
Load Balancing on Speed

Steven Hofmeyr, Costin Iancu, Filip Blagojević
Lawrence Berkeley National Laboratory
{shofmeyr, cciancu, fblagojevic}@lbl.gov

Abstract
To fully exploit multicore processors, applications are expected to
provide a large degree of thread-level parallelism. While adequate
for low core counts and their typical workloads, the current load
balancing support in operating systems may not be able to achieve
efficient hardware utilization for parallel workloads. Balancing run
queue length globally ignores the needs of parallel applications
where threads are required to make equal progress. In this paper we
present a load balancing technique designed specifically for paral-
lel applications running on multicore systems. Instead of balancing
run queue length, our algorithm balances the time a thread has ex-
ecuted on “faster” and “slower” cores. We provide a user level
implementation of speed balancing on UMA and NUMA multi-
socket architectures running Linux and discuss behavior across a
variety of workloads, usage scenarios and programming models.
Our results indicate that speed balancing when compared to the
native Linux load balancing improves performance and provides
good performance isolation in all cases considered. Speed balanc-
ing is also able to provide comparable or better performance than
DWRR, a fair multi-processor scheduling implementation inside
the Linux kernel. Furthermore, parallel application performance
is often determined by the implementation of synchronization oper-
ations and speed balancing alleviates the need for tuning the im-
plementations of such primitives.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: [Design studies, Modeling techniques]; D.2.4 [Software
Engineering]: Metrics—Performance measures; D.1.3 [Program-
ming Techniques]: Concurrent Programming—Parallel program-
ming; D.3 [Programming Languages]: [Parallel, Compilers]; I.6.4
[Computing Methodologies]: Simulation and Modeling—Model
Validation and Analysis

General Terms Performance, Measurement, Languages, Design

Keywords Parallel Programming, Operating System, Load Bal-
ancing, Multicore, Multisocket

1. Introduction
Multi-core processors are prevalent nowadays in systems ranging
from embedded devices to large-scale high performance comput-
ing systems. Over the next decade the degree of on-chip parallelism
will significantly increase and processors will contain tens and even

Copyright 2010 Association for Computing Machinery. ACM acknowledges that this
contribution was authored or co-authored by a contractor or affiliate of the U.S.
Government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
PPoPP’10, January 9–14, 2010, Bangalore, India.
Copyright c© 2010 ACM 978-1-60558-708-0/10/01. . . $10.00

hundreds of cores [6]. The availability of cheap thread level paral-
lelism has spurred a search for novel applications that would add
commercial value to computing systems, e.g. speech and image
recognition or parallel browsers. These new applications are par-
allel, often on multiple levels, and are likely [2] to use methods and
algorithms encountered in scientific computing. Their emergence
will cause the structure of future desktop and even embedded work-
loads to be fundamentally altered.

Current operating systems are written and optimized mainly for
multiprogrammed commercial and end-user workloads and thread
independence is a core assumption in the design of their schedulers.
In a parallel application there is a higher level of inter-thread inter-
action; consequently, balancing applications with data and synchro-
nization dependences requires additional scheduler mechanisms [5,
8, 9, 16, 30]. Runtimes that are specifically designed for parallel
computing provide paradigm ad hoc work stealing solutions for
load balancing (for example, Adaptive MPI [11] and Cilk [14]).

In this paper we propose a generic user level technique to load
balance parallel scientific applications written in SPMD style. This
technique is designed to perform well on multicore processors
when any of the following conditions is met: 1) the number of
tasks in an application might not be evenly divisible by the number
of available cores; 2) asymmetric systems where cores might run
at different speeds and 3) non-dedicated environments where a
parallel application’s tasks are competing for cores with other tasks.

Our scheduler explicitly manages all the threads within one ap-
plication and uses migration to ensure that each thread is given a
fair chance to run at the fastest speed available system wide. We
named our scheduling algorithm speed balancing and we present a
user level implementation on NUMA (AMD Barcelona) and UMA
(Intel Tigerton) multicore systems running the Linux 2.6.28 ker-
nel. We empirically validate its performance under a variety of us-
age scenarios using combinations of parallel (OpenMP, MPI and
UPC) and multiprogrammed workloads. Using speed balancing the
performance sometimes doubles when compared to the Linux load
balancer, while execution variability decreases from a maximum
of 100% to usually less than 5%. Speed balancing is also able to
provide better performance than OS-level load balancing mecha-
nisms [15] that are designed to provide global fairness on multi-
core processors. Furthermore, our results indicate that speed bal-
ancing eliminates some of the implementation restrictions for syn-
chronization or collective operations such as barriers when running
in non-dedicated or oversubscribed environments.

Research in process scheduling has a long and distinguished
history and the importance of implementing effective operating
system or paradigm independent load balancing mechanisms for
mixed parallel workloads has been recently [5, 16] re-emphasized.
To the best of our knowledge, the proposed approach of dynami-
cally balancing the speed of running threads is original. Measur-
ing speed is an elegant and simple way of capturing history and
the complex interactions caused by priorities, interactive tasks or

heterogeneous cores. The notion of speed allows us to design a
novel user level parallel-application balancer that is architecture
independent, works in non-dedicated systems, does not make as-
sumptions about application behavior and performs well with un-
even task distributions. As discussed throughout this paper, alter-
native approaches have limitations in at least one of these areas.
Speed balancing can easily co-exist with the default Linux load
balance implementation and our Linux-centric discussion is easy
to relate to other operating systems. Furthermore, speed balancing
has the potential to simplify the design of managed runtimes that
have “domain” specific load balancers and opens the door for sim-
pler parallel execution models that rely on oversubscription as a
natural way to achieve good utilization and application-level load
balancing.

2. Load Balancing
The importance of load balance in parallel systems and applica-
tions is widely recognized. Contemporary multiprocessor operat-
ing systems, such as Windows Server, Solaris 10, Linux 2.6 and
FreeBSD 7.2, use a two-level scheduling approach to enable effi-
cient resource sharing. The first level uses a distributed run queue
model with per core queues and fair scheduling policies to man-
age each core. The second level is load balancing that redistributes
tasks across cores. The first level is scheduling in time, the second
scheduling in space. The implementations in use share a similar de-
sign philosophy: 1) threads are assumed to be independent; 2) load
is equated to queue length and 3) locality is important.

The current design of load balancing mechanisms incorporates
assumptions about the workload behavior. Interactive workloads
are characterized by independent tasks that are quiescent for long
periods (relative to cpu-intensive applications) of time. Server
workloads contain a large number of threads that are mostly in-
dependent and use synchronization for mutual exclusion on small
shared data items and not for enforcing data or control dependence.
To accommodate these workloads, the load balancing implemen-
tations in use do not start threads on new cores based on global
system1 information. Another implicit assumption is that applica-
tions are either single threaded or, when multi-threaded, they run in
a dedicated environment. The common characteristics of existing
load balancing designs can be summarized as follows: 1) they are
designed to perform best in the cases where cores are frequently
idle; and 2) balancing uses a coarse-grained global optimality crite-
rion (equal queue length using integer arithmetic). These heuristics
work relatively well for current commercial and end-user multi-
programmed workloads but are likely to fail for parallelism biased
workloads or on asymmetric systems. Development of scheduler
support for recognizing proper parallel application characteristics
is an essential step towards achieving efficient utilization of highly
parallel systems.

In this paper we focus on Linux, which embodies principles mir-
rored in other OSes such as Windows, Solaris and FreeBSD. In the
Linux kernel 2.6 series there are per-core independent run queues
containing the currently running tasks2. Since version 2.6.23, each
queue is managed by the Completely Fair Scheduler (CFS). The
Load on each core is defined as the number of tasks in the per-core
run queue. Linux attempts to balance the load (queue lengths) sys-
tem wide by periodically invoking the load balancing algorithm on
every core to pull tasks from longer to shorter queues, if possible.

1 For example, at task start-up Linux tries to assign it an idle core, but the
idleness information is not updated when multiple tasks start simultane-
ously.
2 Linux does not differentiate between threads and processes: these are all
tasks.

Linux contains topology awareness, captured by scheduling do-
mains. The scheduling domains form a hierarchy that reflects the
way hardware resources are shared: SMT hardware context, cache,
socket and NUMA domain. Balancing is done progressing up the
hierarchy and at each level, the load balancer determines how many
tasks need to be moved between two groups to balance the sum
of the loads in those groups. If the balance cannot be improved
(e.g. one group has 3 tasks and the other 2 tasks) Linux will not
migrate any tasks. The frequency with which the load balancer is
invoked is dependent on both the scheduling domain and the instan-
taneous load. It is configured via a set of kernel parameters that can
be changed at runtime through the /proc file system. The default
is to perform load balancing on idle cores every 1 to 2 timer ticks
(typically 10ms on a server) on UMA and every 64ms on NUMA;
on busy cores, every 64 to 128ms for SMT, 64 to 256ms for shared
packages, and every 256 to 1024ms for NUMA. Another tunable
kernel parameter is the imbalance percentage, a measure of how
imbalanced groups must be in order to trigger migrations. This is
typically 125% for most scheduling domains, with SMT usually
being lower at 110%. With the default parameter settings, the fre-
quency of balancing and the number of migrations decreases as the
level in the scheduling domain hierarchy increases.

