,…, q6 r1 ,…, r6 s1 ,…, s6 gt=rt/st (mod 7) 
1.  1,2,3,4,5,6  0,0,0,0,0,0  1,1,1,1,1,1  0,0,0,0,0,0 
2.  1,5,4,4,2,4 0,6,6,2,5,1 1,6,6,1,6,3 0,1,1,2,2,5 
3.  1,5,4,4,2,6  0,6,6,2,5,3  1,6,6,1,6,1  0,1,1,2,2,3 
4.  1,5,3,4,2,3 0,6,1,1,4,6 1,6,1,1,6,4 0,1,1,1,3,5 
5.  1,2,4,4,2,3  0,0,5,1,4,6  1,1,6,1,6,4  0,0,2,1,3,5 
6.  6,5,4,4,5,3  0,0,0,3,3,0  6,6,6,1,1,4  0,0,0,3,3,5 
7.  1,2,3,3,5,5  0,0,0,4,1,0  1,1,1,6,1,2  0,0,0,3,1,5 
8.  1,5,3,3,5,5 0,6,1,5,2,1 1,6,1,6,1,2 0,1,1,2,2,5 
9.  6,2,4,4,2,2 0,1,6,2,5,6 6,1,6,1,6,5 0,1,1,2,2,5 
10.  6,2,4,3,5,2 0,1,6,6,3,6 6,1,6,6,1,5 0,1,1,1,3,5 

Table 5: Some successful combinations for n = 7 
In row 1, all st = 1, so adjacent vertices in the target are used at every stage. All rt = 0, so 

that target vertex 0 is always used first. In each stage, one additional model vertex is skipped. 
Row 1 in the table characterizes the PDN and Theorems 1 and 2. 

Rows 1-10 show that s6 can have several values, and q is given by q = t*st in all cases. 
Rows 2 and 3 show that changing one member of s, say s3, changes only q3, but the digits of rt at 
and to the right of the changed s3 are affected. 

Examining the rows, I saw that r5+r6 = s5+s6(mod 7). This turned out to be true for all 
examined cases. (In rows 1 through 5, r6 = g6s6, but this relation is not always true.) At this point 
I still had no function for the other members of r. But knowing that q is related to s by a modular 
product q = t*st(mod n), I made a guess and took the modular quotient gt = rt / st (mod 7), namely 
that number satisfying rt = gt st (mod n). The essential (and surprising observation) was that for a 
given 1≤ t <n, gt is exactly the number of members of s1,…st-1) not equal to st. 

For example, in row 5 (yellow) of Table 5, g2 =0 because s1 is not equal to s2; g3 = 2 
because the set (s1,s2) has 2 members not equal to s3; g5=3 since the set (s1,…,s4) has 3 elements 
not equal to 6. Although g5 = 5, this is not used because of Rule 4 above.  

This rule, confirmed by numerous other cases, allows us to add the final constraint on (r) 
to the proposition. Anticipating being able to prove this, I will call it Theorem 3. The full set of 
constraints on the discrete sets (p), (q), (r), and (s) are shown in Table 6.  

Further generalizations along these lines seem to be obviated by the requirement that all 
construction stages be irreversible. 
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# Rule or constraint 

1.  pt =0 (1 ≤ t ≤ n−1) and r1=0 can be assumed w.l.o.g. 

2.  Set (s) is the independent variable, with q=q(s) and r=r(s). 

3.  All st (1 ≤ t ≤ n−1) are relatively prime to n. 

4.  sn-1 can have any value 1 ≤ sn−1 ≤ n−1 (subject to Rule 3) 

5.  For 1≤ x ≤ n−1, all values in the set (s1…sn-2) must be either x or n−x (subject to Rule 3) 
Example: If n = 5, valid sets are (1,4,4,y), (4,4,1,y), (2,3,2,y), (3,3,3,y), etc. For n = 7, s1 through sn-2 can be 
any mixture of 1;6, 2;5, or 3;4. 

6.  (q) is given by qt = t st (mod n).  
Example for n = 5: If  s = (1,4,1,3), q = (1,2,3,4)*(1,4,1,3) = (1,3,3,2). 
For n = 7, if s = (2,2,5,2,5,1), q = (1,2,3,4,5,6)*(2,2,5,2,5,1) = (2,4,1,1,4,6). 

7. 
new 

For 1≤ t ≤n−2, rt = gt st (mod n), where gt is the number of elements in (s1,…st-1) which 
are not equal to st.  
Example: s = (2,2,5,2,5,4)  g = (0,0,2,1,3,5)  r = (0,0,3,2,1,x). (Rule 8 gives r6.) 

8. 
new 

The last member of the set (r), rn−1, is found from rn-1+ rn-2 = (sn-1+ sn-2)(mod n). 
Example: rn-1= sn-1+ sn-2−rn-2 = (5+4−1)(mod 7) = 1 = r6 . 

Table 6: Constraints on q, r, and s for Theorem 3. 
There are other expressions for Rule 7, but I have found none simpler than the above. It 

took me much longer to find these unexpected constraints, especially Rules 7 and 8, than this 
description implies. Discovery involved staring at these tables of numbers for a long time; I kept 
thinking of the movie version of John Nash. I’m unclear as to why this strange set of rules holds, 
and exactly what it means geometrically. In particular, it seems odd that the rule for rn-1 is 
different from the rule for r1 through rn-2. It’s possible that rules 7 and 8 amount only to 
relabeling the model and/or the target in certain ways, but I have not seen this yet. 

