
CS267 L14 Graph Partitioning I.1 Lucas Sp 2000

CS 267 Applications of Parallel Computers

Lecture 13:

Graph Partitioning - I

Bob Lucas
from earlier lectures by Jim Demmel and Dave Culler

www.nersc.gov/~dhbailey/cs267

CS267 L14 Graph Partitioning I.2 Lucas Sp 2000

Outline of Graph Partitioning Lectures

° Review definition of Graph Partitioning problem

° Outline of Heuristics

° Partitioning with Nodal Coordinates

° Partitioning without Nodal Coordinates

° Multilevel Acceleration
• BIG IDEA, will appear often in course

° Available Software
• good sequential and parallel software availble

° Comparison of Methods

° Applications

CS267 L14 Graph Partitioning I.3 Lucas Sp 2000

Definition of Graph Partitioning

° Given a graph G = (N, E, WN, WE)
• N = nodes (or vertices), E = edges

• WN = node weights, WE = edge weights

° Ex: N = {tasks}, WN = {task costs}, edge (j,k) in E means task j
sends WE(j,k) words to task k

° Choose a partition N = N1 U N2 U … U NP such that
• The sum of the node weights in each Nj is “about the same”

• The sum of all edge weights of edges connecting all different pairs
Nj and Nk is minimized

° Ex: balance the work load, while minimizing communication

° Special case of N = N1 U N2: Graph Bisection

CS267 L14 Graph Partitioning I.4 Lucas Sp 2000

Applications
° Telephone network design

• Original application, algorithm due to Kernighan

° Load Balancing while Minimizing Communication

° Sparse Matrix times Vector Multiplication
• Solving PDEs

• N = {1,…,n}, (j,k) in E if A(j,k) nonzero,

• WN(j) = #nonzeros in row j, WE(j,k) = 1

° VLSI Layout
• N = {units on chip}, E = {wires}, WE(j,k) = wire length

° Sparse Gaussian Elimination
• Used to reorder rows and columns to increase parallelism,

decrease “fill-in”

° Physical Mapping of DNA

° Evaluating Bayesian Networks?

CS267 L14 Graph Partitioning I.5 Lucas Sp 2000

Sparse Matrix Vector Multiplication

CS267 L14 Graph Partitioning I.6 Lucas Sp 2000

Cost of Graph Partitioning

° Many possible partitionings to search:

° n choose n/2 ~ sqrt(2n/pi)*2n bisection possibilities

° Choosing optimal partitioning is NP-complete
• Only known exact algorithms have cost = exponential(n)

° We need good heuristics

CS267 L14 Graph Partitioning I.7 Lucas Sp 2000

First Heuristic: Repeated Graph Bisection

° To partition N into 2k parts, bisect graph recursively
k times
• Henceforth discuss mostly graph bisection

CS267 L14 Graph Partitioning I.8 Lucas Sp 2000

Overview of Partitioning Heuristics for Bisection

° Partitioning with Nodal Coordinates
• Each node has x,y,z coordinates

• Partition nodes by partitioning space

° Partitioning without Nodal Coordinates
• Sparse matrix of Web: A(j,k) = # times keyword j appears in URL k

° Multilevel acceleration (BIG IDEA)
• Approximate problem by “coarse graph”, do so recursively

CS267 L14 Graph Partitioning I.9 Lucas Sp 2000

Edge Separators vs. Vertex Separators of G(N,E)

° Edge Separator: Es (subset of E) separates G if removing Es
from E leaves two ~equal-sized, disconnected components of
N: N1 and N2

° Vertex Separator: Ns (subset of N) separates G if removing Ns
and all incident edges leaves two ~equal-sized, disconnected
components of N: N1 and N2

° Making an Ns from an Es: pick one endpoint of each edge in Es

• How big can |Ns| be, compared to |Es| ?

° Making an Es from an Ns: pick all edges incident on Ns

• How big can |Es| be, compared to |Ns| ?