The load balancer may fail to balance run queues because of
constraints on migrating tasks. In particular, the balancer will never
migrate the currently running task, and it will resist migrating
“cache hot” tasks, where a task is designated as cache-hot if it has
executed recently (≈ 5ms) on the core (except for migration be-
tween hardware contexts on SMT). This is a simple locality heuris-
tic that ignores actual memory usage. If repeated attempts (typi-
cally between one and two) to balance tasks across domains fail,
the load balancer will migrate cache-hot tasks. If even migrating
cache-hot tasks fails to balance groups, the balancer will wake up
the kernel-level migration thread, which walks the domains from
the base of the busiest core up to the highest level, searching for an
idle core to push tasks to.

The FreeBSD ULE scheduler [24], available as default in
FreeBSD 7.2, uses per core scheduling queues and an event driven
approach to managing these queues. FreeBSD uses a combination
of pull and push task migration mechanisms for load balancing.
Of particular interest to the performance of parallel applications is
the push migration mechanism that runs twice a second and moves
threads from the highest loaded queue to the lightest loaded queue.
In the default configuration the ULE scheduler will not migrate
threads when a static balance is not attainable, but theoretically it
is possible to change the configuration to allow threads to migrate
even when queues are imbalanced by only one thread. Accord-
ing to the ULE description [24], the balancer will migrate tasks
even when run queues are short, i.e. three tasks running on two
CPUs. In our experiments, we have explored all variations of the
kern.sched settings, without being able to observe the benefits
of this mechanism for parallel application performance.

The recently proposed [15] Distributed Weighted Round-Robin
(DWRR) multi-processor fair scheduling provides system-wide fair
CPU allocation from the Linux kernel. The implementation sched-
ules based on rounds, defined as the shortest time period during
which every thread in the system completes at least one of its round
slices (weighted by priority). DWRR maintains two queues per
core, active and expired and a thread is moved to the expired queue
after finishing its round slice. To achieve global fairness, each CPU
has a round number and DWRR ensures that during execution this
number for each CPU differs by at most one system-wide. When a
CPU finishes a round it will perform round balancing by stealing
threads from the active/expired queues of other CPUs, depending
on their round number. When all the threads have run, the round
number is advanced. DWRR uses 100ms for the round slice in the

2.6.22 Linux kernel and 30 ms in the 2.6.24 kernel. DWRR does
not maintain a migration history and both the number of threads
migrated from each core within one round and the round slice are
configurable; it appears that in order to enforce fairness the algo-
rithm might migrate a large number of threads. Being a kernel level
mechanism the proposed implementation is not application aware
and uniformly balances all the tasks in the system. To our knowl-
edge, DWRR has not been tuned for NUMA. In contrast, our ap-
proach maintains a migration history and it is designed to limit the
rate of migrations by stealing only one task at one time.

3. Parallel Applications and Load Balancing
The vast majority of existing implementations of parallel scien-
tific applications use the SPMD programming model: there are
phases of computation followed by barrier synchronization. The
three paradigms explored in this paper, OpenMP, UPC and MPI,
all provide SPMD parallelism. The SPMD model contravenes the
assumptions made in the design of system level load balancing
mechanisms : threads are logically related, have inter-thread data
and control dependence and have equally long life-spans.

In SPMD programming, users or libraries often make static as-
sumptions about the number of cores available and assume dedi-
cated environments. Applications are run with static parallelism or
plainly have restrictions on the degree of task parallelism due to
the difficulty of parallel domain decomposition, for example, many
parallel jobs often request an even or perfect square number of pro-
cessors. Furthermore, asymmetries or uneven thread distributions
across cores are likely to be encountered in future systems. The
Intel Nehalem processor provides the Turbo Boost mechanism that
over-clocks cores until temperature rises and as a result cores might
run at different clock speeds. Recently proposed OS designs such
as Corey [32] or those under development at Cray and IBM provide
for reserving cores to run only OS level services.

Achieving good performance for SPMD applications requires
that : 1) all tasks within the application make equal progress and
2) the maximum level of hardware parallelism is exploited. To il-
lustrate the former, consider a two CPU system and an application
running with three threads. The default Linux load balancing algo-
rithm will statically assign two threads to one of the cores and the
application will perceive the system as running at 50% speed. The
impact on performance in this case is illustrated in Section 6.2. The
implementations of both the ULE scheduler or fair multiproces-
sor DWRR scheduling [15] might correct this behavior by repeat-
edly migrating one thread. In this case, the application perceives
the system as running at 66% speed. Our approach also addresses
this scenario by explicitly detecting and migrating threads across
run queues, even when the imbalance is caused by only one task.

The interaction between an application or programming model
and the underlying OS load balancing is largely accomplished
through the implementation of synchronization operations: locks,
barriers or collectives (e.g. reduction or broadcast). Implementa-
tions use either polling or a combination of polling with yield-
ing the processor (sched yield) or sleeping3 (sleep). In dedi-
cated environments where applications run with one task per core,
polling implementations provide orders of magnitude performance
improvements [21]. In non-dedicated, oversubscribed or cluster en-
vironments some form of yielding the processor is required for
overall progress. The Intel OpenMP runtime we evaluate calls
sleep, while UPC and MPI call sched yield. A thread that
yields remains on the active run queue and hence the OS level load
balancer counts it towards the queue length (or load). By contrast, a
thread that sleeps is removed from the active run queue, which en-

3 For brevity any other mechanism that removes threads from the run queue
is classfied as sleep.

ables the OS level load balancer to pull tasks onto the CPUs where
threads are sleeping.

Based on our Linux and FreeBSD experiences described in Sec-
tion 6.2, applications calling sleep benefit from better level sys-
tem load balancing. On the other hand, when load is evenly dis-
tributed, implementations that call sched yield can provide bet-
ter performance due to faster synchronization. One of the implica-
tions of our work is that with speed balancing, identical levels of
performance can be achieved by calling only sched yield, irre-
spective of the instantaneous system load.

4. Argument For Speed Balancing
When threads have to synchronize their execution in SPMD appli-
cations, the parallel performance is that of the slowest thread and
variation in “execution speed” of any thread negatively affects the
overall system utilization and performance. A particular thread will
run slower than others due to running on the core with the longest
queue length, sharing a core with other threads with higher priority
or running on a core with lower computational power (slower clock
speed). In the rest of this paper and the description of our algorithm
we classify cores as slow or fast depending on the “progress” per-
ceived by an application’s threads. In the previous example where
an application with three threads runs on two cores, the core run-
ning two threads will be classified as slow.

Consider N threads in a parallel application running on M
homogeneous cores, N > M . Let T be the number of threads
per core T = b N

M
c. Let FQ denote the number of fast cores,

each running T threads and SQ the number of slow cores with
T + 1 threads. Assume that threads will execute for the same
amount of time S seconds and balancing executes everyB seconds.
Intuitively, S captures the duration between two program barrier
or synchronization points. With Linux load balancing, the total
program running time under these assumptions is at most
(T + 1) ∗ S, the execution time on the slow cores.

We assume that migration cost is negligible, therefore the state-
ments about performance improvements and average speed provide
upper bounds. Assuming a small impact of thread migration is rea-
sonable: the cost of manipulating kernel data structures is small
compared to a time quantum, cache content is likely lost across
context switches when threads share cores and our algorithm does
not perform migration across NUMA nodes. Li et al [15] use mi-
crobenchmarks to quantify the impact of cache locality loss when
migrating tasks and indicate overheads ranging from µseconds (in
cache footprint) to 2 milliseconds (larger than cache footprint)
on contemporary UMA Intel processors. For reference, a typical
scheduling time quantum is 100ms.

Under existing circumstances, with fair per core schedulers
the average thread speed is f ∗ 1

T
+ (1 − f) ∗ 1

T+1
, where f

represents the fraction of time the thread has spent on a fast core.
The Linux queue-length based balancing will not4 migrate threads
so the overall application speed is that of the slowest thread 1

T+1
.

Ideally, each thread should spend an equal fraction of time on
the fast cores and on the slow cores5. The asymptotic average
thread speed becomes 1

2∗T
+ 1

2∗(T+1)
which amounts to a possible

speedup of 1
2∗T

.
Instead of targeting perfect fairness we make an argument based

on necessary but not sufficient requirements: In order for speed
balancing to perform better than queue-length based balancing
each thread has to execute at least once on a fast core.

