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ABSTRACT
The Gemini interconnect on the Cray XE6 platform pro-
vides for lightweight remote direct memory access (RDMA)
between nodes, which is useful for implementing partitioned
global address space languages like UPC and Co-Array For-
tran. In this paper, we perform a study of Gemini per-
formance using a set of communication microbenchmarks
and compare the performance of one-sided communication
in PGAS languages with two-sided MPI. Our results demon-
strate the performance benefits of the PGAS model on Gem-
ini hardware, showing in what circumstances and by how
much one-sided communication outperforms two-sided in
terms of messaging rate, aggregate bandwidth, and compu-
tation and communication overlap capability. For example,
for 8-byte and 2KB messages the one-sided messaging rate is
5 and 10 times greater respectively than the two-sided one.
The study also reveals important information about how to
optimize one-sided Gemini communication.
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1. INTRODUCTION
The classic parallel programming model, MPI, faces sev-

eral new challenges on petaflop computing platforms, which
are dominated by multicore-node architectures [9, 21]. To
address these challenges, researchers are starting to inves-
tigate other programming models to understand whether
they could replace or used in combination with MPI. Among
these studied programming models, the Partitioned Global
Address Space (PGAS) family of languages, represented by
Co-Array Fortran (CAF) [16] and Unified Parallel C (UPC) [5],
show great promise as the near-term alternative to MPI.
Compared with MPI, a big difference is that PGAS pro-
vides a global shared address space while controlling locality.
This is designed to simplify programming as with this global
shared space abstraction PGAS languages allow the ability
to directly build distributed data structures that can be ac-
cessed throughout the machine. By integrating communi-
cation and synchronization into the language itself, PGAS
languages allow the compiler or runtime system to distribute
and schedule remote memory accesses in an optimal manner

without the need for maintaining a global, uniform access
view of memory on a distributed memory system [1].

Both CAF and UPC have been around for a decade or
so. However these two languages still have not been widely
adopted by user community; partly because of the lack of a
developer environment, and partly because not enough con-
vincing performance results have been presented to demon-
strate they are superior and viable alternatives to the MPI
programming model.

Hopper is a 1.28 PF peak Cray XE6 computing platform
recently installed at NERSC. The defining feature of this
platform is the custom interconnect, called Gemini, which
provides a hardware accelerated global address space and al-
lows remote direct memory access (RDMA) from any node
to any other in the system. In this work, we will investigate
what the effect of this special Gemini hardware support for
global address space and one-sided messaging is upon the
performance of the PGAS languages. We compare whether
PGAS languages can outperform MPI, with an aim to de-
termining if PGAS is a superior and viable alternative to
MPI and under which circumstances.

The principle contributions of this paper are

• We translated several popular MPI benchmarks into
PGAS languages to measure network bandwidth and
messaging rate and facilitate comparisons. Our results
show that in the bandwidth limit, with large messages,
MPI and PGAS performance is identical. For medium-
sized and small messages, the lower overhead of the
single-sided PGAS messages allows greater effective
bandwidths to be achieved.

• We developed an independent micro-benchmark to mea-
sure the capability to overlap computation and com-
munication for PGAS languages and MPI. Our results
show that with large messages almost complete over-
lap of computation and communication is possible with
PGAS languages using Gemini whereas with MPI this
is currently not possible.

• We translated the NAS FT benchmark into Co-Array
Fortran and achieved up to 2.8× the performance of
the original MPI version on 16K cores.

The paper is organized as follows. Related work is discussed
in Section 2. Section 3 describes the experimental platforms.
The messaging rate is examined in Section 4. As the number



of cores on the future supercomputing platforms increases
rapidly, the average message size will become smaller, there-
fore overall performance will become more sensitive to the
performance of fine-grain communication thus the through-
put of small messages is carefully studied in this section.
Section 5 examines the capability of PGAS and MPI to
overlap computation and communication. In Section 6, we
compare the performance differences of an MPI and a CAF
version of the NAS FT benchmark. Finally, we summarize
our conclusions and future work in Section 7.

