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Abstract. Synergia is an advanced accelerator framework widely used
by accelerator community. However, its performance suffers significantly
from the high communication requirement. In this paper, we address
this issue by replacing the flat MPI programming model with the hybrid
OpenMP+MPI programming model. We describe in detail how the code
has been parallelized in OpenMP and what the challenges are. The im-
proved hybrid code can perform over 1.7 times better than the original
program for a benchmark problem.

1 Introduction

Synergia [1] is an open source framework developed for accelerator community to
simulate beam dynamics with fully three dimensional space-charge capabilities
and a higher order optics implementation. It can be used to predict the motion of
high energy particles in a beam (bunched or continuous ) in 6D phase spaces. The
electric and maganetic fields are expressed on a 3D rectangular grid, and, at any
given time, both longitudinal and transverse motions are treated consistently. It
is designed to be run efficiently on parallel computers. The ultimate goal is to run
the accelerator simulations on the leadership large-scale computing platforms.
However, due to the tremendous difficulties in the optimization of tightly coupled
6D simulations, the current goal is able to run the codes on medium size clusters.

The most difficult challenge is the high communication requirement. Synergia
uses Particle-In-Cell (PIC) [6] method to simulate the beam dynamics. The
interactions between the particles and the fields cause a large amount of data
to be commuted globally. Figure 1 shows the scaling behavior of the benchmark
program used by synergia. With the increase of the number of MPI processes,
the communication time (MPI time) increases steadily. When the number of
processes reaches 256, over 70% of the running time has been spent for MPI
communication and the total running time no longer goes lower. In this paper,
we will discuss in detail why using OpenMP can improve the performance of
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our applications and how exactly we do it. In addition, we will also discuss the
choices and problems we face during our optimizing process.
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Fig. 1. The scalability of synergia on the Cray XE6.

Using hybrid MPI+OpenMP programming model also fits more naturally
with the trend of the development of the computer architectures as multicore
or manycore technology has started to dominate the current high-performance
computing (HPC) platforms. MPI is used for internode communication while
OpenMP is used for inside node computation and communication. Compared
with flat MPI programming model, using OpenMP also helps to reduce the
amount of memory needed by applications due to its global shared address space.
This advantage will become increasingly important as the amount of memory
per core will be reduced on future petascale or exascale platforms.

The rest of the paper is organized as follows. First, Section 2 describes the
algorithms and communication patterns of the benchmark application for syn-
ergia. Section 3 describes the experimental platform. The detailed optimization
process using OpenMP is discussed in Section 4. Related work is discussed in
Section 5. Finally, we summarize our conclusions and future work in Section 6.

2 Benchmark Application

Synergia is a multi component, multi language framework. It provides a straight-
forward user interface through Python classes. The benchmark application is
contained in the subdirectory cxx test in the file cxx example.cc. It is build as
part of the normal synergia build process.

The code simulates the beam dynamics with full 3D space-charge effects using
particle-in-cell algorithm [6]. The charged particles interacting via magnetic and
electric fields and invokes many performance critical components. The field is
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Fig. 3. A schematic plot of the particle-field decomposition method in particle-in-cell simulation.

In the above domain decomposition method, the communication for particle movement is directly related to the number of local
macroparticles. The communication for charge density and field exchange is related to the number of local grid points used in the sim-
ulation. Those communications are among the local neighboring processors and can be done simultaneously on most parallel computers.
Global communication is used only for the matrix transpose in the 3D FFT for solving the Poisson equation.

A uniform computational mesh is used to solve the Poisson’s equation using the FFT-based method. For a nonuniform particle density
distribution, the number of particles on each processor will not be evenly distributed among the processors if the global computational
domain and the mesh grid are uniformly decomposed onto each processor. Dynamic load balance is employed with adjustable frequency
to keep the number of macroparticles on each processor approximately equal. This is done by adjusting the local boundary range on each
processor using two one-dimensional particle density distribution functions (one for y and one for z) in the two-dimensional domain
decomposition method [4]. However, it will work precisely only for a density distribution function which can be separated as a product
of two one-dimensional functions along each direction. Meanwhile, this will also result in a different number of local grid points on each
processor and load imbalance in the solution of the Poisson equation. Global communication is needed to find the global one-dimensional
density function on all processors from the local two-dimensional density function. Here an all-reduce and an all-gather communication
operation are used to find the global density function for each dimension in the two-dimensional domain decomposition method.