4 If threads do not sleep or block.
5 This is the ideal for speed balancing to perform better than the default
Linux load balancing. Clearly this is not the ideal for optimal balance in
every case.

Deriving constraints on the number of balancing operations re-
quired to satisfy this condition indicates the threshold at which
speed balancing is expected to perform better than Linux-style
queue length based balancing. Below this threshold the two algo-
rithms are likely to provide similar performance. Consequently, in
the rest of this discussion the negative qualifiers (e.g. non-profitable
or worst-case scenario) mean in fact the same performance as the
Linux default.

Lemma 1. The number of balancing steps required to satisfy the
necessity constraint is bound by 2 ∗ d SQ

FQ
e.

Proof. We show the proof for the case FQ < SQ. In each step of
the algorithm we pull one thread from a slow queue to a fast queue.
The simple act of migrating a thread flips one whole queue from
slow to fast and the other from fast to slow. This means that at each
step we give FQ ∗ T threads a chance to run on a fast queue. We
continue doing this for SQ

FQ
steps and at the end N − SQ threads

have once run fast. There are SQ threads left that had no chance at
running fast. From all the queues containing these threads we need
to pull a different thread onto the available fast queues and run one
interval without any migrations. This process takes SQ

FQ
steps. Thus

the total number of steps is 2 ∗ SQ
FQ

. A similar reasoning shows that
for FQ ≥ SQ two steps are needed.

The proof describes an actual algorithm for speed balancing and
we can now discuss its expected behavior. Queues grow by at most
one thread per step and the rate of change is slow. Since threads
should not be migrated unless they have had a chance to run on a
queue, balancing could start after T + 1 time quanta: increasing
load postpones the need for balancing. Lemma 1 provides us with
heuristics to dynamically adjust the balancing interval if application
behavior knowledge is available.

The total “program” running time is Total time = (T +1)∗S
and according to Lemma 1 the prerequisite for speed balancing to
be profitable is:
Total time > 2 ∗ d SQ

FQ
e or (T + 1) ∗ S > 2 ∗ NmodM

M−NmodM
.

This reasoning assumes an implementation where balancing is
performed synchronously by all cores. Note that our implementa-
tion uses a distributed algorithm so task migrations might happen
with a higher frequency, proportional to the number of cores.

Figure 1 indicates the scalability of this approach for increasing
numbers of threads and cores. It plots the minimum value of S for
(N ,M ,B = 1 time unit) after which speed balancing is expected
to perform better than Linux load balancing. This plot captures both
the relationship between the duration of inter-thread synchroniza-
tion periods and frequency of balancing as well as the scalability of
the algorithm with the number of cores and threads. In the majority
of cases S ≤ 1, which indicates that the algorithm can balance fine-
grained applications where the duration of computation is “equal”
to the duration of a synchronization operation. For a fixed number
of cores, increasing the number of threads decreases the restric-
tions on the minimum value of S, whereas increasing the number
of cores increases the minimum value for S. The high values for
S appearing on the diagonals capture the worst case scenario for
speed balancing: few (two) threads per core and a large number of
slow cores (M − 1, M − 2). Coarse grained applications will be
effectively balanced because the minimum S will always be high.

The preceding argument made for homogeneous systems can
be easily extended to heterogeneous systems where cores have
different performance by weighting the number of threads per core
with the relative core speed.

 10 20 30 40 50 60 70 80 90 100

Number of cores

 50

 100

 150

 200

 250

 300

 350

 400

N
u
m

b
e
r

o
f

th
re

a
d
s

 0

 2

 4

 6

 8

 10

Figure 1. Relationship between inter-thread synchronization interval (S)
and a fixed balancing interval (B=1). The scale of the figure is cut off at 10;
the actual data range is [0.015,147].

5. Speed Balancing
We provide a user level balancer that manages the application
threads on user requested cores. Our implementation does not re-
quire any application modifications, it is completely transparent to
the user and it does not make any assumptions about application
implementation details. In particular, it does not make any assump-
tions about thread “idleness,” which is an application-specific no-
tion, or about synchronization mechanisms (busy-wait, spin locks
or mutexes). Blocking or sleep operations are captured by the algo-
rithm since they will be reflected by increases in the speed of their
co-runners.

For the purpose of this work we define speed = texec
treal

, where
texec is the elapsed execution time and treal is the wall clock time.
This measure directly captures the share of CPU time received by a
thread and can be easily adapted to capture behavior in asymmetric
systems. It is simpler than using the inverse of queue length as a
speed indicator because that requires weighting threads by prior-
ities, which can have different effects on running time depending
on the task mix and the associated scheduling classes. Using the
execution time based definition of speed is a more elegant mea-
sure than run queue length in that it captures different task priori-
ties and transient task behavior without requiring any special cases.
Furthermore, the current definition provides an application and OS
independent metric for our algorithm. We discuss in Section 7 other
possible measures of speed based on sampling performance coun-
ters. Also, sampling performance counters at the user level it is not
an entirely portable approach since it will interfere with application
tuning efforts or other runtime techniques that utilize the same CPU
performance registers.

5.1 Algorithm
Speed balancing uses a balancing thread running on each core
(termed the local core). We implement a scalable distributed algo-
rithm where each balancing thread or balancer operates indepen-
dently and without any global synchronization. Periodically a bal-
ancer will wake up, check for imbalances, correct them by pulling
threads from a slower core to the local core (if possible) and then
sleep again. The period over which the balancer sleeps (balance in-
terval) determines the frequency of migrations. The impact of this
parameter is illustrated in Section 6.1. For all of our experiments
we have used a fixed balance interval of 100ms.

Note that in the following description the notion of a core’s
speed is an entirely application specific notion. When several ap-
plications run concurrently each might perceive the same core dif-
ferently based on the task mix. When activated, the balancer carries
out the following steps:

1. For every thread thi on the local core cj , it computes the speed
si

j over the elapsed balance interval.

2. It computes the local core speed sj over the balance interval as
the average of the speeds of all the threads on the local core:
sj = average(si

j).

3. It computes the global core speed sglobal as the average speed
over all cores: sglobal = average(sj).

4. It attempts to balance if the local core speed is greater than the
global core speed: sj > sglobal.

The only interaction between balancer threads in our algorithm
is mutual exclusion on the variable sglobal. The balancer attempts
to balance (step 4 above) by searching for a suitable remote core
ck to pull threads from. A remote core ck is suitable if its speed
is less than the global speed (sk < sglobal) and it has not recently
been involved in a migration. Since our algorithm does not perform
global synchronization, this post-migration block must be at least
two balance intervals, sufficient to ensure that the threads on both
cores have run for a full balance interval and the core speed values
are not stale. This heuristic has the side effect that it allows cache
hot threads to run repeatedly on the same core. Once it finds a
suitable core ck, the balancer pulls a thread from the remote core
ck to the local core cj . The balancer chooses to pull the thread that
has migrated the least in order to avoid creating “hot-potato” tasks
that migrate repeatedly.

Without global synchronization, our algorithm cannot guarantee
that each migration will be the best possible one. Each balancer
makes its own decision, independent of the other balancers, which
can result in a migration from the slowest core to a core that is
faster than average, but not actually the fastest core. To help break
cycles where tasks move repeatedly between two queues and to
distribute migrations across queues more uniformly, we introduce
randomness in the balancing interval on each core. Specifically, a
random increase in time of up to one balance interval is added to
the balancing interval at each wake-up. Consequently the elapsed
time since the last migration event varies randomly from one thread
to the next, from one core to the next, and from one check to the
next. If knowledge about application characteristics is available, the
balancing interval can be further tuned according to the principles
described in Section 4.

5.2 Implementation
Speed balancing is currently implemented as a stand-alone multi-
threaded program, speedbalancer, that runs in user space.
speedbalancer takes as input the parallel application to bal-
ance and forks a child which executes the parallel application.
speedbalancer then inspects the /proc file system to deter-
mine the process identifiers (PIDs) of all6 the threads in the par-
allel application. Due to delays in updating the system logs, we
employ a user tunable startup delay for the balancer to poll the
/proc file system. Initially, each of the threads gets pinned (using
the sched setaffinity system call) to a core in such a way as
to distribute the threads in round-robin fashion across the available
cores. While speed balancing can attain good dynamic behavior re-
gardless of the initial distribution, on NUMA systems we prevent
inter-NUMA-domain migration. The initial round-robin distribu-
tion ensures maximum exploitation of hardware parallelism inde-
pendent of the system architecture.

The sched setaffinity system call is also used to mi-
grate threads when balancing. sched setaffinity forces a
task to be moved immediately to another core, without allow-
ing the task to finish the run time remaining in its quantum
(called the vruntime in Linux/CFS). Any thread migrated using
sched setaffinity is fixed to the new core; Linux will not at-
tempt to move it when doing load balancing. Hence, we ensure that
any threads moved by speedbalancer do not also get moved

6 This implementation can be easily extended to balance applications with
dynamic parallelism by polling the /proc file system to determine task
relationships.