2. RELATED WORK
The related work can be divided into two categories based

on the programming models used: CAF and UPC. For CAF,
Mellor-Crummey et al. have proposed Co-array Fortran
2.0 [11]. The applications they studied include MG, CG,
BT, and SP from the NAS parallel benchmark suite and the
Sweep3D neutron transport benchmark. The codes have
been tested on several small clusters which consist of dif-
ferent processors and networks. The CAF programs show
nearly equal or slightly better performance than their MPI
counterparts [6, 7]. Barrett [3] studied different Co-array
Fortran implementations of Finite Differencing Methods on
Cray X1 and found that CAF exhibits better performance
for smaller grid sizes and similar results for larger ones. Bala
et al. [2] demonstrated performance improvements over
MPI in a molecular dynamics application on a legacy HPC
platform (Cray T3E). In addition, parallel linear algebra
kernels for tensors [15] and matrices [18] benefit from a Co-
array based one-sided communication model due to a raised
level of abstraction with little or no loss of performance over
MPI.

Comparing the performance of UPC and MPI have been
the subject of many papers [8, 4, 10, 19, 13]. El-Ghazawi
and Cantonnet [8] discussed UPC performance and potential
advantage using NPB applications. With proper hand tun-
ing and optimized collective libraries, UPC delivered com-
parable performance to MPI. Shan [19] and Jin [10] also
compared the performance of NPB on several different plat-
forms and similar conclusions were drawn. Nishtala and
other researchers [13, 4] discussed the scaling behavior and
better performance of NAS FT for UPC on several different
platforms using the Berkeley UPC compiler with GASNET
communication system.

The principle difference of our study is that it is performed
on a platform with the Cray Gemini interconnect which pro-
vides hardware acceleration for one-sided communication,
which is advantageous for the performance of PGAS lan-
guages. In this study, we examine how this special hard-
ware support affects the performance of PGAS languages as
compared to MPI.

3. EXPERIMENTAL PLATFORM

3.1 Hopper
A majority of our work has been performed on a Cray

XE6 platform, called Hopper, which is located at NERSC
and consists of 6,384 dual-socket nodes each with 32GB
of memory. Each socket within a node contains an AMD
“Magny-Cours” processor at 2.1 GHz with 12 cores. Each
Magny-Cours package is itself a MCM (Multi-Chip Module)
containing two hex-core dies connected via hyper-transport.

Each die has its own memory controller that is connected
to two 4-GB DIMMS. This means each node can effectively
be viewed as having four chips and there are large potential
performance penalties for crossing the NUMA domains. Ev-
ery pair of nodes is connected via hypertransport to a Cray
Gemini network chip, which collectively form a 17x8x24 3-
D torus. In this work we used the Cray compiler version
7.4.0 which provides support for Co-Array Fortran (CAF)
and Unified Parallel C (UPC).

3.1.1 Gemini
The defining feature of the Cray XE6 architecture is the

Gemini interconnect, which provides a global address space.
There are two mechanisms to transfer the internode mes-
sages using one-sided communication with Gemini. The first
uses Fast Memory Access (FMA) and the second uses the
Block Transfer Engine (BTE). The FMA transport mech-
anism involves the CPU, has low latency and more than
one transfer can be active at the same time. Transfers us-
ing the BTE are performed by the Gemini network chip,
asynchronously with CPU so that the communication and
computation can overlap. In general, FMA is used to trans-
fer short messages and BTE for long messages. The point
at which this transition occurs is controlled by the envi-
ronment variable MPICH GNI RDMA THRESHOLD for MPI and
by PGAS OFFLOAD THRESHOLD for PGAS languages. All the
results shown here using two nodes are for two nodes con-
nected to different Gemini’s, unless otherwise mentioned.

3.2 Franklin
For comparison purposes, we also performed some of the

tests on a Cray XT4 platform, called Franklin, which is
also located at NERSC. Each node consists of a quad-core
AMD Budapest 2.3GHz processor and 8 GB DDR3 800 MHz
memory. The nodes are connected through a proprietary
SeaStar2 interconnect which is designed to optimize MPI
performance by handling the handshaking protocol needed
by MPI. As with Hopper the interconnect is a 3D-torus but
in this case each node represents a distinct point on the
torus.

4. MESSAGING RATE
Messaging rate is an important performance metric for

measuring the viability of the interconnects on HPC plat-
forms, especially for PGAS programming languages [20].
Also, as we look towards exascale architectures, where be-
cause of memory constraints problems are likely to be strong-
scaled, messaging rate is likely to become a more and more
important performance metric.

