
Scaling Data Race Detection for Partitioned
Global Address Space Programs

Chang-Seo Park Koushik Sen
University of California Berkeley
{parkcs,ksen}@eecs.berkeley.edu

Costin Iancu
Lawrence Berkeley National Laboratory

cciancu@lbl.gov

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]; D.2.5 [Testing and Debugging]

1. Introduction
Attaining good performance and efficacy on contemporary and fu-
ture large scale High Performance Computing systems requires us-
ing hybrid programming models: OpenMP+MPI, UPC+MPI, In-
tel TBB + MPI or OpenMP+UPC. With multiple levels, intra-node
parallelism is usually exploited using shared memory programming
models, while inter-node parallelism is exploited using message
passing or shared memory abstractions.

Bugs due to non-deterministic execution and conflicting mem-
ory accesses are fairly common and notoriously hard to detect in a
parallelism rich environment. Previous work demonstrates the abil-
ity of dynamic program analyses to find concurrency bugs (data
race, atomicity violations, deadlock) in shared memory programs.
Dynamic program analyses have been also used to find heisenbugs
in distributed memory programs: DAMPI [5] for MPI wildcard re-
ceives and UPC-Thrille [4] for data races in Unified Parallel C [2].

Data race detectors for shared memory programming trace in-
dividual memory references (load/store instructions) and reason
about program semantics using a centralized analysis. The imple-
mentations are heavily optimized to reduce the instrumentation
overhead and reportedly function with overhead lower than 10×.
Bug finding for distributed memory programming models is made
scalable by using a distributed analysis, but the current approaches
illustrated by DAMPI and UPC-Thrille track only the calls into
communication libraries. Thus, distributed memory tools need to
be extended with tracking of memory references in order to handle
hybrid programming. Furthermore, while acceptable when testing
programs on workstations, the current overhead of dynamic pro-
gram analyses is hard to stomach at the contemporary HPC con-
currencies of tens of thousands of cores. Large scale analyses face
the additional challenge to provide the lowest achievable overhead
while still providing good coverage. While the adoption criteria for
shared memory tools is “acceptable overhead”, more stringent op-
timality criteria are desired at scale.

We present the first complete dynamic analysis for distributed
memory programs able to track both memory references and com-
munication calls. We extend the UPC-Thrille data race detection
tool with tracking of individual memory references and discuss
techniques to achieve low overhead for scientific applications run-
ning at scale. The results are validated for implementations of the
NAS Parallel Benchmarks [1], as well as other fine-grained dy-
namic programming and tree search applications. We believe that
our findings are widely applicable to any tool for data race detection
in Partitioned Global Address Space languages: Chapel, Titanium,
Co-Array Fortran, X10.

Copyright is held by the author/owner(s).
PPoPP’13, February 23–27, 2013, Shenzhen, China.
ACM 978-1-4503-1922/13/02.

Overhead
Bench LoC Time(s) #Races NL HA.5 IA FA0 I
guppie 271 19.070 2 + 0 54.9% 54.2% 53.7% DNF 74.9%
psearch 803 0.697 3 + 2 2.48% 10.8% 666% 8.01% 6490%
BT 3.3 9698 189.48 7 + 3 0.574% 1.16% 77.6% DNF -
CG 2.4 1654 39.573 0 + 1 1.09% 27.6% 57.6% DNF 2579%
EP 2.4 678 54.453 0 -0.618% 0.805% 2.09% 4.74% 111%
FT 2.4 2289 62.663 2 + 0 0.601% 30.1% 121% DNF 2744%
IS 2.4 1R36 5.130 0 0.376% 119% 159% DNF 1201%
LU 3.3 6348 155.997 0 + 44 -0.425% - 75.7% DNF -
MG 2.4 2229 18.687 2 + 4 0.336% 176% 632% DNF 2020%
SP 3.3 5740 247.937 10 + 3 0.160% 0.861% 29.1% DNF -

Table 1: Statistics for the NAS Parallel Benchmarks class C, guppie and psearch
running on 16 cores. We report the races found as A + B, where A represents the
number of races detected by the original UPC-Thrille tool (column NL: No-Local)
and B represents the additional number of races detected with our extensions. Some
execution overheads are omitted (-), due to configuration errors.