Tigerton Barcelona
Processor Intel Xeon E7310 AMD Opteron 8350
Clock GHz 1.6 2
Cores 16 (4x4) 16 (4x4)
L1 data/instr 32K/32K 64K/64K
L2 cache 4M per 2 cores 512K per core
L3 cache none 2M per socket
Memory/core 2GB 4GB
NUMA no socket (4 cores)

Table 1. Test systems.

by the Linux load balancer. This also allows us to apply speed bal-
ancing to a particular parallel application without preventing Linux
from load balancing any other unrelated tasks.

To accurately measure thread speed, we need to obtain the
elapsed system and user times for every thread being monitored.
We found the most efficient approach to be through the taskstats
netlink-based interface to the Linux kernel. Because of the way
task timing is measured, there is a certain amount of noise in the
measurements, and since speedbalancer pulls threads from
slower cores, it needs a mechanism to ensure that the slow cores
are accurately classified. Hence speedbalancer only pulls from
cores that are sufficiently lower than the global average, i.e. it pulls
from core ck when sk/sglobal < TS , where Ts is the configurable
speed threshold. This also ensures that noise in the measurements
does not cause spurious migrations when run queues are perfectly
balanced. In our experiments we used Ts = 0.9.

Unlike Linux, we do not implement hierarchical scheduling-
domain balancing triggered at different frequencies. Instead, dif-
ferent scheduling domains can have different migration intervals.
For example, speedbalancer can enable migrations to happen
twice as often between cores that share a cache as compared to
those that do not. The scheduling domains are determined by read-
ing the configuration details from the /sys file system. Migrations
at any scheduling domain level can be blocked altogether. This is
particularly useful on NUMA systems, where migrations between
nodes can have large performance impacts. In our experiments we
allowed migrations across “cache” domains and blocked NUMA
migrations: estimating the cost of NUMA migration as presented
by Li et al [16] can be easily integrated.

6. Results
We tested speed balancing on two different multicore architectures
as shown in Table 1. The Tigerton system is a UMA quad-socket,
quad-core Intel Xeon where each pair of cores shares an L2 cache
and each socket shares a front-side bus. The Barcelona system is a
NUMA quad-socket, quad-core AMD Opteron where cores within
a socket share an L3 cache. In the results that follow, we focus
on the Tigerton until section 6.4, when we report on the effects of
NUMA. Both systems were running the Linux 2.6.28.2 kernel (lat-
est version as of January 2009). We report results for experiments
with non-essential services disabled and essential services pinned
to the 16th core to minimize OS interference. The results with non-
pinned services indicate even more erratic behavior for the default
Linux load balancing and have no impact on the behavior of speed
balancing. We have also run the full set of experiments on a two
socket Intel Nehalem system which is a 2x4x(2) NUMA SMT ar-
chitecture with each core providing two hardware execution con-
texts. Although our results (omitted for brevity) indicate that speed
balancing outperforms load balancing on the Nehalem, speed bal-
ancing does not adjust for the the asymmetric nature of the SMT
architecture. In future work we intend to weight the speed of a task
according to the state of the other hardware context, because a task
running on a “core” where both hardware contexts are utilized will
run slower than when running on a core by itself.

We use parallel and multiprogrammed workloads and examine
their combined behavior. Each experiment has been repeated ten
times or more. The parallel workload contains implementations of

20 

100 

800 1 

1.1 

1.2 

1.3 

1.4 

52
80

 
17

60
 

10
15

 

73
3 

57
4 

31
4 

20
3 

14
5 

10
2 

73
 

53
 

44
 

34
  Ba

la
nc
in
g 
In
te
rv
al
 B
 (m

se
c)
 

Sl
ow

do
w
n 
Co

m
pa

re
d 
to
 2
 

Ba
rr
ie
rs
 

ComputaCon Between Two Barriers (usec) 

Figure 2. Three threads on two cores on Intel Tigerton, fixed
amount of computation per thread ≈ 27s, with barriers at the
interval shown on x-axis.

the NAS [19] Parallel Benchmarks (NPB) in OpenMP, MPI and
UPC. These are scientific applications written with SPMD paral-
lelism which capture both CPU and memory intensive (regular and
irregular) behaviors. We ran several configurations for each bench-
mark (classes S, A, B, C) with different memory footprints, result-
ing in a range of execution times from a few seconds to hundreds of
seconds. Thus, we have a reasonable sample of short and long lived
applications that perform synchronization operations at granulari-
ties ranging from few milliseconds to seconds, as illustrated in Ta-
ble 2. Asanović et al [2] examined six different promising domains
for commercial parallel applications and report that a surprisingly
large fraction of them use methods encountered in the scientific
domain. In particular, all methods used in the NAS benchmarks ap-
pear in at least one commercial application domain.

The NAS [19] 3.3 release OpenMP and MPI benchmarks are
compiled with the Intel icc 11.0 compiler. The NAS [20] 2.4
release UPC benchmarks are compiled with the Berkeley UPC
2.8.0 compiler using icc 11.0 as a back-end compiler.

For comparison, on the Intel Tigerton UMA system we have
repeated the experiments using both FreeBSD 7.2 and the DWRR
implementation in the Linux kernel 2.6.22. These implementations
respectively have limited or no NUMA support. DWRR supports
both the Linux 2.6.22 kernel which uses the O(1) per core scheduler
and the Linux 2.6.24 kernel which uses the CFS per core scheduler
(same as 2.6.28). We were not able to boot the 2.6.24 DWRR based
implementation and therefore we present results using the 2.6.22
based implementation. Furthermore, due to stability problems with
the latter (system hangs or kernel panic) we have only partial results
to compare speed balancing against DWRR.

In the rest of this discussion, LOAD refers to default Linux load
balancing and SPEED refers to speed balancing (experiments run
with speedbalancer).

6.1 Impact of Balancing and Synchronization Frequency
We illustrate the relationship between the application level granu-
larity of synchronization S (time between barriers) and the load
balancing interval B using a modified version of the NAS EP
benchmark. EP is “embarrassingly parallel”: it uses negligible
memory, no synchronization and it is a good case test for the effi-
ciency of load balancing mechanisms. In EP each task executes the
same number of “iterations” and we have modified its inner loop to
execute an increasing number of barriers. Results for a configura-
tion with three threads running on two cores on the Intel Tigerton
architecture are presented in Figure 2. Increasing the frequency of
migrations (balancing events) leads to improved performance. The
EP benchmark is CPU intensive and has a very small memory foot-
print, therefore thread migrations are cheap with a magnitude of
several µs, similar to the results reported in [15]. A 20ms balanc-
ing interval produces the best performance for EP. Loss of cache
context for memory intensive benchmarks increases the cost of mi-
grations to several ms. Our parameter sweep, using all the NAS

benchmarks, for the granularity of the balancing interval indicates
that a value of 100 ms works best in practice. This is also the
value of the system scheduler time quanta: using a lower value for
the balancing interval might produce inaccurate values for thread
speeds since the OS may have stale values.

6.2 Dedicated Environment
In this set of experiments we examine the behavior of NPB running
in a dedicated environment. Each benchmark is compiled to use 16
threads and we vary the number of cores allocated to the applica-
tion. We compare SPEED, LOAD and scenarios where the threads
are specifically pinned to cores. The effectiveness of SPEED for
parallel applications in a dedicated environment is illustrated in
Figure 3, which shows the speedup for a UPC implementation of
the NAS EP benchmark. EP scales perfectly when compiled and
run with one thread per core (“One-per-core”). The dynamic bal-
ancing enforced by SPEED achieves near-optimal performance at
all core counts, with very little performance variation. By contrast,
static application level balancing where threads are pinned to cores
(“PINNED”), only achieves optimal speedup when 16mod N = 0
(at 2, 4, 8 and 16 cores). LOAD7 is often worse than static balanc-
ing and highly variable (run times can vary by a factor of three),
indicating a failure to correct initial imbalances. We explore this
issue further in section 6.4.

Performance with DWRR exhibits low variability (a few percent
lower than SPEED) and scales as well as with SPEED up to eight
cores and much better than with LOAD. On more than eight cores,
DWRR performance is worse than SPEED, and at 16 threads on 16
cores, the speedup is only 12. With every other balancing system
investigated, speedup at 16 on 16 was always close to 16. Unfortu-
nately, we have only a very limited set of DWRR results due to its
stability problems. Performance with the ULE FreeBSD scheduler8

is very similar to the pinned (statically balanced) case. Although we
attempted to tune FreeBSD to migrate tasks in unbalanced queues,
this did not appear to happen.

The lines labeled LOAD-SLEEP and LOAD-YIELD in Figure
3 capture the different behavior caused by barrier implementations.
The default UPC barrier implementation calls sched yield in
oversubscribed runs. For LOAD-SPEED, we have modified the
UPC runtime to call usleep(1) and, as illustrated, the Linux
load balancer is able to provide better scalability.