4.1 Implementation
The MPI version is obtained from OSU Micro benchmark

suite [12] and slightly changed to use a different buffer for
each iteration. In the MPI version, a process sends a se-
ries of same size messages to its partner using nonblock-
ing MPI Isend. The number of messages in is determined
by a variable called “window size” and our experiments
show that setting the window size to 64 is large enough
to achieve converged performance. After the partner has
received all the messages, it will send an acknowledgement
back to the sender. In the CAF implementation, the non-
blocking MPI Isend is substituted by a loop with direct
load/store assignment (corresponding to one-sided put op-



eration). However for each loop iteration the starting ad-
dress is incremented by one so that the data sent is not con-
tiguous between loop iterations. This prevents the compiler
collapsing the loop into one put. In order to ensure that
non-blocking communication was used the delayed synchro-
nization compiler directive pgas defer sync was used. Then,
at the end, a synchronization is called to ensure all data
have been received.

4.2 Performance
The codes are executed using two sets of processes, one

on each node. The messaging rate between two nodes using
1, 6, and 24 communicating pairs per node for CAF and
MPI are shown in Fig. 1 and 2 respectively. (The two
nodes have a 1-hop network distance.) For small messages,
MPI achieves the best performance when 6 pairs are used,
a rate of 9 million messages per second. Using 24 pairs, the
message rate drops slightly. 1 On the contrary, the message
rates of CAF for small messages increase steadily with the
number of communicating pairs used. The best performance
is obtained when 24 pairs are used, which is about 4.7 times
better than the best MPI message rate. CAF clearly shows
much better scalability for small messages.

We also measured the messaging rate using get instead
of put for CAF. In the bandwidth limit, as one might ex-
pect, the get and put performance is identical. However, for
small messages put performs significantly better than get.
The messaging rates with 8-byte messages are 1.46, 1.64,
and 3.46× greater than get using one, six, and 24 pairs re-
spectively.
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Figure 1: The messaging rate for MPI using 1, 6,
and 24 pairs per node.

The corresponding bandwidths for the message rates shown
in Fig. 1 and 2 are shown in Fig. 3. The CAF perfor-
mance increases much faster with increasing message size.
The main performance difference between CAF and MPI
occurs for message sizes in the middle of the range where
the benefits of single-sided messaging are mostly strongly
felt. For a 512 byte message, using 24 pairs, the CAF per-
formance has reached 4.75 GB/s, which is much higher than
the corresponding MPI bandwidth of 2.4 GB/s. This result
indicates that for PGAS languages, by using more frequent
medium-sized messages instead of the large bulk transfers
favored by explicit message passing, better performance can

1Note that in order to achieve this result with 24 pairs the
environment variable MPICH GNI MBOX PLACEMENT
was changed to “nic”. With it set to the default value the
performance for 24 pairs is approximately equal to that for
one pair.
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Figure 2: The messaging rate for CAF using 1, 6,
and 24 pairs per node.
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Figure 3: The corresponding bandwidth of MPI and
CAF for message rates in Fig. 1 and 2.

be achieved due to increased messaging rate and less net-
work contention. This is in agreement with a recent study
of the GTS fusion application on a Cray XE6 [17].

For very small messages aggregation is still necessary. As
shown in Fig. 2, the messaging rate for 8-byte and 16-byte
messages is very close, thus using 16-byte messages will
achieve almost double the bandwidth of 8-byte messages.
Even so, because of the increased messaging rate, in the la-
tency limit the PGAS effective bandwidth for 8-bytes mes-
sages is about 4.5× the MPI one.

As the message size increases there is a performance drop
for MPI when the message size reaches 1KB. This is the
threshold value for switching from using FMA to using the
BTE for transferring internode MPI message data. The
startup cost for the BTE is the reason for the sudden perfor-
mance drop, which cannot be amortized well for such small
message sizes.

There is also a performance drop for CAF when the mes-
sage size reaches 4096 bytes, which is the threshold in CAF
to switch from the FMA mechanism to using the BTE. We
also note that as more communicating pairs are used, the
phenomenon becomes more explicit, which is simply because
the BTE processes requests through the kernel and therefore
sequentially which means the startup cost will be accumu-
lated as more communicating pairs are used.

Using one pair the highest bandwidth for CAF is around
6GB/s, which is close to the peak injection bandwidth to the
Gemini interconnect from a node. Using 24 pairs this is re-
duced to around 5 GB/s, presumably because of contention
for resources. The highest bandwidth for MPI is achieved
using 1 pair and is a little lower than the CAF result, around
5.5GB/s.



