CS 267 Applications of Parallel Computers
Lecture 13:

Graph Partitioning - |

Bob Lucas

from earlier lectures by Jim Demmel and Dave Culler

www.nersc.gov/~dhbailey/cs267

CS267 L14 Graph Partitioning 1.1 Lucas Sp 2000

Outline of Graph Partitioning Lectures

° Review definition of Graph Partitioning problem
° Outline of Heuristics
° Partitioning with Nodal Coordinates

° Partitioning without Nodal Coordinates

° Multilevel Acceleration
* BIG IDEA, will appear often in course

° Available Software
« good sequential and parallel software availble

° Comparison of Methods

° Applications

CS267 L14 Graph Partitioning 1.2 Lucas Sp 2000

Definition of Graph Partitioning
° Given a graph G = (N, E, Wy, Wg)

* N = nodes (or vertices), E =edges
« W\ = node weights, W= edge weights

° Ex: N = {tasks}, W\ = {task costs}, edge (j,k) in E means task j
sends Wkg(j,k) words to task k

° Choose a partition N =N; UN, U ... U Np such that

« The sum of the node weights in each N; is “about the same”

 The sum of all edge weights of edges connecting all different pairs
N; and N is minimized

° Ex: balance the work load, while minimizing communication

° Special case of N = N4 U N2: Graph Bisection

CS267 L14 Graph Partitioning 1.3

Lucas Sp 2000

Applications
° Telephone network design
« Original application, algorithm due to Kernighan

° Load Balancing while Minimizing Communication

> Sparse Matrix times Vector Multiplication
« Solving PDEs
* N={1,...,n}, (j,k) in Eif A(j,k) nonzero,
 Wn(j) = #nonzeros inrow j, Wg(j,k) =1

° VLSI Layout
* N = {units on chip}, E = {wires}, Wg(j,k) = wire length

> Sparse Gaussian Elimination

« Used to reorder rows and columns to increase parallelism,
decrease “fill-in”

° Physical Mapping of DNA

° Evaluating Bayesian Networks?

CS267 L14 Graph Partitioning 1.4 Lucas Sp 2000

Sparse Matrix Vector Multiplication

Partitioning a Sparse Symmetric Matrix

————————————————————

————————————————————

————————————————————

CS267 L14 Graph Partitioning 1.5 Lucas Sp 2000

Cost of Graph Partitioning

° Many possible partitionings to search:

Sample Graph Partitionings

Evalh's
Qo) Lo
ESNES
OO |40

° n choose n/2 ~ sqrt(2n/pi)*2" bisection possibilities

° Choosing optimal partitioning is NP-complete
» Only known exact algorithms have cost = exponential(n)

° We need good heuristics

CS267 L14 Graph Partitioning 1.6 Lucas Sp 2000

First Heuristic: Repeated Graph Bisection

° To partition N into 2k parts, bisect graph recursively
k times

» Henceforth discuss mostly graph bisection

Speoctral Parthlen

="
TR
--‘:_,‘;h.

LN A
Sl ST A
LA - T

&8 cut edges

CS267 L14 Graph Partitioning 1.7 Lucas Sp 2000

Overview of Partitioning Heuristics for Bisection

° Partitioning with Nodal Coordinates
* Each node has x,y,z coordinates
« Partition nodes by partitioning space

1

Finite Element Mesh of NASA Airfoil

08

D&

ov

0.6

05

nd]

03

D2

DaF

0

S YA
vt g P L Pihéh‘?‘ F"‘“%g gL

RISIOARE £
OREOESENED

e
o SRR

5 A
SN
A e

L ¥ vl RIS
ghmu%’ﬁ;mggu&%‘m

SRS

o

03 0.4 0.5 0.E ov 0.8 ng 1
4253 grid points

° Partitioning without Nodal Coordinates
» Sparse matrix of Web: A(j,k) = # times keyword j appears in URL k

° Multilevel acceleration (BIG IDEA)

« Approximate problem by “coarse graph”, do so recursively

CS267 L14 Graph Partitioning 1.8

Lucas Sp 2000

Edge Separators vs. Vertex Separators of G(N,E)

° Edge Separator: Es (subset of E) separates G if removing E;
Horr\? E I%ar\\ies two ~equal-sized, disconnected components of
: Nq an 2

° Vertex Separator: Ns (subset of N) separates G if removing Ng
and all incident edges leaves two ~equal-sized, disconnected
components of N: N; and N, ilge Separators and Vertex Separatars

H

Es = green edges or blue edges
Ns = red vertices

p——
[—
[—

8BS
H-

|

° Making an Ng from an E;: pick one endpoint of each edge in E;
 How big can |[Ng| be, compared to |Es| ?