° We will find Edge or Vertex Separators, as convenient

Es = green edges or blue edges
Ns = red vertices

CS267 L14 Graph Partitioning I.10 Lucas Sp 2000

Graphs with Nodal Coordinates - Planar graphs

° Planar graph can be drawn in plane without edge
crossings

° Ex: m x m grid of m2 nodes: ∃ ∃ ∃ ∃ vertex separator Ns
with |Ns| = m = sqrt(|N|) (see last slide for m=5)

° Theorem (Tarjan, Lipton, 1979): If G is planar, ∃ ∃ ∃ ∃ Ns
such that
• N = N1 U Ns U N2 is a partition,

• |N1| <= 2/3 |N| and |N2| <= 2/3 |N|

• |Ns| <= sqrt(8 * |N|)

° Theorem motivates intuition of following algorithms

CS267 L14 Graph Partitioning I.11 Lucas Sp 2000

Graphs with Nodal Coordinates: Inertial Partitioning

° For a graph in 2D, choose line with half the nodes on
one side and half on the other
• In 3D, choose a plane, but consider 2D for simplicity

° Choose a line L, and then choose an L⊥⊥⊥⊥

perpendicular to it, with half the nodes on either side

° Remains to choose L

1) L given by a*(x-xbar)+b*(y-ybar)=0,
 with a2+b2=1; (a,b) is unit vector ⊥ to L
2) For each nj = (xj,yj), compute coordinate
 Sj = -b*(xj-xbar) + a*(yj-ybar) along L
3) Let Sbar = median(S1,…,Sn)
4) Let nodes with Sj < Sbar be in N1, rest in N2

CS267 L14 Graph Partitioning I.12 Lucas Sp 2000

Inertial Partitioning: Choosing L

° Clearly prefer L on left below

° Mathematically, choose L to be a total least squares
fit of the nodes
• Minimize sum of squares of distances to L (green lines on last

slide)

• Equivalent to choosing L as axis of rotation that minimizes the
moment of inertia of nodes (unit weights) - source of name

CS267 L14 Graph Partitioning I.13 Lucas Sp 2000

Inertial Partitioning: choosing L (continued)

ΣΣΣΣj (length of j-th green line)2

 = ΣΣΣΣj [(xj - xbar)2 + (yj - ybar)2 - (-b*(xj - xbar) + a*(yj - ybar))2]
 … Pythagorean Theorem
 = a2 * ΣΣΣΣj (xj - xbar)2 + 2*a*b* ΣΣΣΣj (xj - xbar)*(xj - ybar) + b2 ΣΣΣΣj (yj - ybar)2

 = a2 * X1 + 2*a*b* X2 + b2 * X3
 = [a b] * X1 X2 * a
 X2 X3 b

Minimized by choosing
 (xbar , ybar) = (ΣΣΣΣj xj , ΣΣΣΣj yj) / N = center of mass
 (a,b) = eigenvector of smallest eigenvalue of X1 X2
 X2 X3

(a,b) is unit vector
perpendicular to L

CS267 L14 Graph Partitioning I.14 Lucas Sp 2000

Graphs with Nodal Coordinates: Random Spheres

° Emulate Lipton/Tarjan in higher dimensions than
planar (2D)

° Take an n by n by n mesh of |N| = n3 nodes
• Edges to 6 nearest neighbors

• Partition by taking plane parallel to 2 axes

• Cuts n2 =|N|2/3 = O(|E|2/3) edges

CS267 L14 Graph Partitioning I.15 Lucas Sp 2000

Random Spheres: Well Shaped Graphs

° Need Notion of “well shaped” graphs in 3D, higher D
• Any graph fits in 3D without edge crossings!