A representative sample of the NPB that covers both small and
large memory footprint benchmarks, as well as coarse and fine
grained synchronization is presented in Table 2. All benchmarks
scale up to 16 cores on both systems and their running time is
in the range [2 sec, 80 sec]. On all benchmarks, the performance
with SPEED is better than both static 9 thread distribution (up to
24%) and LOAD (up to 46%) as summarized in Table 3. The im-
provements are computed as the average of ten runs. Performance
with LOAD is erratic, varying up to 67% on average, whereas with
SPEED it varies less than 5% on average.

The distribution of performance improvements for each bench-
mark across various core counts is illustrated in detail in Figure 4,
which presents the performance benefits of using SPEED instead
of LOAD for the worst (SB WORST/LB WORST) and aver-
age performance (SB AV G/LB AV G) observed over ten runs.

7 We force Linux to balance over a subset of cores using the taskset
command. For each core count, we chose a subset that spans the fewest
scheduling domains to give Linux the most opportunity for balancing.
8 Configured with kern.sched.steal thresh=1 and
kern.sched.affinity=0.
9 We include static balancing to give an indication of the potential cost of
migrations; for non-dedicated environments explicitly pinning threads is not
a viable option as shown in section 6.3.

1 

3 

5 

7 

9 

11 

13 

15 

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 

Sp
ee
du

p 

Number of Cores 

UPC‐Tigerton One‐per‐core 

SPEED 

DWRR 

FreeBSD 

PINNED 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 

Sp
ee
du

p 

Number of Cores 

UPC‐Barcelona One‐per‐core 

SPEED‐SLEEP 

SPEED‐YIELD 

LOAD‐SLEEP 

LOAD‐YIELD 

Figure 3. UPC EP class C speedup on Tigerton and Barcelona. The benchmark is compiled with 16 threads and run on the number of cores indicated on
the x-axis. We report the average speedup over 10 runs.

Worst case performance significantly improves (up to 70%) and the
average performance improves up to 50%. SPEED shows very lit-
tle performance variation when compared to LOAD, as illustrated
by the lines SB V ARIATION and LB V ARIATION which
are plotted against the right hand y− axis. Overall, SPEED shows
a 2% performance variance. The results for the MPI workload are
similar to the results obtained for the UPC workload in all cases.
For brevity, we omit MPI results from the paper.

For the OpenMP workload we examine several scenarios.
The behavior of the OpenMP barrier implementation in the In-
tel runtime can be controlled by setting the environment variable
KMP BLOCKTIME. The default implementation is for each thread
to wait for 200 ms before going to sleep. A setting of infinite
forces threads to poll continuously. In Figure 4 the lines labeled
DEF use the default barrier implementation, while the lines labeled
INF use the polling implementation. For this workload, LOAD with
the polling barrier implementation performs better than LOAD
with the default barrier: the overall performance with LB INF
is 7% better than the performance with LB DEF . The improve-
ments for each benchmark are correlated with its synchronization
granularity shown in Table 2. For example, cg.B performs barrier
synchronization every 4 ms. In this case, polling barriers provide
best performance.

The results presented are with the default setting of OMP STATIC.
The OpenMP runtime concurrency and scheduling can be changed
using the environment variables OMP DYNAMIC and OMP GUIDED.
We have experimented with these settings, but best performance
for this implementation of the NAS benchmarks is obtained with
OMP STATIC. Liao et al [17] also report better performance when
running OpenMP with a static number of threads, evenly dis-
tributed. In our experiments, the best performance for the OpenMP
workload is obtained when running in polling mode with SPEED,
as illustrated by the line SB INF/LB INF . In this case SPEED
achieves a 11% speedup across the whole workload when com-
pared to LB INF . Our current implementation of speed bal-
ancing does not have mechanisms to handle sleeping processes
and SPEED slightly decreases the performance when tasks sleep
inside synchronization operations. Comparing SB DEF with
LB DEF shows an overall performance decrease of 3%.

Removing the need for tasks to sleep in order to benefit from
the system level load balancing directly improves the performance
of synchronization operations and the improvment is sometimes di-
rectly reflected in end-to-end application performance. For exam-
ple, using the OpenMP infinite barriers we obtain an overall
45% performance improvement on Barcelona for the class S of
the benchmarks when running on 16 cores. The behavior of class
S at scale is largely determined by barriers, so this illustrates the
effectiveness of polling on synchronization operations.

6.3 Competitive Environment
In this section we consider the effects of the speed balancing in
multi-application environments. The limitations of static balancing

Speedup on 16 cores Inter-barrier time (msec)
BM Class RSS (GB) Tigerton Barcelona OpenMP UPC
bt A 0.4 4.6 10.0
cg B 0.6 4.2 9.2 4 2
ep C 0.0 15.6 15.9 2800 15000
ft B 5.6 5.3 10.5 73 206
is C 3.1 4.8 8.4 44 63
mg C 5.6 5 8.8 16 39
sp A 0.1 7.2 12.4 2

Table 2. Selected NAS parallel benchmarks. RSS is the average resident
set size per core as measured by Linux during a run.

SPEED % improvement % variation
PINNED LB av LB worst SPEED LOAD

bt A 8 4 20 1 38
cg B 7 7 26 2 40
ep C 24 46 90 2 67
ft B 14 5 14 1 15
is C 23 10 33 4 40
mg C 15 8 22 3 32
sp A 6 10 33 2 41
all 14 13 34 2 39

Table 3. Summary of performance improvements for the combined UPC
workload. We present the improvements with SPEED compared to PINNED
and LOAD (“LB”) averaged over all core counts. The percentage variation
is the ratio of the maximum to minimum run times across 10 runs.

on shared workloads are illustrated in Figure 5, which shows EP
sharing with an unrelated task that is pinned to the first core (0)
on the system. The task is a compute-intensive “cpu-hog” that
uses no memory. When EP is compiled with one thread per core,
each thread pinned to a core (“One-per-core”), the whole parallel
application is slowed by 50% because the cpu-hog always takes
half of core 0, and EP runs at the speed of the slowest thread. In
the case where 16 EP threads are pinned to the available cores (less
than 16), the results are initially better because EP gets more of a
share of core 0, for instance, 8/9 of core 0 when running on two
cores. But as the number of threads per core decreases, so the cpu-
hog has more impact, until at 16 cores EP is running at half speed.

LOAD is also fundamentally limited in this test case: there is
no static balance possible because the total number of tasks (17)
is a prime. However, the performance with LOAD is good because
LOAD can balance applications that sleep, such as the OpenMP
benchmark shown in Figure 5. When OpenMP is configured to use
polling only, LOAD is significantly suboptimal as illustrated by the
line labeled LOAD YIELD. Due to the dynamic approach, SPEED
attains near-optimal performance at all core counts, with very low
performance variation (at most 6% compared with LOAD of up to
20%). Similar trends are observed for all implementations.

SPEED also performs well when the parallel benchmarks con-
sidered share the cores with more realistic applications, such as
make, which uses both memory and I/O and spawns multiple sub-
processes. Figure 6 illustrates the relative performance of SPEED
over LOAD when NAS benchmarks share the system with make-j
16. We time the compilation of the UPC runtime, which is similar
to the complexity of a Linux kernel build. The results shown are for
each NAS benchmark being managed by SPEED; make is man-
aged by LOAD. LOAD can migrate make processes, even in the
case when SPEED is balancing the NAS benchmark.