° Making an Eg from an Ng: pick all edges incident on Ng
 How big can |Es| be, compared to |[Ng| ?

° We will find Edge or Vertex Separators, as convenient

CS267 L14 Graph Partitioning 1.9 Lucas Sp 2000

Graphs with Nodal Coordinates - Planar graphs

° Planar graph can be drawn in plane without edge
crossings

> Ex: m x m grid of m? nodes: 3 vertex separator Ng
with [Ng| = m = sqrt(|N|) (see last slide for m=5)

° Theorem (Tarjan, Lipton, 1979): If G is planar, 3 Ng
such that

* N=N4; UN;g U N, is a partition,
* IN4] <=2/3 IN|] and |N3| <= 2/3 |N|
* [Ns| <=sqrt(3 * |N|)

° Theorem motivates intuition of following algorithms

CS267 L14 Graph Partitioning 1.10 Lucas Sp 2000

Graphs with Nodal Coordinates: Inertial Partitioning

° For a graph in 2D, choose line with half the nodes on
one side and half on the other

* In 3D, choose a plane, but consider 2D for simplicity

° Choose a line L, and then choose an L.
perpendicular to it, with half the nodes on either side

Inertial Partitioning in 2D

1) L given by a*(x-xbar)+b*(y-ybar)=0,
with a2+b2=1; (a,b) is unit vector | to L
2) For each nj = (xj,yj), compute coordinate
Sj = -b*(xj-xbar) + a*(y;-ybar) along L
3) Let Sbar = median(S4,...,Sp)
4) Let nodes with S; < Sbar be in N4, rest in N>

° Remains to choose L

CS267 L14 Graph Partitioning 1.11 Lucas Sp 2000

Inertial Partitioning: Choosing L

° Clearly prefer L on left below

Choosing {x¥) for inertial partitioning

L
N1 N2 N1 A
b .
1
= L. =-F-4--F-4--F-44-F-{--F-{--}F-{=
| l
¥ ™2
Good choice of (x¥) Bad Choice of {x¥)
4 edges cut 12 edges cut

° Mathematically, choose L to be a total least squares
fit of the nodes

* Minimize sum of squares of distances to L (green lines on last
slide)

» Equivalent to choosing L as axis of rotation that minimizes the
moment of inertia of nodes (unit weights) - source of name

CS267 L14 Graph Partitioning 1.12 Lucas Sp 2000

Inertial Partitioning: choosing L (continued)

Inertial Partitioning in 2D

(a,b) is unit vector
perpendicular to L

Zj (length of j-th green line)?
=2 [(xj-xbar)? + (y; - ybar)? - (-b*(x; - xbar) + a*(y; - ybar))?]
Pythagorean Theorem
= a2 * % (xj - xbar)2 + 2*a*b* I (xj - xbar)*(x; - ybar) + b2 3; (y; - ybar)?
=a2* X1 +_ 2*a*b* X2 + b2 * X3

=[ab]*|X1 X2| *| a

X2 X3] |b

Minimized by choosing
(xbar , ybar) = (% xj , Zj yj) / N = center of mass

(a,b) = eigenvector of smallest eigenvalue of |X1 X2
X2 X3

CS267 L14 Graph Partitioning .13 Lucas Sp 2000

Graphs with Nodal Coordinates: Random Spheres

> Emulate Lipton/Tarjan in higher dimensions than
planar (2D)

° Take an n by n by n mesh of |[N| = n3 nodes
« Edges to 6 nearest neighbors

« Partition by taking plane parallel to 2 axes
« Cuts n2 =|N|2/3 = O(|E|2/3) edges

=

Bicaeting a 3D Grid

CS267 L14 Graph Partitioning 1.14 Lucas Sp 2000

Random Spheres: Well Shaped Graphs

° Need Notion of “well shaped” graphs in 3D, higher D
» Any graph fits in 3D without edge crossings!

> Approach due to Miller, Teng, Thurston, Vavasis

° Def: A k- Bly neighborhood system in d dimensions
is a set } of closed disks in R4 such that no
point in Rd is strlctly interior to more than k disks

° Def: An (o,k) overlap ?(raph is a graph defined in
terms of o >= 1 and a k-ply neighborhood system
§D1, %(There is a node for each D;, and an edge

rom j 'to k if expanding the radius of the smaller of
D; and D¢ by >o causes the two disks to overlap