° Approach due to Miller, Teng, Thurston, Vavasis

° Def: A k-ply neighborhood system in d dimensions
is a set {D1,…,Dn} of closed disks in Rd such that no
point in Rd is strictly interior to more than k disks

° Def: An (αααα,k) overlap graph is a graph defined in
terms of αααα >= 1 and a k-ply neighborhood system
{D1,…,Dn}: There is a node for each Dj, and an edge
from j to k if expanding the radius of the smaller of
Dj and Dk by >αααα causes the two disks to overlap

Ex: n-by-n mesh is a (1,1) overlap graph

Ex: Any planar graph is (αααα,k) overlap for
 some αααα,k

CS267 L14 Graph Partitioning I.16 Lucas Sp 2000

Generalizing Lipton/Tarjan to higher dimensions

° Theorem (Miller, Teng, Thurston, Vavasis, 1993): Let
G=(N,E) be an (αααα,k) overlap graph in d dimensions
with n=|N|. Then there is a vertex separator Ns such
that N = N1 U Ns U N2 and
• N1 and N2 each has at most n*(d+1)/(d+2) nodes

• Ns has at most O(αααα * k1/d * n(d-1)/d) nodes

° When d=2, same as Lipton/Tarjan

° Algorithm:
• Choose a sphere S in Rd

• Edges that S “cuts” form edge separator Es

• Build Ns from Es

• Choose “randomly”, so that it satisfies Theorem with high
probability

CS267 L14 Graph Partitioning I.17 Lucas Sp 2000

Stereographic Projection

° Stereographic projection from plane to sphere
• In d=2, draw line from p to North Pole, projection p’ of p is where

the line and sphere intersect

• Similar in higher dimensions

CS267 L14 Graph Partitioning I.18 Lucas Sp 2000

Choosing a Random Sphere

° Do stereographic projection from Rd to sphere in
Rd+1

° Find centerpoint of projected points
• Any plane through centerpoint divides points ~evenly

• There is a linear programming algorithm, cheaper heuristics

° Conformally map points on sphere
• Rotate points around origin so centerpoint at (0,…0,r) for some r

• Dilate points (unproject, multiply by sqrt((1-r)/(1+r)), project)

- this maps centerpoint to origin (0,…,0)

° Pick a random plane through origin
• Intersection of plane and sphere is circle

° Unproject circle
• yields desired circle C in Rd

° Create Ns: j belongs to Ns if αααα*Dj intersects C

CS267 L14 Graph Partitioning I.19 Lucas Sp 2000

Example of Random Sphere Algorithm (Gilbert)

CS267 L14 Graph Partitioning I.20 Lucas Sp 2000

Partitioning with Nodal Coordinates - Summary

° Other variations on these algorithms

° Algorithms are efficient

° Rely on graphs having nodes connected (mostly) to “nearest
neighbors” in space
• algorithm does not depend on where actual edges are!

° Common when graph arises from physical model

° Can be used as good starting guess for subsequent
partitioners, which do examine edges

° Can do poorly if graph less connected:

° Details at
• www.cs.berkeley.edu/~demmel/cs267/lecture18/lecture18.html

• www.parc.xerox.com/spl/members/gilbert (tech reports and SW)

• www-sal.cs.uiuc.edu/~steng

CS267 L14 Graph Partitioning I.21 Lucas Sp 2000

Partitioning without Nodal Coordinates- Breadth First Search (BFS)

° Given G(N,E) and a root node r in N, BFS produces
• A subgraph T of G (same nodes, subset of edges)

• T is a tree rooted at r

• Each node assigned a level = distance from r

CS267 L14 Graph Partitioning I.22 Lucas Sp 2000

Breadth First Search

° Queue (First In First Out, or FIFO)
• Enqueue(x,Q) adds x to back of Q

• x = Dequeue(Q) removes x from front of Q

° Compute Tree T(NT,ET)

NT = {(r,0)}, ET = empty set … Initially T = root r, which is at level 0
Enqueue((r,0),Q) … Put root on initially empty Queue Q
Mark r … Mark root as having been processed
While Q not empty … While nodes remain to be processed
 (n,level) = Dequeue(Q) … Get a node to process
 For all unmarked children c of n
 NT = NT U (c,level+1) … Add child c to NT
 ET = ET U (n,c) … Add edge (n,c) to ET
 Enqueue((c,level+1),Q)) … Add child c to Q for processing
 Mark c … Mark c as processed
 Endfor
Endwhile

CS267 L14 Graph Partitioning I.23 Lucas Sp 2000

Partitioning via Breadth First Search

° BFS identifies 3 kinds of edges
• Tree Edges - part of T

• Horizontal Edges - connect nodes at same level

• Interlevel Edges - connect nodes at adjacent levels

° No edges connect nodes in levels

 differing by more than 1 (why?)