4.3 Performance on Cray XT4 with SeaStar
Interconnect

In order to better understand the performance benefits of
the Gemini interconnect for PGAS languages, we examined
the message rates on Franklin, a Cray XT4 platform, with
a custom SeaStar interconnect. The SeaStar interconnect
does not support a global shared address space. Instead it
was designed to optimize the MPI performance, managing
the handshaking protocol.
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Figure 4: The message rates for MPI and CAF on
XT4 for 1 and 4 pairs communicating per node.
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Figure 5: The bandwidth corresponding to the Mes-
sage Rate Measurements for MPI and CAF on XT4
for one and four communicating pairs per node.

The XT4 messaging rates for MPI and CAF for one and
four pairs over two nodes are shown in Fig. 4 and the cor-
responding aggregate bandwidths are displayed in Fig. 5.
For large messages, both MPI and CAF deliver very simi-
lar performance and the network can be saturated easily by
using 1 pair only. For the smallest messages, especially 8
and 16 bytes, contrary to the Hopper results, MPI performs
much better than CAF. Across all the rest of the message
size range the differences in performance between MPI and
CAF are less significant, and the noticeable differences that
were present for Gemini are not longer present, due to the
absence of hardware acceleration for one-sided messaging.

The absolute message rate of CAF and MPI for 8 bytes
and 2M bytes messages on SeaStar and Gemini Intercon-
nects are shown in Table 1. They are measured using 1
communication pair. For 8-byte messages, on SeaStar, it’s
the MPI that achieves the best performance while on Gem-
ini, it’s CAF. From SeaStar to Gemini, the MPI perfor-
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Figure 6: Ratio of the CAF performance to the MPI
for the Gemini (XE6) and SeaStar (XT4) based ma-
chines.
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Figure 7: Ratio of the Gemini (XE6) to SeaStar
(XT4) performance for CAF and MPI.

mance has been improved about 6 times while the CAF
performance have been increased over 40 times. The results
clearly demonstrated the critical importance of the hardware
support to programming models and languages. For 2MB
messages, the performance will be bound by the network
bandwidth. On SeaStar, both MPI and CAF deliver similar
performance while on Gemini, CAF performs slightly better.
As one might expect in the bandwidth limit the importance
of the hardware support is diminished.

The performance differences between the XE6 and XT4
are shown in figures 6 and 7. Fig. 6 shows the ratio of the
CAF to MPI performance for the two systems as a function
of message size and illustrates the benefits of the hardware
acceleration for PGAS. In the best case, for 1024 byte mes-
sages, CAF is almost 10 times faster than MPI on the XE6,
whereas on the XT4 CAF is never faster. Fig.7 shows the
Gemini/Seastar (XE6/XT4)performance ratio for CAF and
MPI. Apart from the fluctuations in the performance caused
by the change in protocol the MPI performance ratio is al-
ways significantly less than the CAF one. For both ma-
chines, the performance differences between MPI and CAF
are not present in the bandwidth limit.

5. COMPUTATION AND COMMUNICATION
OVERLAP

One important technique to tolerate the cost of commu-
nication is to overlap it with local computation. To measure
the overlap capability of different programming models using
Gemini, a synthetic micro-benchmark has been developed.



Table 1: The message rate for 8B and 2MB messages using 1 pair on SeaStar and Gemini Interconnects
SeaStar Gemini Gemini/SeaStar

CAF MPI CAF/MPI CAF MPI CAF/MPI CAF MPI
8B 86,347 325,053 0.27 3,625,000 1,903,663 1.90 41.98 5.86

2MB 846 847 1.00 3,074 2,812 1.09 3.63 3.32

5.1 Implementation
The micro benchmark has two input parameters, one is

the communication message size (S), another is the time
ratio of computation to communication (R). The commu-
nication time is first measured based on the input message
size and is used to determine the loop length of the compu-
tational kernel

for (i = 0; i < Length; i++) {

temp += buf1[i] * buf2[i] }

so that Computation Time = Ratio * Communication Time.
The arrays used for the communication kernel and the

arrays used for the computation kernel are independent.
Therefore, ideally, the computation and communication can
be completely overlapped. The MPI version uses the non-
blocking MPI Isend, MPI Irecv, and MPI Wait functions.
In UPC, the nonblocking call upc memput nb is used. In
CAF, get statements are used with the compiler directive,
pgas defer sync, as above in the STREAM example. In prin-
ciple, such statements can also be used in UPC, however, we
found that this approach does not work for UPC using the
Cray compiler currently.