4. Parallel particle-field decomposition implementation method

The domain decomposition method works well when the particles do not move too far from their positions during each time step. This
means that only neighboring processor communication is required. However, in the simulation of beam dynamics in particle accelerators,
during each step the particles may move a significant amount inside the problem domain due to the action of external maps associated
with the beamline elements. In this case, a lot of communication is required to move these particles to their local processors. Meanwhile,
even though the domain decomposition method can achieve a load balance among the particles, the solution of the Poisson equation is
not balanced since each processor has a different number of computational grid points, i.e. a different size of subdomain.

Perfect load balance can be achieved, and particle movement avoided, by using a particle-field decomposition method. In this method,
the particles and computational domain are uniformly distributed among processors. Each processor possesses the same number of par-
ticles and the same number of computational grid points, i.e., the same size of spatial subdomain. Fig. 3 shows a schematic plot of the
particle-field decomposition among three processors. The global computational mesh grid is uniformly distributed among three proces-
sors. Each processor also has the same number of particles. The spatial coordinates of a particle on a processor might not stay inside the
spatial mesh subdomain of that processor. During the stage of charge deposition, the particles are deposited onto a computational grid
to obtain the charge density distribution. For the particles with spatial positions outside the local subdomain, an auxiliary computational
grid is used to store the charge density. After the deposition, the charge density stored on the auxiliary grid will be sent to the processor
containing that subdomain by using a global communication operation. With the charge density distribution local to each processor, the
Poisson equation is solved in parallel using the FFT-based Green function method. Since each processor contains the same number of
computational subdomain grid points, the work load is well balanced among all processors. After the solution of the Poisson equation, the
electric potential on the local subdomain is sent to all processors through another global communication. With the electric potential on
each processor, the electric fields are calculated on the grid and interpolated onto individual particles. The particles are advanced using the
self-consistent electromagnetic field and the external maps. Since each processor contains the same number of particles and grid points,
this operation is also well balanced among processors. Using the particle-field decomposition results in a load balance in both particle
advancement and self-consistent field calculation.

There are three major communication steps associated with the particle-field decomposition method. One is the all-reduce operation
in the process of collecting charge density onto each processor during charge deposition. One is the all-gather operation for the matrix
transpose in the solution of the Poisson equation using the FFT-based method. One is the all-gather operation in the process of gathering
the electric potential from the subdomain of each processor to the auxiliary grid of each processor after the solution of the Poisson
equation. The volume of communication in the particle-field decomposition approach is proportional to the number of computational grid
points instead of the number of moving particles in the domain decomposition approach. Since, in the beam dynamics simulations for our

Fig. 2. A schematic plot of the particle-field decomposition method, source from [6].

modeled by a 3D computational grid and partitioned uniformly among all the
processes. Similarly, the charged particles are also evenly partitioned among
the processes. However, the particles belong to a process may scatter over the
whole field. Figure 2 shows a schematic plot of the particle-field decomposition
among three processors. Following is the list of major steps performed by the
benchmark:

1. Get Local Charge Density (RHO): The local particles are deposited
onto the computational grid to obtain the charge density distribution. Due
to the global distribution of the particles, the whole comptational grid is
needed. (local)

2. Get Global Charge Density (RHO): The local charge density is summed
up by calling MPI Allreduce. (global)

3. Get PHI2: Solving the poison equation using the FFT-based Green func-
tion method. The FFT is performed using FFTW [3] software package. The
transpose communication is implemented using pairwise MPI Sendrecv. (Lo-
cal + Global)

4. Get PHI: Communicate with neighbors to get data for the boundary of the
subdomain. (Global)

5. Sort: Sort the local particles based on position in Z direction. This is a
periodic function to improve the data locality. (Local)

6. Get Local En: Prepare local field data for the following global communi-
cation. There are three field components needed to be prepared. (Local)

7. Get Global En: All processes gather the whole computational field data
(electric potential) using MPI Allgather. (Global)
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8. Apply Kick: The electric fields are interpolated onto individual particles
and the particles are advanced using the self-consistent electromagnetic field
and the external maps. (Local)

There are three major communication operations. The first is the MPI Allreduce
operation in Get Global Charge Density phase to sum up all local charge density.
The second is the MPI Sendrecv operation in Get PHI2 phase for the matrix
transpose in the solution of the Poisson equation using the FFT-based method.
The third is the MPI Allgather operation in the process of gathering the electric
potential from the subdomain of each processor after the solution of the Pois-
son equation. The total communication volume is proportional to the number of
computational grid points. Furthermore, the communication volumes of the first
and the third operations are also proportional to the number of MPI processes.
Therefore, using OpenMP can potentially reduce the total communication vol-
ume and improve application performance.