A 2D Meshisa (11) Overlap Graph
Ex: n-by-n mesh is a (1,1) overlap graph

Ex: Any planar graph is (o,k) overlap for
some 0O,k

CS267 L14 Graph Partitioning 1.15 Lucas Sp 2000

Generalizing Lipton/Tarjan to higher dimensions

° Theorem (Miller, Teng, Thurston, Vavasis, 1993): Let
G=$\N,E) be an (o,k) overlap graph in d dimensions
wit n=|w. Then there is a vertex separator Ns such
that N =N; U Ns U N; and

* N1 and N2 each has at most n*(d+1)/(d+2) nodes
« Ng has at most O(a. * k1/d * p(d-1)/d) nodes

°When d=2, same as Lipton/Tarjan
> Algorithm:

 Choose a sphere S in Rd
- Edges that S “cuts” form edge separator Eg
* Build Ng from Eg

« Choose “randomly”, so that it satisfies Theorem with high
probability

CS267 L14 Graph Partitioning 1.16 Lucas Sp 2000

Stereographic Projection

> Stereographic projection from plane to sphere

* In d=2, draw line from p to North Pole, projection p’ of p is where
the line and sphere intersect

Starergraphie prajection in 2D

p=(xy¥) p=(2x,Xx"2+v*2_-1)/(x"2+v"2+1)

« Similar in higher dimensions

CS267 L14 Graph Partitioning 1.17 Lucas Sp 2000

Choosing a Random Sphere

° Rg 1s..tereographic projection from Rd to sphere in

° Find centerpoint of projected points
« Any plane through centerpoint divides points ~evenly
* There is a linear programming algorithm, cheaper heuristics

° Conformally map points on sphere
* Rotate points around origin so centerpoint at (0,...0,r) for some r
» Dilate points (unproject, multiply by sqrt((1-r)/(1+r)), project)
- this maps centerpoint to origin (0,...,0)

° Pick a random plane through origin
* Intersection of plane and sphere is circle

° Unproject circle
« yields desired circle C in Rd

° Create Ns: j belongs to Ns if o*Dj intersects C

CS267 L14 Graph Partitioning 1.18 Lucas Sp 2000

Example of Random Sphere Algorithm (Gilbert)

Firnlz ElzmaniMash

V)
a

SE0D

Figure 1: The input mesh.

h=sh Fointzinthe Fane

Ponbs Projectad arto the Sphers

M==h Pointsinthe Flane

L L 1 1
a5 o ns 1

1
-1

Figure ¥ Projected mesh points. The lange dot in the centerpamt. Figure 5 The separating cirele prajected back ta the plane.

Fartition of the Origire Rzsh
Comommaly Mapp=d Frojected Pans \/\
-

i
[ANVAN

HE)
AN

1 1 L L
-1 .5 o os

ure 2: The mesh painta.
Fig pa
4

CS267 L14 Graph Partitioning 1.19

L] a2 ouk mdgex

Lucas Sp 2000

Partitioning with Nodal Coordinates - Summary

° Other variations on these algorithms
° Algorithms are efficient

° Rely on graphs having nodes connected (mostly) to “nearest
neighbors” in space

 algorithm does not depend on where actual edges are!
° Common when graph arises from physical model

° Can be used as good starting guess for subsequent
partitioners, which do examine edges

° Can do poorly if graph less connected:

° Details at
« www.cs.berkeley.edu/~demmel/cs267/lecture18/lecture18.html
« www.parc.xerox.com/spl/members/gilbert (tech reports and SW)
 www-sal.cs.uiuc.edu/~steng

CS267 L14 Graph Partitioning 1.20 Lucas Sp 2000

Partitioning without Nodal Coordinates- Breadth First Search (BFS)

° Given G(N,E) and a root node r in N, BFS produces
» A subgraph T of G (same nodes, subset of edges)
 Tis a tree rooted atr
 Each node assigned a level = distance from r

Breadth First Search

Laval 0

Lavel 1

Laval 3

Laval 4

Tree Edges
Horizontal Edges
Interlevel Edges

CS267 L14 Graph Partitioning 1.21 Lucas Sp 2000

Breadth First Search

° Queue (First In First Out, or FIFO) e
- Enqueue(x,Q) adds x to back of Q o ’/,, \::::; e

A

* X = Dequeue(Q) removes x from front of Q

°> Compute Tree T(Nt,E7)

Laval 3

N2

Laval 4

Tree Edges
Horizontal Edges
Interlevel Edges

Nt ={(r,0)}, ET = empty set ... Initially T =root r, which is at level 0
Enqueue((r,0),Q) ... Put root on initially empty Queue Q
Mark r ... Mark root as having been processed
While Q not empty ... While nodes remain to be processed
(n,level) = Dequeue(Q) ... Get a node to process
For all unmarked children c of n
Nt = N7 U (c,level+1) ... Add child c to Nt
Et=Et U (n,c) ... Add edge (n,c) to Et
Enqueue((c,level+1),Q)) ... Add child c to Q for processing
Mark c ... Mark c as processed
Endfor
Endwhile