5.2 Performance
A metric called overlapped fraction is computed using fol-

lowing formula:

overlapped fraction =

1−
(
TTotalRunningTime −max(TComp, TComm)

min(TComp, TComm)

)
where Tcomp is the computation time and Tcomm is the com-
munication time. In the case that the runtime is equal to the
maximum of the separate measurements of computation and
communication the overlap is perfect. This fraction repre-
sents the amount of work that it was not possible to overlap.
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Figure 8: The overlap capability of MPI, UPC, and
CAF.

Fig. 8 shows the results for MPI, UPC, and CAF using
two cores, one on each node. The computation time to com-

munication time ratio is set as 1. Several message sizes
are tested, ranging from 8 to 512 KB bytes. For MPI, we
observe around 20% overlap fraction for messages up to 2
KB. Beyond that point, the overlapped fraction goes down
dramatically and the overlap almost completely disappears
when the message size reaches 512 KB. UPC and CAF show
the opposite overlap capability to MPI as a function of mes-
sage size. For small messages, the overlap fraction is only
around 5%. However, for large messages, such as 512KB, the
overlap fraction can reach above 80%. CAF performs even
better than UPC, for message size 512KB, over 90% of the
communication time is overlapped with computation time.
Presumably the difference between the CAF and UPC re-
sults is due to the slightly different mechanisms used in each
case, as described above.

The higher overlap capability of UPC and CAF for large
messages is related to the BTE message transfer mechanism.
The BTE is part of the Gemini, and works asynchronously
with respect to the CPU.

The poor overlap capability of MPI is related with the
handshaking protocol needed between the sender and the
receiver in MPI programming model, which may consume
a lot of CPU cycles. The Gemini has no special hardware
support for this, unlike SeaStar interconnect, and therefore
it is much more difficult for MPI to overlap the communi-
cation and computation. (We note that a software based
mechanism for this is in development at Cray currently.)

For smaller messages using PGAS, FMA is used to trans-
fer the message data. FMA needs CPU involvement to initi-
ate the transfer activity leading to lower overlap capability.
Setting the input parameter R higher ( i.e. more local com-
putation time), could improve the overlapped fraction.

The above computational kernel involves a lot of data ac-
cess to memory; it is a STREAM-like loop. We also devel-
oped a computation intensive kernel with reduced memory
activity that worked only on data in cache and obtained sim-
ilar results, which indicates we are not subject to contention
for memory bandwidth between the CPU and the BTE, at
least for these experiments.

6. NAS FT
In this section, we examine the performance differences

between a MPI and a CAF version of a popular bench-
mark application, NAS FT. The NAS FT benchmark solves
partial differential equations using Fast Fourier Transform
(FFT) method. The MPI version is obtained directly from
NPB3.3 benchmark suite [14]. The CAF version is con-
verted from the MPI version by replacing the dominant MPI
call, an MPI Alltoall, with a CAF implementation. We also
added some necessary synchronizations, and changed the
corresponding data array to a co-array. The implementa-
tion of the CAF alltoall communication uses a round-robin
communication pattern.

The performance in terms of Mflops for the Class B prob-



Table 2: The message sizes for NAS FT Class B (BYTE)
64 128 256 512 1024 2048 4096 8192 16384 32768 65536

transpose 1 131072 32768 8192 4096 2048 1024 512 256 128 64 32
transpose 2 524288 131072 32768 8192 2048 512 128 32

lem size is shown in Fig. 9 for up to 64K cores. The 3D
grid size is 512× 256× 256 in X, Y, and Z direction individ-
ually. When the total number of processes (nprocs) is less
or equal to grid size in Z direction (256 for Class B), a 1-D
partitioning scheme is used and the grid will be partitioned
among the cores along the Z direction. When the total num-
ber of processes becomes greater than the grid size in the Z
direction, 2-D partitioning will be used and in addition to
partitioning the grid along Z direction, the grid will also be
partitioned in Y direction. The corresponding process grid
is 256*(nprocs/256) and two new sub-communicators will be
created. Therefore, there will be two transposes under 2-D
partition, one for each new communicator. Table 2 shows
the alltoall message size for different number of processes.