3 Platforms

Our work has been performed on a Cray XE6 platform, called Hopper, which
is located at NERSC and consists of 6,384 dual-socket nodes each with 32GB
DDR3 1333-MHz memory. The peak Gflops rate is 8.4 Gflops/core and 201.6
Gflops/node. Each socket within a node contains an AMD “Magny-Cours” pro-
cessor at 2.1 GHz with 12 cores. Each Magny-Cours package is itself a MCM
(Multi-Chip Module) containing two hex-core dies connected via hyper-transport.
(See Fig. 3.) Each die has its own memory controller that is connected to two
4-GB DIMMS. This means each node can effectively be viewed as having four
chips and there are large potential performance penalties for crossing the NUMA
domains. Each core has its won L1 and L2 caches, with 64KB and 512KB re-
spectively. One 6-MB L3 cache shared between 6 cores on the Magny-Cours
processor. Every pair of nodes is connected via hypertransport to a Cray Gem-
ini network chip, which collectively form a 17x8x24 3-D torus.

The compilation of synergia is through an automatic build system based in
GNU Autotools [8]. The compiling software packages we used include the GNU
compiler gcc (SUSE Linux) 4.3.4, Python 2.6, and CMAKE version 2.8.2.

4 Improving the Performance Using OpenMP

In this section, we will focus on improving the benchmark performance using
OpenMP. The computational grid size is set as 64, 64, and 256 in X, Y, and Z
direction, respectively. There are 10 particles per cell and total about 10 Million
particles. Total 256 time steps have been simulated.

4.1 Parallelizing the Loops

The first step is straightforward. Finding those loops which have no data depen-
dence across iterations and using “omp parallel for” pragma to parallelize the
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Fig. 3. The node architecture of Hopper.

work, including those loops to perform reductions at the end. One thing needs
to pay spacial attention is the data placement. Since first touch policy is used on
Hopper, we intentionally touch the data immediately after memory allocation so
that the data and the OpenMP thread that will work on it will have the same
core affinity. Otherwise, accessing data across the NUMA domains inside a node
will cause a large performance penalty.
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Fig. 4. The time breakdowns for different number of OpenMP threads .

Figure 4 displays the time breakdowns for different number of OpenMP
threads per MPI process when total 256 cores are used. The top five time-
consuming phases are shown (from bottom to up). They are for Get Global
Charge Density (Global RHO), Get PHI2 (PHI2), Get Global EN (Global EN),
Get Local Charge Density (Local RHO), and Apply Kick (Apply Kick). The re-
maining time is counted as Others. The bottom three phases are dominated by
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communication and can be treated as communication time. The other three can
be roughly teated as local computation time. For the flat MPI implementation
(#OpenMP=1), the time spent on these three phases is around 73 seconds. It
drops to 43 seconds when two OpenMP threads per MPI process are used and
drops further to 37 seconds when four OpenMP threads per MPI process are
used. For Global RHO and Global EN, the better performance is mainly due
to the reduced amount of total communication volume as the number of MPI
processes goes down. For PHI2, the communication is dominated by the matrix
transpose needed by the FFT operation. The communication volume is constant.
The transpose time drops significantly when switching from flat MPI to using
two OpenMP threads per MPI process. This is probably because of the larger
message sizes. However, further increasing #OpenMP does not improve the per-
formance. Instead when #OpenMP=8, the time for PHI2 goes up, causing the
total communication time going up accordingly.

For Local RHO, it’s responsible for depositing the local particles onto a local
auxiliary grid and involves no MPI communication. The time goes down slightly
when #OpenMP=2 and then goes up when higher number of OpenMP threads
are used. Due to the data dependence across iterations, this phase can not be
easily parallelized using OpenMP “prallel for” pragma. It is performed by only
one OpenMP thread now. When the number of MPI processes goes down, the
number of local particles belong to a MPI process becomes larger, leading to
higher depositing time. The time does not go up when #OpenMP=2 is due
to less memory contention. For Apply Kick, its time is mainly related with the
number of particles assigned to each OpenMP thread. When the loop is perfectly
parallelized with OpenMP, the number of particles per OpenMP thread remains
constant. Therefore, the time should be constant. The small variation is caused
by the memory performance.