-‐200%	

-‐150%	

-‐100%	

-‐50%	

0%	

50%	

100%	

-‐10%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

bt
.A
-‐1	

bt
.A
-‐4	

bt
.A
-‐7	

bt
.A
-‐10

	

bt
.A
-‐13

	

bt
.A
-‐16

	

cg
.B-‐

3	

cg
.B-‐

6	

cg
.B-‐

9	

cg
.B-‐

12
	

cg
.B-‐

15
	

ep
.C-‐

2	

ep
.C-‐

5	

ep
.C-‐

8	

ep
.C-‐

11
	

ep
.C-‐

14
	

8.
B-‐
1	

8.
B-‐
4	

8.
B-‐
7	

8.
B-‐
10
	

8.
B-‐
13
	

8.
B-‐
16
	

is.
C-‐3

	

is.
C-‐6

	

is.
C-‐9

	

is.
C-‐1

2	

is.
C-‐1

5	

mg
.C-‐

2	

mg
.C-‐

5	

mg
.C-‐

8	

mg
.C-‐

11
	

mg
.C-‐

14
	

sp
.A
-‐1	

sp
.A
-‐4	

sp
.A
-‐7	

sp
.A
-‐10

	

sp
.A
-‐13

	

sp
.A
-‐16

	

%	
Va

ria
?o

n	

Sp
ee
du

p	

UPC-‐Tigerton	 SB_AVG/LB_AVG	 SB_WORST/LB_WORST	 SB_VARIATION	 LB_VARIATION	

-‐500%	

-‐400%	

-‐300%	

-‐200%	

-‐100%	

0%	

100%	

-‐20%	

0%	

20%	

40%	

60%	

80%	

bt
.A
-‐1
	

bt
.A
-‐3
	

bt
.A
-‐5
	

bt
.A
-‐7
	

bt
.A
-‐9
	

bt
.A
-‐1
1	

bt
.A
-‐1
3	

bt
.A
-‐1
5	

cg
.B
-‐1
	

cg
.B
-‐3
	

cg
.B
-‐5
	

cg
.B
-‐7
	

cg
.B
-‐9
	

cg
.B
-‐1
1	

cg
.B
-‐1
3	

cg
.B
-‐1
5	

ep
.C
-‐1
	

ep
.C
-‐3
	

ep
.C
-‐5
	

ep
.C
-‐7
	

ep
.C
-‐9
	

ep
.C
-‐1
1	

ep
.C
-‐1
3	

ep
.C
-‐1
5	

8.
B-‐
1	

8.
B-‐
3	

8.
B-‐
5	

8.
B-‐
7	

8.
B-‐
9	

8.
B-‐
11
	

8.
B-‐
13
	

8.
B-‐
15
	

is.
C-‐
1	

is.
C-‐
3	

is.
C-‐
5	

is.
C-‐
7	

is.
C-‐
9	

is.
C-‐
11
	

is.
C-‐
13
	

is.
C-‐
15
	

m
g.C

-‐1
	

m
g.C

-‐3
	

m
g.C

-‐5
	

m
g.C

-‐7
	

m
g.C

-‐9
	

m
g.C

-‐1
1	

m
g.C

-‐1
3	

m
g.C

-‐1
5	

sp
.A
-‐1
	

sp
.A
-‐3
	

sp
.A
-‐5
	

sp
.A
-‐7
	

sp
.A
-‐9
	

sp
.A
-‐1
1	

sp
.A
-‐1
3	

sp
.A
-‐1
5	

%V
ar
ia?

on
	

Sp
ee
du

p	

UPC-‐Barcelona	 SB_AVG/LB_AVG	 SB_WORST/LB_WORST	 SB_VARIATION	 LB_VARIATION	

-‐40%	

-‐20%	

0%	

20%	

40%	

60%	

cg
.B
-‐1
	

cg
.B
-‐3
	

cg
.B
-‐5
	

cg
.B
-‐7
	

cg
.B
-‐9
	

cg
.B
-‐1
1	

cg
.B
-‐1
3	

cg
.B
-‐1
5	

ep
.C
-‐1
	

ep
.C
-‐3
	

ep
.C
-‐5
	

ep
.C
-‐7
	

ep
.C
-‐9
	

ep
.C
-‐1
1	

ep
.C
-‐1
3	

ep
.C
-‐1
5	

4.
B-‐
1	

4.
B-‐
3	

4.
B-‐
5	

4.
B-‐
7	

4.
B-‐
9	

4.
B-‐
11
	

4.
B-‐
13
	

4.
B-‐
15
	

is.
C-‐
1	

is.
C-‐
3	

is.
C-‐
5	

is.
C-‐
7	

is.
C-‐
9	

is.
C-‐
11
	

is.
C-‐
13
	

is.
C-‐
15
	

m
g.
C-‐
1	

m
g.
C-‐
3	

m
g.
C-‐
5	

m
g.
C-‐
7	

m
g.
C-‐
9	

m
g.
C-‐
11
	

m
g.
C-‐
13
	

m
g.
C-‐
15
	

sp
.A
-‐1
	

sp
.A
-‐3
	

sp
.A
-‐5
	

sp
.A
-‐7
	

sp
.A
-‐9
	

sp
.A
-‐1
1	

sp
.A
-‐1
3	

sp
.A
-‐1
5	 Sp

ee
du

p	

OpenMP-‐Tigerton	 SB_INF/LB_INF	 LB_DEF/LB_INF	 SB_INF/LB_DEF	

Figure 4. Performance improvements using SPEED compared to the default Linux load balancing. Each benchmark was executed with 16 threads on the
number of cores indicated in the x-axis label, e.g. bt.A-1 executes with 16 threads on one core. The left hand y-axis shows the improvements for SPEED and
the right hand y-axis shows the variation of the running time for 10 runs for SPEED and LOAD. AVG refers to the average performance over 10 runs and
WORST refers to the worst performance in 10 runs.

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 

Sp
ee
du

p 

Number of Cores 

OMP‐Tigerton SPEED 

LOAD_DEF 

DWRR_DEF 

DWRR_INF 

LOAD‐YIELD 

PINNED 

Figure 5. Speedup for EP, sharing with one external unrelated CPU
intensive task. EP is run with 16 threads.

-‐15%	

-‐10%	

-‐5%	

0%	

5%	

10%	

15%	

bt-‐A	 cg-‐B	 ep-‐C	 0-‐B	 is-‐C	 mg-‐C	 sp-‐A	 Sp
ee
du

p	

NPB	 +	 make	 -‐j	

APP	

MAKE	

Figure 6. Relative performance of SPEED over LOAD when running
UPC NAS benchmarks together with make -j 16.

-‐20.00%	

-‐10.00%	

0.00%	

10.00%	

20.00%	

30.00%	

40.00%	

50.00%	

60.00%	

SB_AVG/LB_AVG	 LB_VARIATION	 SB_VARIATION	

NPB+NPB	

cg-‐B-‐ep-‐C	

ep-‐C-‐cg-‐B	

cg-‐B-‐mg-‐C	

mg-‐C-‐cg-‐B	

cg-‐B-‐A-‐B	

A-‐B-‐cg-‐B	

ep-‐C-‐mg-‐C	

mg-‐C-‐ep-‐C	

A-‐B-‐ep-‐C	

Figure 7. Balancing applications together. SB AVG/LB AVG indicates
the performance improvements for the first benchmark in the pair when
managed by SPEED. LB VARIATION and SB VARIATION show the vari-
ation in runtime for each benchmark for the respective balancing method.

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 

M
ig
ra
2o

ns
 p
er
 C
or
e 
pe

r 
Se
co
nd

 

Number of Cores 

Tigerton,SPEED 

Barcelona,SPEED 

Tigerton,LOAD 

Barcelona,LOAD 

Figure 8. Migration rates of EP on a dedicated system. All other
benchmarks exhibit similar behavior.

SPEED % improvement % variation
PINNED LB av LB worst SPEED LOAD

bt A 0 16 38 2 38
cg B 0 29 66 1 55
ep C 17 43 95 1 86
ft B 5 10 27 1 27
is C 5 7 24 1 30
mg C 2 9 22 1 26
sp A 0 18 35 2 36
all 4 19 44 1 43

Table 4. Performance improvements of speed balancing over static thread
distribution (“PINNED’) and load balancing (“LB”) for various NPB on
the Barcelona, averaged over all core counts. The percentage variation is
the ratio of the maximum to minimum run times across 10 runs.

Figure 6 shows that in most cases SPEED improves the perfor-
mance of both the parallel application and the compilation job: the
NAS benchmarks improve by at most 15%, make also improves
by at most 10%. The experiments were set up so that make always
runs longer than the NAS benchmark; the relative performance of
make is reported only for the period during which the NAS bench-
mark was also running. The presence of an application managed
by SPEED also reduces the variability from as high as 23% with
LOAD to 11% with SPEED.

SPEED is also effective at balancing multiple parallel applica-
tions running simultaneously. Figure 7 shows a representative sam-
ple of pairs of NAS benchmarks, compiled with 16 threads and
running simultaneously. Each benchmark is managed by its own
speedbalancer or un-managed (LOAD). The figure presents the per-
formance improvements for the first benchmark in the pair with
SPEED compared to runs where the benchmarks were managed by
LOAD. We report the average behavior over 10 runs. SPEED out-
performs LOAD by as much as 50% and has very low variability,
less than 10%, compared to the variability in LOAD, which is up
to 40%.

6.4 NUMA
Speed balancing is clearly effective when the performance impact
of migrations is small. On NUMA systems, process migrations are
particularly expensive when performed across different memory
modules, since the memory pages do not get migrated. Our current
strategy for NUMA systems is to block all inter-node migrations.
Strictly speaking, this is not necessary when memory access speed
is not an issue, e.g. computation bound benchmarks such as EP, or
when data fits in the cache. However, the effects of blocking inter-
node migrations on EP are not dramatic, as shown in the right-
hand plot in Figure 3: the speedup of EP is not far from optimal.
By contrast, LOAD is particularly poor on NUMA, even for EP,
where non-local memory accesses are not an issue. The slowdown
comes from poor initial distribution of threads which LOAD does
not correct since they span NUMA nodes.