The overall performance comparison between MPI and
CAF in terms of mflops is shown in Fig. 9 and the corre-
sponding communication times are shown in Fig. 10.

0 

200000 

400000 

600000 

800000 

1000000 

1200000 

64
 

12
8 

25
6 

51
2 

10
24
 

20
48
 

40
96
 

81
92
 

16
38
4 

32
76
8 

65
53
6 

M
flo

ps
/s
 

No. of Cores 

CAF 

MPI 

Figure 9: The performance of NAS FT for Class B
for the CAF and MPI versions.

0.000 

0.100 

0.200 

0.300 

0.400 

0.500 

0.600 

0.700 

0.800 

0.900 

1.000 

64
 

12
8 

25
6 

51
2 

10
24
 

20
48
 

40
96
 

81
92
 

16
38
4 

32
76
8 

65
53
6 

G
lo
ba

l C
om

m
 T
im

e 
(s
) 

No. of Cores 

MPI 
CAF 

Figure 10: The global communication time of NAS
FT for Class B in CAF and MPI .

Up to 256 tasks, MPI and CAF deliver similar perfor-
mance. This is for two reasons. Firstly, for these three cases,
1-D partitioning is used, and the message size is large, in the
regime where CAF and MPI performance is almost the same.
This is clearly shown in Fig. 10 which compares the alltoall

communication times in CAF to those of the MPI version.
Secondly, local computation and local transpose time domi-
nate the runtime at these core counts and affect the overall
performance much more than global communication time.
For 512 processes, we notice that the communication time
for CAF has a sudden jump. This is because the message
size for the first global alltoall communication is 4 KB bytes,
which is the switch threshold from using FMA to the BTE.
We have seen this phenomena in our earlier micro bench-
marks. If we change the PGAS OFFLOAD THRESHOLD
to 1MB, the performance of CAF is significantly improved
at 512 cores and the performance is no longer anomalous.
For MPI a similar effect occurs at 2048 cores, as shown in
Fig. 10, where we can see that MPI has the highest global
communication time at this core count.

For all other core counts, CAF performs significantly bet-
ter than MPI as the message sizes become smaller. The best
performance is obtained by using 16K cores, at which CAF
is about 2.8 times faster than MPI. However, the perfor-
mance gap shrinks when 64K cores are used. As shown in
Fig. 10, from 16K to 64K cores, the global communication
time for CAF is relatively stable while for MPI, it contin-
ues to drop but maintains higher than corresponding CAF
time. Again this is due to a change in communication pro-
tocol, for messages smaller than 128 bytes, MPI uses a store
and forward protocol instead of the default, as it has better
performance. At 65536 cores both transposes involve mes-
sages below this limit, and hence the improved algorithm is
used. Experiments increasing the threshold of the cutoff for
the change in algorithm to 1 KB bytes at 16384 and 32768
cores show performance improvements of almost 50% for the
MPI version.

7. SUMMARY AND CONCLUSIONS
Compared with the popular MPI programming model,

PGAS languages provide substantial ease of programming,
and the ability to construct globally accessible data struc-
tures. However, they still have not been widely adopted by
user community today. This is mainly due to lack of the di-
rect hardware support, a mature developer environment and
lack of convincing performance results that they are superior
to MPI.

In this work we evaluated the performance of PGAS lan-
guages on a Cray XE6 high-performance computing plat-
form for which the Gemini interconnect provides direct sup-
port for a globally addressable memory and hardware-accelerated
one-sided messaging. We examined the performance in terms
of bandwidth, message rate, and capability to overlap com-
putation with communication. The results demonstrated
that with this special hardware acceleration, PGAS lan-
guages can outperform MPI, especially for messages a few
KB in size, and therefore provide a viable alternative. How-
ever, they also show that simply swapping MPI calls for
equivalent PGAS constructs may not necessarily be the op-
timal path forward for achieving good performance with



PGAS, as the performance in the bandwidth limit is identi-
cal to that of MPI. Codes may need to be modified to send
smaller messages more frequently than one would with MPI
in order to achieve the greatest benefit from using PGAS
languages, Our future work will focus on converting exis-
tent scientific applications into PGAS codes and study their
performance on Hopper.
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