CS267 L14 Graph Partitioning 1.22 Lucas Sp 2000

Partitioning via Breadth First Search

Breadth First Search
° BFS identifies 3 kinds of edges s T
* Tree Edges -partof T /,:'\’ N~ = N
+ Horizontal Edges - connect nodes at same level MRS >t Lewl2
* Interlevel Edges - connect nodes at adjacent levels , e Level 3
Leval 4

° No edges connect nodes in levels

Trea Edgas —
Horizontal Edges ————

differing by more than 1 (why?) oo s

° BFS partioning heuristic Breatn First seachona7 by 7 oria

Starting at the center node

* N=N4 U N, where Nodes labeled by level
- N4 ={nodes at level <=L},
- N2 ={nodes at level > L} g3 3 g 3
« Choose L so |[N4| close to |N5| 5 (g 3. e s 4 s
| GUSEED SUCENS Sramm SuEC S Suen S
g (3.2 1 2 Ts |a
ik tlr thr . 4 s —iy ']
302 1 e, [1 T2 s
L . . . 4 — . w1

CS267 L14 Graph Partitioning 1.23 16, [3 & |3 708 703 0 | cas sp2000

Partitioning without nodal coordinates - Kernighan/Lin

° Take a initial partition and iteratively improve it
« Kernighan/Lin (1970), cost = O(|N|3) but easy to understand
- What else did Kernighan invent?

 Fiduccia/Mattheyses (1982), cost = O(|E|), much better, but more
complicated

° Given G = (N,E,Wg) and a partitioning N = A U B,
where |A| = |B]|
* T = cost(A,B) = X {W(e) where e connects nodes in A and B}
* Find subsets X of A and Y of B with |X| = |Y]|
« Swapping X and Y should decrease cost:
- newA=A-XUY and newB=B-YUX
- newT = cost(newA , newB) < cost(A,B)

° Need to compute newT efficiently for many possible
X and Y, choose smallest

CS267 L14 Graph Partitioning 1.24 Lucas Sp 2000

Kernighan/Lin - Preliminary Definitions

°T =cost(A, B), newT = cost(nhewA, newB)

° Need an efficient formula for newT; will use
« E(a) = external cost of ain A =S {W(a,b) for b in B}
» I(a) =internal costofain A=S {W(a,a’) for other a’ in A}
- D(a)=costofainA =E(a) - 1(a)
» E(b), I(b) and D(b) defined analogously for b in B

° Consider swapping X ={a} and Y = {b}
- newA=A-{a} U {b}, newB =B -{b} U {a}

° newT =T - (D(a) + D(b) - 2*w(a,b)) = T - gain(a,b)
» gain(a,b) measures improvement gotten by swapping a and b

° Update formulas
- newD(a’) = D(a’) + 2*w(a’,a) - 2*w(a’,b) fora’in A,a’!=a
 newD(b’) = D(b’) + 2*w(b’,b) - 2*w(b’,a) forb’inB,b’!=b

CS267 L14 Graph Partitioning 1.25 Lucas Sp 2000

Kernighan/Lin Algorithm

Compute T = cost(A,B) for initial A, B .. cost = O(|N|?)
Repeat
Compute costs D(n) forallnin N ... cost = O(|N|?)
.. cost = O(|N])

Unmark all nodes in N

While there are unmarked nodes .. IN|/2 iterations

Find an unmarked pair (a,b) maximizing gain(a,b) ... cost = O(|N|?)
Mark a and b (but do not swap them) ... cost = O(1)
Update D(n) for all unmarked n,
as though a and b had been swapped ... cost = O(|N|)
Endwhile

... At this point we have computed a sequence of pairs
... (a1,b1), ..., (ak,bk) and gains gain(1),...., gain(k)
... for k =|N|/2, ordered by the order in which we marked them
Pick j maximizing Gain = Xk=1 toj gain(k) ... cost = O(|N|)
... Gain is reduction in cost from swapping (a1,b1) through (aj,bj)
If Gain > 0 then ... it is worth swapping

Update newA =A -{a1,...,ak} U {b1,...,bk } ... cost = O(|N|)
Update newB =B - { b1,...,bk} U {a1l,...,ak } ... cost = O(|N|)
Update T =T - Gain ... cost = O(1)
endif
Until Gain <=0

* One pass greedily computes |N|/2 possible X and Y to swap, picks best

CS267 L14 Graph Partitioning 1.26 Lucas Sp 2000