2. Scalable Data Race Detection
UPC-Thrille implements a dynamic program analysis running in
two phases. In the first phase the program is executed with addi-
tional instrumentation and data about memory accesses, commu-
nication and synchronization operations is gathered and analyzed.
For the purposes of this paper we distinguish three types of over-
head: 1) instrumentation overhead is introduced by the checks to
prune the non-interesting data accesses; 2) computation overhead,
by the operations on internal data structures to manage the accesses
and compute conflicting accesses; and 3) communication overhead,
by the exchange of conflicting accesses between threads.
Analysis Overhead: The most widely used technique to reduce
overhead is sampling of the program execution. Tools for shared
memory use instruction level sampling while the distributed mem-
ory tools [4, 5] implement its equivalent by sampling the commu-
nication operations. For shared memory, Marino et al [3] recently
introduced LiteRace which coarsens the granularity of the sampling
at function boundaries: functions are compiled in two versions, in-
strumented and uninstrumented, each version being selected at run-
time using heuristics. LiteRace showed better scalability and cov-
erage than instruction level sampling when applied on several Mi-
crosoft programs, as well as Apache and Firefox.

We have experimented with both instruction level sampling and
function level sampling on a Cray XE6 system composed of nodes
containing two twelve-core AMD MagnyCours 2.1 GHz proces-
sors. The results in Table 1 indicate that instruction level sampling
(IA) performs better than (FA) function level sampling for scientific
programs. Instruction level sampling adds runtime overhead as high
as 65× while many runs using function level sampling did not ter-
minate, even when instrumenting only the first execution of a func-
tion (FA0). This result contradicts the trends reported for LiteRace
and it is caused by a combination of two factors: 1) determining the
locality of a reference is expensive in PGAS programs; and 2) sci-
entific programs have long running loops, with billions of memory
accesses per invocation in our benchmarks. Our results also indi-
cate that in most settings instrumentation overhead dominates the
computation and communication overhead during the analysis. The
typical behavior is illustrated in Figure 1 (left). Note that with func-



0	  

5	  

10	  

15	  

20	  

25	  

30	  

35	  

40	  

NL	   HA0	   HA.5	   IA	   H0	   F0	   H.5	   F.5	   I	  

Overhead	  for	  CG	  class	  A	  16	  cores	  

instrument	  

comm	  

comp	  

program	  

1	  

2	  

3	  

4	  

5	  

6	  

7	  

8	  

9	  

16	   32	   64	   128	   256	   512	   1024	   2048	  

Ru
n$

me
	  no

rm
ali
ze
d	  t

o	  "
em

pt
y"
	  ru

n	  

cores	  

Scalability	  of	  analysis	  on	  MG	  

NL-‐D	  

HA0-‐D	  

HA.5-‐D	  

IA-‐D	  

NL-‐C	  

HA0-‐C	  

HA.5-‐C	  

IA-‐C	  

Figure 1: Breakdown of data race detection overhead running on 16 cores (left). Scalability of the different sampling methods on NPB 2.4 MG, classes C and D (right).

tion sampling (F.5, F0) the computation overhead increases due to
the very large number of memory locations accessed in loops.
Reducing Overhead: For every memory reference there are two
sources of runtime overhead. Instrumentation overhead is intro-
duced to decide whether the reference should be recorded and com-
putation overhead is introduced when recording the reference in
the tool internal data structures. We employ a combination of tech-
niques to improve the analysis performance: 1) we use program
semantic information such as aliasing to prune un-interesting mem-
ory accesses; and 2) we use a hierarchical sampling approach where
instrumentation is dynamically controlled both at the function level
and at the instruction level.

The first optimization reduces the overhead of instrumentation
by exploiting the insight that aliases are persistent in PGAS pro-
grams: once one is created it will point in the same memory region
(private or global) for a long period of time. Using this we can elim-
inate the overhead introduced by looking up the physical memory
layout inside the language runtime. Adding the aliasing heuristics
to any of the tool methods greatly improves performance. For ex-
ample, the overhead of instruction sampling (I) is reduced from
3600% to 105% with (IA) for CG class A running on 16 cores. The
overhead of hierarchical sampling (H) is reduced from 2550% with
(H.5) to 99% with (HA.5) and from 294% with (H0) to 17% with
(HA0). The lowest overhead of data race detection is obtained by
the HA approach.