When inter-node migrations are prevented, the effects of the ini-
tial task distribution are particularly important on NUMA: Table 4
shows that SPEED performs similarly to static thread distribution
on average, within 4%. This adds support to the idea that the poor
performance of LOAD on NUMA is a consequence of initial im-
balances that never get properly corrected. Furthermore, the perfor-
mance for LOAD varies dramatically, (up to 86%), as we would ex-
pect if the threads sometimes have poor initial distributions. Also,
as expected from the analysis in Section 4, the applications with
high synchronization frequency benefit less from speed balancing.

Figure 4 (UPC-Barcelona) shows the performance improvement
of SPEED over LOAD at different core counts. Note that SPEED
and LOAD consistently perform the same at four cores, in contrast
to the Tigerton, where SPEED outperforms LOAD at four cores
(UPC-Tigerton). Because there are sixteen threads on four cores
one would expect there to be no difference between LOAD an
SPEED on either architecture. The key difference between the
Barcelona and the Tigerton here is that the four cores are a single
scheduling domain (a NUMA node) on the Barcelona whereas

they comprise two scheduling domains on the Tigerton (two die).
Thus we conclude that balancing across scheduling domains is
responsible for the failure of LOAD to correct an initial imbalance,
even without NUMA.

6.5 Migration rates
Speed balancing imposes additional costs because of the higher
number of migrating threads. Figure 8 shows that good dynamic
balance can be achieved with low migration frequencies (less than
one per core per second). Furthermore, the migration frequency
drops down to near zero when static balance is attainable and
migrations cannot add any performance benefits. Thus SPEED gets
the best of both worlds. Blocking inter-node migrations in NUMA
makes little difference to the migration frequency. From Figure 8
it is clear than LOAD does not try to attain a dynamic balance; the
few migrations seen occur when starting up.

7. Related Work
The mechanisms employed in operating systems schedulers ad-
dress both temporal and spatial concerns. Traditional temporal
scheduling is used to manage the time allocation for one proces-
sor and has been the subject of intensive research [13, 23]. Squil-
lante and Lazowska [26] examine scheduling for shared memory
UMA systems under time-sharing policies and conclude that local-
ity, as captured by the cache-hot measure in Linux, is important.
They advocate for affinity (locality) based scheduling. However,
for space-sharing policies on UMA systems, Vaswani and Zahor-
jan [31] conclude that locality can be safely ignored. Our results
for parallel applications running oversubscribed or in competitive
environments also indicate that balance trumps locality concerns.

A large body of research in multiprocessor scheduling can be
loosely classified as symbiotic scheduling: threads are scheduled
according to their resource usage patterns. Snavely and Tullsen [25]
present simulation results for symbiotic coscheduling on SMT pro-
cessors for a workload heavily biased towards multiprogrammed
single-threaded jobs. Their approach samples different possible
schedules based on performance counters and assigns threads to
SMT hardware contexts. They discuss different estimators and in
particular point out that either balancing IPC estimators or compos-
ite estimators (IPC+cache) perform best in practice. Banikazemi et
al [3] present the design of a user space meta-scheduler for opti-
mizing power, performance and energy. They sample performance
counters and introduce an algebraic model for estimating thread
performance, footprint and miss rate when sharing caches. Their
approach has been evaluated only with multiprogrammed work-
loads. The behavior of their approach for workloads containing par-
allel applications is not clear.

Tam et al [27] and Thekkath et al [28] examine scheduling tech-
niques to maximize cache sharing and reuse for server workloads
and scientific workloads respectively. Tam et al use sampling of the
hardware performance counters to cluster threads based on their
memory access patterns. Threads clusters are then “evenly” bal-
anced across cores. The focus of their approach is detecting and
forming the clusters and not load balancing. Our results indicate
that migration rather than “locality” based clustering is beneficial
to the performance of parallel scientific applications.

Boneti et al [5] present a dynamic scheduler for balancing high
performance scientific MPI applications on the POWER5 proces-
sor. Their implementation is architecture dependent and it makes
assumptions about implementation behavior. Specifically, they con-
sider a load imbalanced when threads sleep if they are idle waiting
for synchronization events. Li et al [16] present an implementa-
tion of Linux load balancing for performance asymmetric multicore
architectures and discuss performance under parallel and server
workloads. They modify the Linux load balancer to use the no-

tions of scaled core speed and scaled load but balancing is per-
formed based on run queue length and they do not discuss migra-
tion, competitive environments or uneven task distributions. Their
implementation provides heuristics to asses the profitability of mi-
gration across NUMA nodes. In particular, their heuristic to mi-
grate across NUMA nodes checks if a task’s memory footprint fits
in cache. Most of the benchmarks in our workload have per task
footprints larger than the caches and therefore will not be migrated.
Their heuristics can be trivially added to speed balancing.

Job scheduling for parallel systems has an active research com-
munity. Feitelson [1] maintains the Parallel Workload Archive that
contains standardized job traces from many large scale installa-
tions: in these traces the number of processors required by any job
does not exceed the number of processors in the system. Most batch
job scheduling approaches require estimates about job length and
the impact of wrong estimates [29] is a topic of debate within that
community. Ousterhout [22] proposes one of the first implementa-
tions of gang scheduling for the Medusa system on the Cm* mul-
tiprocessor. Gang scheduling does not require job length estimates
and it is effective in reducing wait time for large scale systems,
at the expense of increasing the apparent execution time. Zhang
et al [33] provide a comparison of existing techniques and discuss
combining backfilling with migration and gang scheduling. Gang
scheduling is increasingly mentioned in multicore research studies,
e.g. [18], but without a practical, working implementation. We be-
lieve that by increasing the multiprogramming level (MPL) of the
system, the principles behind speed balancing can be easily incor-
porated within the algorithms to populate the entries in the Ouster-
hout scheduling matrix. While the job scheduling techniques ex-
plored for large scale systems [12] provide potential for improving
existing operating system schedulers and load balancers, their be-
havior for multicore loads is far from understood. One of the open
research problems is accommodating the short lived or interactive
tasks present in workstation workloads.

Feitelson and Rudolph [8] discuss the interaction between gang
scheduling and the application synchronization behavior. They in-
dicate that when the number of tasks in a gang matches the number
of processors, gang scheduling combined with busy waiting is able
to provide best performance for fine-grained applications. Gupta
et al [10] discuss the interaction between the implementation of
synchronization operations and operating system scheduling sup-
port. They use parallel scientific applications and compare prior-
ity based scheduling, affinity and handoff based scheduling, gang
scheduling, batch scheduling and two-level scheduling with pro-
cess control. Their study reports that best performance is obtained
by two-level scheduling schemes where the number of an appli-
cation’ tasks is adjusted to match the number of available cores.
As our results indicate, speed balancing complements two-level
scheduling schemes and it can reduce the performance impact when
applications run with more than one task per core.

8. Discussion
This work has been partially motivated by our increased frustra-
tion with the level of performance attained by Linux when paral-
lel applications oversubscribe the available cores. This is ongoing
research into parallel execution models and a user level implemen-
tation allowed us to achieve portability across OS and hardware
platforms. Current parallel runtimes are designed for dedicated
environments and assume execution with one OS level task per
core. Some provide their own thread abstraction and load balancing
through work-stealing: Adaptive MPI [11] provides task virtualiza-
tion for MPI and the SPMD programming model, while Cilk [14]
provides for fork-join parallelism. These approaches perform load
balancing at the “task” level: stealing occurs when run queue length
changes, while our approach balances based on time quanta (or bal-

ancing interval). For applications where the task duration is shorter
than “our balancing interval”, work stealing runtimes are likely to
provide better performance. For coarse grained tasks, speed bal-
ancing is an orthogonal mechanism that together with time slicing
can be added to work-stealing runtimes to improve performance. A
generic, runtime independent load balancing implementation that
performs well might alleviate the need for complex runtime specific
techniques. Furthermore, efficiently mapping multiple threads on
each core reduces some of the need for either adjusting the number
of tasks at runtime [7] or using profiling and feedback techniques
for better performance.

We have started work on exploring the interaction between
speed balancing and other programming paradigms: work steal-
ing runtimes (Cilk) and pthreads based applications such as the
PARSEC [4] benchmarks that use condition variables or sleep
for synchronization. Preliminary results indicate that Cilk programs
that generate a large number of fine grained tasks are oblivious
to speed balancing, as are most PARSEC benchmarks, with some
notable exceptions, for example, speed balancing improves perfor-
mance for the blackscholes benchmark. Our OpenMP results in-
dicate that best performance is obtained with speed balancing in
combination with calling sched yield in synchronization op-
erations. One of the topics of future interest is generalizing speed
balancing to handle sleep and to answer the question whether
implementations that use solely sched yield can provide best
performance when combined with proper load balancing such as
speed balancing or DWRR.