° BFS partioning heuristic
• N = N1 U N2, where

- N1 = {nodes at level <= L},

- N2 = {nodes at level > L}

• Choose L so |N1| close to |N2|

CS267 L14 Graph Partitioning I.24 Lucas Sp 2000

Partitioning without nodal coordinates - Kernighan/Lin

° Take a initial partition and iteratively improve it
• Kernighan/Lin (1970), cost = O(|N|3) but easy to understand

- What else did Kernighan invent?

• Fiduccia/Mattheyses (1982), cost = O(|E|), much better, but more
complicated

° Given G = (N,E,WE) and a partitioning N = A U B,
where |A| = |B|
• T = cost(A,B) = ΣΣΣΣ {W(e) where e connects nodes in A and B}

• Find subsets X of A and Y of B with |X| = |Y|

• Swapping X and Y should decrease cost:

- newA = A - X U Y and newB = B - Y U X

- newT = cost(newA , newB) < cost(A,B)

° Need to compute newT efficiently for many possible
X and Y, choose smallest

CS267 L14 Graph Partitioning I.25 Lucas Sp 2000

Kernighan/Lin - Preliminary Definitions

° T = cost(A, B), newT = cost(newA, newB)

° Need an efficient formula for newT; will use
• E(a) = external cost of a in A = S {W(a,b) for b in B}

• I(a) = internal cost of a in A = S {W(a,a’) for other a’ in A}

• D(a) = cost of a in A = E(a) - I(a)

• E(b), I(b) and D(b) defined analogously for b in B

° Consider swapping X = {a} and Y = {b}
• newA = A - {a} U {b}, newB = B - {b} U {a}

° newT = T - (D(a) + D(b) - 2*w(a,b)) = T - gain(a,b)
• gain(a,b) measures improvement gotten by swapping a and b

° Update formulas
• newD(a’) = D(a’) + 2*w(a’,a) - 2*w(a’,b) for a’ in A, a’ != a

• newD(b’) = D(b’) + 2*w(b’,b) - 2*w(b’,a) for b’ in B, b’ != b

CS267 L14 Graph Partitioning I.26 Lucas Sp 2000

Kernighan/Lin Algorithm
 Compute T = cost(A,B) for initial A, B … cost = O(|N|2)
 Repeat
 Compute costs D(n) for all n in N … cost = O(|N|2)
 Unmark all nodes in N … cost = O(|N|)
 While there are unmarked nodes … |N|/2 iterations
 Find an unmarked pair (a,b) maximizing gain(a,b) … cost = O(|N|2)
 Mark a and b (but do not swap them) … cost = O(1)
 Update D(n) for all unmarked n,
 as though a and b had been swapped … cost = O(|N|)
 Endwhile
 … At this point we have computed a sequence of pairs
 … (a1,b1), … , (ak,bk) and gains gain(1),…., gain(k)
 … for k = |N|/2, ordered by the order in which we marked them
 Pick j maximizing Gain = ΣΣΣΣk=1 to j gain(k) … cost = O(|N|)
 … Gain is reduction in cost from swapping (a1,b1) through (aj,bj)
 If Gain > 0 then … it is worth swapping
 Update newA = A - { a1,…,ak } U { b1,…,bk } … cost = O(|N|)
 Update newB = B - { b1,…,bk } U { a1,…,ak } … cost = O(|N|)
 Update T = T - Gain … cost = O(1)
 endif
 Until Gain <= 0

• One pass greedily computes |N|/2 possible X and Y to swap, picks best