In return for this complexity, we have a good PDN generalization, namely Theorem 3, 
which holds for any n>2. For prime n, the restricted set (s) can have 2n−3(n−1)2 values, with (q) 
and (r) fixed functions of (s). (The first and last s’s can have any value 1 ≤ s1, sn−1  ≤ n−1, and the 
other n−3 st’s can each have two values dependent on s1.) As pointed out previously, the theorem 
also involves 3n−1 continuous complex parameters. Even for n=7, the independent discrete 
parameters number 576 and there are 64 independent reals. Table 6a gives the number of 
combinations to be tested under various assumptions. (Having found the constraints for Theorem 
3, searching is no longer necessary; the last column gives the number of parameter combinations 
making the theorem valid.) 

 

Search type Formula n=5 n=7 
Over all (p),(q),(r),(s) n 2n−2 (n−1)2n−2 2.56*1010 3.01*1019

Restrictions on (p),( r) nn−2 (n−1)2n-2 8.19*106 3.66*1013

With Theorem 3 rules (n–1)22(n−3) 64 576 
Table 6a: Number of combinations to be tried 



 
9. EXAMPLE OF THEOREM 3 FOR n=7 

Table 7 gives the parameters for this example. As before, t is the construction stage 
variable. Rule 4 in Table 6 says that sn-1 can have any value. Rule 5 is obeyed because the other s 
are either 2 or 7−2. Rule 6 is followed because q1=s1, q2=2s2 (mod n), etc. Including the 
dependent variables in (g), note that the parameters obey Rule 7, rt=gtst(mod n), except for r6 
which is given by Rule 8.  

t= 1 2 3 4 5 6 
pt 0 0 0 0 0 0 
qt 2 3 6 6 4 3 
rt 0 5 2 3 3 4 
st 2 5 2 5 5 4 
gt 0 1 1 2 2 5 

Table 7: p,q,r,s for the n=7 Figure. 
 Fig. 3 shows only the A0 and A5 polygons, and the final As claimed, A5 is similar 

to the model, and stays so if we change A0. If we move Y1 or Z6, all intermediate polygons 
change but A5 is unchanged in shape. 

I don’t yet have a proof of this proposition, but it’s almost certainly correct, and I’m 
working to prove it. My proof of Theorem 1 proceeds by induction on partial matrix products, 
computed and examined with the help of Mathematica. Proof of Theorem 3 will probably also 
be computer-aided. 
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Fig. 3: Theorem 3 for pt, qt, rt, st as shown. 
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10.  REMARKS 

Table 8 summarizes the theorems and shows their current status. 
Name Models 

Zt

Common 
Vertices Yt

Target vertices 
for triangles 

Current 
status 

PDN Regular Yt = Zcentroid st = 1 Published in 1908 
Theorem 

1 
Irregular Yt ≠ Zcentroid

Yt = Yu

st = 1 Proved, Monthly, 
Mar. 2003 

Theorem 
2 

Irregular Yt ≠ Zcentroid
Yt ≠ Yu

st = 1 Proved but not 
published 

Theorem 
3 

Irregular Yt ≠ Zcentroid
Yt ≠ Yu

st ≠ 1, constraints 
on (q), (r), (s) 

Not proved or 
published 

Table 8. Summary of theorems 
It is possible that Theorem 3 does not really contain new geometry, but can be derived 

from Theorem 2 by relabeling the model and/or target, perhaps with some algebraic 
substitutions. Another point is that without the computer search, I would not know whether the p, 
q, r, s paradigm contained further geometric truths than I have reported here. As things stand, 
Theorem 3 is the last generalization along this line; however I have found other similar 
propositions, which I intend to prove and publish eventually. This field seems to be very fertile 
in new results. 
 
11. SOME RELATED QUESTIONS IN COMBINATORIAL GEOMETRY 

1. What is the number dm,n of “topologically distinct” n-gons obtainable by merging sets 
of two or more adjacent vertices of an m-gon, with n<m? Concepteually, put a black bead on 
every edge to be collapsed and a white bead on the edges between the vertices kept separate. The 
n-gon count can be shown to be equivalent to the number of two-color bracelets (necklaces 
allowing reversal) having m−n black and n white beads; dm,n is given by A052307 in the EIS. 
Examples are d5,3=2, d6,4=3, and d12,5=38, so there are two distinct ways to reduce a pentagon to 
a triangle, three different reductions of a hexagon to a quadrilateral, etc. (Thanks to Claude 
Chaunier for showing me this.) These reductions create new, strange, perhaps ugly theorems for 
n-gons from constructions for m-gons, with n<m. 

2. For n=5, the number of line intersections or crossings, excluding vertices, can be 
0,1,2,3, and 5. I denote this set (c5) = (0,1,2,3,5), so the cardinality of the set is |c5| = 5. For the 7-
gon in Fig. 3, cx = 8, so 8 ∈ (c7). What is |c7|? For a given n, what values can appear in the set 
(cn), and is the integer sequence |cn| in the EIS? Where? 

3. Count the number en of topologically distinct polygons of n sides. In my definition, a 
topological change is defined by passing a vertex through a line. Mirroring is not a change. For n 
= 3,4,5, en = 1,2,6 respectively. The self-crossing polygon of Fig. 3 is one of perhaps several 
dozen 7-gons. This is probably in the EIS, but where? Is there a better definition of “distinct?” 

4. Is there an n-gon in R3 whose projections into R2 assume all distinct n-gons? For what 
values of n is this possible, in addition to the obvious cases n = 3 and 4? For how large an n are 
experiments feasible? I’ve always wanted to pose a difficult new problem. Is this one?           e 
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