Overall, the best performance is obtained when four OpenMP threads per
MPI process are used. The total running time has been reduced over 50%. In
the next two sections, we will investigate the performance of phase PHI2 and
phase Local RHO.

4.2 Using OpenMP for FFTW

FFTW [3] is used in synergia to perform the FFT to solve the Poisson equations
in phase Get PHI2. The computational domain used for FFT is a doubled domain
padded on the boundary. The actual size is 130, 120, and 512 for X, Y, and Z
direction, respectively. By default, only MPI processes are involved. We changed
the initialization process for FFTW3 and enabled OpenMP so that all OpenMP
threads can participate in the FFT process. The results using one OpenMP
thread and using more OpenMP threads are shown in Fig. 5. Using all OpenMP
threads for FFTW helps the performance. But the improvement is slightly for 2
and 4 OpenMP thread cases and only become explicit when 8 OpenMP threads
are used. In that case, more than 20% of FFTW time has been saved.

To understand whether the performance could be improved further, we isolate
the code related with FFTW and develop an independent micro benchmark.
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Fig. 5. The times for FFTW when one OpenMP thread and more threads are used.

We find that the micro benchmark results match those of synergia very well,
indicating further improvement should be dependent on the progress of FFTW.
The best result is obtained when #OpenMP=2.

4.3 Parallelizing Deposit

During the stage of computing local charge density, the particles are deposited
onto a computational grid to obtain the charge density distribution. Due to
the spatial distribution the particles, the grid size should cover the whole field
instead of only the subdomain assigned to a process. As we mentioned earlier,
due to the data dependence, this section can not be easily parallelized using
“pragma omp parallel for”.

Naive Approach The naive approach is to allocate an auxiliary grid for each
OpenMP thread so that each thread can directly deposits its particles onto it.
The particles assigned to a MPI process will be evenly partitioned among all
the OpenMP threads spawned by the process. After the deposition, the charge
density stored on the auxiliary grid will be reduced together by a sum operation.
There are a lot of algorithms to perform the reduction operation at the end. In
this study, we examined three implementations: Critical, Slicing, and BinaryTree.

– Critical Critical depends on “pragma omp critical” statement to perform
the reduction. As long as an OpenMP thread finishes its particle deposition,
it starts to compete for the critical section to add its particle contributions
to the final field.
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– Slicing In Slicing, each OpenMP thread is responsible for a fixed slice of the
final field and fetches the data from all other OpenMP threads to perform
the reduction.

– BinaryTree The reduction among the OpenMP threads will be carried out
according to a binary tree structure from bottom to up. At the bottom,
the reduction will be done in pairs. One thread of a pair will be responsi-
ble to perform the reduction. In the next step, the participated number of
OpenMP threads will be reduced to half, only including those threads which
performed the reduction operation in the last step. This process will be re-
peated dlog2 ne times (n is the number of OpenMP threads spawned by the
same MPI process).
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Fig. 6. The times for computing local charge density for different algorithms.

The timing results for phase Get Local Charge Density for different algorithms
are shown in Fig. 6. The Base times are those measured in Section 4.1. None of
the new algorithms performs better than the Base. The advantage of using more
OpenMP threads is overshadowed by the overhead to access extra memory and
perform the reduction operation. We also tried to use the reduction operation
supported by OpenMP itself. However, we did not see better performance results
either.

Lock Approach Another strategy is to use omp locks instead of allocating
extra amount of memory. The whole field domain will be partitioned along Z
direction among all the OpenMP threads spawned by the same MPI process.
Each OpenMP thread will be only responsible to compute the charge density for
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its assigned subdomain. All the particles assigned to a MPI process, no matter
which OpenMP thread they are assigned to, as long as they fall into the same
subdomain, will be deposited onto the field by the same thread which owns
the subdomain. However, the particles will not only affect the charge density of
its own position. They will also affect the charge density of its neighbor posi-
tions. Therefore, for boundary positions omp locks are needed to assure result
correctness. Different locks will be allocated for different positions to maximize
concurrncy. The number of locks allocated is proportional to the number of
OpenMP threads.