In our experiments we have obtained better performance using
speed balancing for runs longer than a few seconds; this is the
price we had to pay for generality. For short lived applications, the
behavior is that of the default OS load balancing implementation.
Our balancer has a startup delay from polling the /proc file system
to capture the application threads. Packaging the balancer as a
library, instead of a standalone application, and integrating with the
runtime is likely to improve the results for short lived applications.

Our design provides room for many other functional and algo-
rithmic refinements. Distinguishing between user and system time
when measuring speed allows the balancer to classify tasks based
on their overall behavior. In this way the task mix can be con-
trolled based on perceived behavior and for example system service
queues can be dynamically created and managed. This distinction
might also be beneficial for ad hoc variants that try to infer the syn-
chronization behavior of applications. The current implementation
provides a slow rate of change in queue membership by moving
only one task. For systems where process spawners are not aware
of parallelism a simple change to select the number of candidates
based on weighted speed difference will hasten reaching dynamic
equilibrium.

9. Conclusion
We have shown that specializing the load balance mechanism for
parallelism is beneficial to performance and can coexist with the
system level load balancers. We presented the design, some theoret-
ical foundations and an user level implementation able to improve
the performance of OpenMP, MPI and UPC applications. Tradi-
tional load balancing mechanisms attempt to balance run queue
length globally and disfavor migrations across nearly balanced
queues, a design that ignores the needs of parallel applications
where threads should make progress at equal rates. Speed balancing
balances the time a thread spends on fast and slow queues, regard-
less of run queue length. We evaluated it with multiple parallel and
multiprogrammed workloads on contemporary UMA and NUMA
multicores and observe both increased isolation and performance.
Our balancer is able to greatly reduce variation in execution time

and it improves performance over the Linux load balancer by up to
a factor of two.

References
[1] Parallel Workload Archive. Available at

http://www.cs.huji.ac.il/labs/parallel/workload/.

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick. The Landscape of Parallel Computing Research: A
View from Berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Dec 2006.

[3] M. Banikazemi, D. E. Poff, and B. Abali. PAM: A Novel Perfor-
mance/Power Aware Meta-Scheduler for Multi-Core Systems. In Pro-
ceedings of the ACM International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’08), 2008.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. In PACT ’08:
Proceedings of the 17th International Conference On Parallel Archi-
tectures And Compilation Techniques, pages 72–81, New York, NY,
USA, 2008. ACM.

[5] C. Boneti, R. Gioiosa, F. J. Cazorla, and M. Valero. A Dynamic
Scheduler for Balancing HPC Applications. In SC ’08: Proceedings
of the 2008 ACM/IEEE Conference on Supercomputing, 2008.

[6] S. Borkar, P. Dubey, K. Kahn, D. Kuck, H. Mulder, S. Pawlowski, and
J. Rattner. Platform 2015: Intel Processor and Platform Evolution for
the Next Decade. White Paper, Intel Corporation, 2005.

[7] M. Curtis-Maury, F. Blagojevic, C. D. Antonopoulos, and D. S.
Nikolopoulos. Prediction-Based Power-Performance Adaptation of
Multithreaded Scientific Codes. IEEE Trans. Parallel Distrib. Syst.,
19(10):1396–1410, 2008.

[8] D. G. Feitelson and L. Rudolph. Gang Scheduling Performance
Benefits for Fine-Grain Synchronization. Journal of Parallel and
Distributed Computing, 16:306–318, 1992.

[9] K. B. Ferreira, P. Bridges, and R. Brightwell. Characterizing Appli-
cation Sensitivity to OS Interference Using Kernel-Level Noise Injec-
tion. In SC ’08: Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, 2008.

[10] A. Gupta, A. Tucker, and S. Urushibara. The Impact Of Operating
System Scheduling Policies And Synchronization Methods On Per-
formance Of Parallel Applications. SIGMETRICS Perform. Eval. Rev.,
19(1), 1991.

[11] C. Huang, O. Lawlor, and L. V. Kal. Adaptive MPI. In In Proceedings
of the 16th International Workshop on Languages and Compilers for
Parallel Computing (LCPC 03), pages 306–322, 2003.

[12] M. A. Jette. Performance Characteristics Of Gang Scheduling In Mul-
tiprogrammed Environments. In Supercomputing ’97: Proceedings of
the 1997 ACM/IEEE Conference on Supercomputing (CDROM), 1997.

[13] L. Kleinrock and R. R. Muntz. Processor Sharing Queueing Models
of Mixed Scheduling Disciplines for Time Shared System. J. ACM,
19(3):464–482, 1972.

[14] Kunal Agrawal and Yuxiong He and Wen Jing Hsu and Charles E.
Leiserson. Adaptive Task Scheduling with Parallelism Feedback. In
Proceedings of the Annual ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), 2006.

[15] T. Li, D. Baumberger, and S. Hahn. Efficient And Scalable Multipro-
cessor Fair Scheduling Using Distributed Weighted Round-Robin. In
PPoPP ’09: Proceedings of the 14th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 65–74, New
York, NY, USA, 2009. ACM.

[16] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn. Efficient Operating
System Scheduling for Performance-Asymmetric Multi-Core Archi-
tectures. In SC ’07: Proceedings of the 2007 ACM/IEEE Conference
on Supercomputing, 2007.

[17] C. Liao, Z. Liu, L. Huang, , and B. Chapman. Evaluating OpenMP on
Chip MultiThreading Platforms. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2008.

[18] R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanovic, and J. Kubia-
towicz. Tessellation: Space-Time Partitioning in a Manycore Client
OS. Proceedings of the First Usenix Workshop on Hot Topics in Par-
allelism, 2009.

[19] The NAS Parallel Benchmarks. Available at
http://www.nas.nasa.gov/Software/NPB.

[20] The UPC NAS Parallel Benchmarks. Available at
http://upc.gwu.edu/download.html.

[21] R. Nishtala and K. Yelick. Optimizing Collective Communication on
Multicores. In First USENIX Workshop on Hot Topics in Parallelism
(HotPar’09), 2009.

[22] J. Ousterhout. Scheduling Techniques for Concurrent Systems. In
In Proceedings of the 3rd International Conference on Distributed
Computing Systems (ICDCS), 1982.

[23] D. Petrou, J. W. Milford, and G. A. Gibson. Implementing Lottery
Scheduling: Matching the Specializations in Traditional Schedulers.
In ATEC ’99: Proceedings of the Annual Conference on USENIX
Annual Technical Conference, 1999.

[24] J. Roberson. ULE: A Modern Scheduler for FreeBSD. In USENIX
BSDCon, pages 17–28, 2003.

[25] A. Snavely. Symbiotic Jobscheduling For A Simultaneous Multi-
threading Processor. In Proceedings of the 8th International Confer-
ence on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS), pages 234–244, 2000.

[26] M. S. Squiillante and E. D. Lazowska. Using Processor-Cache Affinity
Information in Shared-Memory Multiprocessor Scheduling. IEEE
Trans. Parallel Distrib. Syst., 1993.

[27] D. Tam, R. Azimi, and M. Stumm. Thread Clustering: Sharing-Aware
Scheduling on SMP-CMP-SMT Multiprocessors. In EuroSys ’07:
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007, 2007.

[28] R. Thekkath and S. J. Eggers. Impact of Sharing-Based Thread
Placement on Multithreaded Architectures. In Proceedings of the
International Symposium on Computer Architecture (ISCA), 1994.

[29] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Backfilling Using System-
Generated Predictions Rather Than User Runtime Estimates. In IEEE
TPDS, 2007.

[30] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick. System
Noise, OS Clock Ticks, and Fine-Grained Parallel Applications. In
ICS ’05: Proceedings of the 19th Annual International Conference on
Supercomputing, pages 303–312, New York, NY, USA, 2005. ACM.

[31] R. Vaswani and J. Zahorjan. The Implications Of Cache Affinity On
Processor Scheduling For Multiprogrammed, Shared Memory Multi-
processors. SIGOPS Oper. Syst. Rev., 1991.

[32] S. B. Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Mor-
ris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang.
Corey: An Operating System for Many Cores. In Proceedings of the
8th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI ’08), 2008.

[33] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam. An In-
tegrated Approach to Parallel Scheduling Using Gang-Scheduling,
Backfilling and Migration. In IEEE Transactions on Parallel and Dis-
tributed Systems (TPDS), 2003.

	1 Introduction
	2 Load Balancing
	3 Parallel Applications and Load Balancing
	4 Argument For Speed Balancing
	5 Speed Balancing
	5.1 Algorithm
	5.2 Implementation

	6 Results
	6.1 Impact of Balancing and Synchronization Frequency
	6.2 Dedicated Environment
	6.3 Competitive Environment
	6.4 NUMA
	6.5 Migration rates

	7 Related Work
	8 Discussion
	9 Conclusion