Function sampling ((F) or (FA)) is faster than instruction sam-
pling ((I) or (IA), respectively) for problems using small datasets,
such as class A of the NAS Parallel Benchmarks. When increasing
the data set size to B, C and D, function sampling in any flavor does
not terminate, while the highest overhead observed for instruction
sampling is 65×. From all benchmarks considered, the only excep-
tion happens for psearch and EP where (F) is roughly twice as fast
as (I). psearch is a tree search benchmark which performs a con-
stant and small amount of work per function, independent of the
problem size: this is a common characteristic to many commercial
applications. EP is an “Embarrassingly Parallel” benchmark where
no global memory accesses are made and thus none need to be
tracked. The performance reversal observed for most benchmarks
contradicts the common intuition that function sampling performs
better than instruction sampling.

Hierarchical sampling (H) performs better than both instruction
sampling (I) and function sampling (F) as it reduces all three type of
overhead: instrumentation, computation and communication. With
hierarchical sampling we observe slowdowns as high as 20×which
is still unacceptable when running at scale. Applying the aliasing
heuristic reduces the overhead of data race detection for both in-
struction level and hierarchical sampling. The maximum slowdown
observed by (IA) is 10× while the maximum slowdown for (I) is
65×. Similar results are observed for (HA) when compared to (H).
3. Results
Figure 1 (right) shows the performance of our approach when per-
forming strong scaling experiments for the classes C and D of the

MG NAS Parallel Benchmark. For all experiments, the lowest over-
head is introduced by the (HA) configuration and we are able to find
all the races with less than 50% runtime overhead when running up
to 2048 cores. In the case of the NAS Parallel Benchmarks class C
on 16 cores, the weighted average overhead for all the benchmarks
with (HA.5) was 11.9%.

For scalable data race detection, we needed to combine the two
techniques: hierarchical sampling and aliasing heuristics. In the
scalable versions of (IA) and (HA), the computation overhead is
small. At large scale the communication overhead is also small
due to the techniques presented in [4]. Overall, instrumentation
overhead contributes the most to the slowdown caused by data race
detection.
Races Found: In [4] we present a detailed discussion of the
races found in the current program workload. Our extended im-
plementation finds all these and, in addition, uncovers several other
races. For a summary please see Table 1. For example, we detect
a previously unknown race in NAS CG introduced by the pres-
ence of aliasing: memory is initialized using “local” pointers and
distributed without synchronization to other threads using global
pointers. In NAS BT, LU, and SP we uncover 50 additional races.
Four of these races are real and confirmed by the tool; they occur
when executing custom synchronization code similar to:

signal(v = 1); ‖ wait(while(v == 0); );.

The remaining new data races are caused by data references sep-
arated by custom synchronization code. Identifying races in the
presence of custom synchronization code is a common limitation
of data race detection tools.
4. Conclusion
We present the first implementation of a data race detector for
distributed memory programs that tracks all memory references.
The goal of our implementation is to provide low overhead with
good program coverage when running at scale. We propose two
techniques to improve the scalability of data race detection in UPC
programs: 1) hierarchical function and instruction level sampling;
and 2) exploiting the runtime persistence of aliasing and locality
in UPC applications. The results indicate that both techniques are
required in practice.
References
[1] D. Bailey, T. Harris, W. Saphir, R. Van Der Wijngaart, A. Woo, and M. Yarrow.

The NAS Parallel Benchmarks 2.0. Technical Report NAS-95-010, NASA Ames
Research Center, 1995.

[2] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, and K. W. E. Brooks.
Introduction to UPC and Language Specification, 1999.

[3] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace: Effective Sampling
for Lightweight Data-Race Detection. In PLDI, 2009.

[4] C.-S. Park, K. Sen, P. Hargrove, and C. Iancu. Efficient Data Race Detection for
Distributed Memory Parallel Programs. In Supercomputing (SC11), 2011.

[5] A. Vo, S. Aananthakrishnan, G. Gopalakrishnan, B. R. d. Supinski, M. Schulz,
and G. Bronevetsky. A Scalable and Distributed Dynamic Formal Verifier for
MPI Programs. In Supercomputing (SC10), 2010.