The remaining question is how each thread will find those particles for which
it should be responsible. The thread can not afford going through all the par-
ticles to fulfill this purpose. One way is to allow the MPI process to sort the
particles first based on their positions in Z direction and then we partition the
particles among the OpenMP threads. However, the sorting turns out to be very
expensive. Even worse, the time goes up when more OpenMP threads per MPI
process are used. Therefore, it can only be done periodically to improve data
locality.

0.0	  

5.0	  

10.0	  

15.0	  

20.0	  

25.0	  

256x1	   128x2	   64x4	   32x8	  

Ti
m
e	  
(s
)	  

#MPI	  x	  #OpenMP	  

Base	  

Lock	  

Fig. 7. The times for computing local charge density using omp lock.

Instead, we partition the particles first among the OpenMP threads and allow
each OpenMP thread to perform a sort on its own particles. We add a function
called subsort in the synergia source code for this purpose.. The results is that all
the particles assigned to a MPI process are now divided into n (n = #OpenMP)
sorted sections. For each section, an OpenMP thread can use binary search to
find the first particle it should work on and move left and right to get other
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particles as those particles it will work on should be continuous. This process
will be repeated for every section.

Figure 7 shows the new results using mop lock. When one OpenMP thread
is used, the time becomes slightly higher due to the extra sorting work. When
two threads are used, it is similar to the Base case. However, when four or eight
threads are used, the performance becomes better. Over 30% of the time has
been saved for eight-thread run.
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Fig. 8. The time breakdowns before and after optimization.

The final time breakdowns are shown in Fig. 8 when both optimizations
for FFTW and charge deposition have been applied (labeled as OPT and com-
paring with the Base). The best performance is obtained when four OpenMP
threads per MPI process are used. Compared with flat MPI results, the per-
formance become more than 1.7 times better when 256 core are used. Using
hybrid OpenMP+MPI programming model has significantly improve the perfor-
mance. Another advantage of using OpenMP is the memory usage. Substantial
amount of memory could be saved due to the shared address space supported
by OpenMP. Table 1 shows the memory footprints when different number of
OpenMP threads are used. As the growth in memory capacity is not keeping
track with the growth in the number of cores on the future architectures, mem-
ory considerations are becoming much more important.
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Table 1. The memory footprints for different MPI x OpenMP configurations (GB).

#MPI x #OpenMP 256x1 128x2 64x4 32x8

Memory (GB) 12.06 6.50 3.80 2.23

However, as we noted from Fig. 8, using eight OpenMP threads per MPI pro-
cess will substantially increase the local computation time compared with cases
using two or four OpenMP threads per MPI processes. The current architecture
trend is to use more and more cores on a node. The number of cores will reach
several hundreds or even a thousand in a few years. Using OpenMP to scale
complex applications like synergia to a full node scale is extremely challenging.
Some tools need to be developed to automatically optimize data placement and
thread affinity. If not impossible, it will be very challenging for developers to
perform such kind of task for complex applications as the number of OpenMP
regions and related number of variables become very large. To improve the data
locality for the NUMA architecture inside a node, some optimization techniques
developed in the last decade for MPI may need to be applied to OpenMP also.

5 Related Work

Using OpenMP or hybrid MPI+OpenMP to improve the performance has been
studied by many researchers. To name a few, Nakajima [5] described how to use
a three-level hybrid programing model (vectorization, OpenMP, and MPI) to
program efficiently on Earth Simulator. Shan et al. [7] discussed the advantage of
using hybrid MPI+OpenMP programming model for NAS parallel applications.
Kaushik et al. [4] investigated the performance of implicit PDF simulations for
hybrid MPI+OpenMP programming model on a multicore architecture. Brunst
and Mohr [2] introduced a tool to analyze the performance for hybrid OpenMP
and MPI programs. The main difference from our work is that we focus on
specific application synergia and on a new architecture, Cray XE6.

6 Summary and Conclusions

In this paper, we describe in detail how to use OpenMP to improve the perfor-
mance for synergia. Using two or four OpenMP threads per MPI process, the
performance could be improved significantly. In the best case, the performance
has become over 1.7 times better when 256 cores are used. However, using more
OpenMP threads per MPI process can not improve the performance further.
Instead, the improvement starts to become less as memory contention becomes
more severe. To address this challenge, we are currently working on a tool that
can optimize the data placement and dynamically schedule the OpenMP threads
inside a node to improve data locality. We are also planning on changing the
workload partition method for synergia. Currently, it only partitions the grid
along Z direction, which limits the scalability of the code.
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