Auto-tuning Multigrid with PetaBricks

Cy Chan

Joint Work with:

Jason Ansel
Yee Lok Wong
Saman Amarasinghe
Alan Edelman

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Algorithmic Choice in Sorting

- Mergesort (N-way)
- Insertionsort
- Radixsort
- Quicksort
Algorithmic Choice in Sorting

Mergesort (N-way) Insertionsort

N=2 @15

Radixsort Quicksort

STL Algorithm
Algorithmic Choice in Sorting

Mergesort (N-way)

Insertionsort

Radixsort

Quicksort

Optimized For:
Xeon (1 core)
Algorithmic Choice in Sorting

Mergesort (N-way)

Insertionsort

Optimized For:
Xeon (1 core)
Xeon (8 cores)

Radixsort

Quicksort
Algorithmic Choice in Sorting

- **Mergesort (N-way)**: Optimized for Xeon (1 core)
 - N=2, 4, 8, 16
 - Times: @75, @1461, @2400

- **Insertionsort**
 - N=2
 - Times: @75

- **Radixsort**
 - N=4
 - Times: @98

- **Quicksort**
 - N=2
 - Times: @1420, @600

- **Optimized For**:
 - Xeon (1 core)
 - Xeon (8 cores)
 - Niagra (8 cores)
Variable Accuracy Algorithms

• Lots of algorithms where the accuracy of output can be tuned:
 – Iterative algorithms (e.g. solvers, optimization)
 – Signal processing (e.g. images, sound)
 – Approximation algorithms

• Can trade accuracy for speed

• All user wants: Solve to a certain accuracy as fast as possible using whatever algorithms necessary!
The PetaBricks Language

- **General purpose** language and auto-tuner
- Support for algorithmic choices and variable accuracy built into the language
- Specify multiple algorithms and accuracy levels
- Auto-tune parameters (e.g. number of iterations) to produce programs of different accuracy
- Multigrid is a prime target:
 - Iterative linear solver algorithm
 - Lots of choices!
Outline

• Auto-tuning with PetaBricks
• Tuning the Multigrid V-Cycle
• Extension to Auto-tuning Full Multigrid Cycles
• Performance Results
transform Sort
from A[n]
to B[n]
{
// Recursive case, merge sort
to(B b)
from(A a) {
 (a1, a2) = Split(a);
 b1 = Sort(a1);
 b2 = Sort(a2);
 b = Merge(b1, b2);
}

OR

// Base case, insertion sort
to(B b)
from(A a) {
 b = InsertionSort(a);
}
}
Modeling Costs

- Algorithmic Complexity
- Compiler Complexity
- Memory System Complexity
- Processor Complexity

All impact performance

- No simultaneous model for all of these!
- Solution: Use learning!
PetaBricks Work Flow

PetaBricks Source

PetaBricks Compiler

Tunable Executable

Configuration File

Static Executable
A Very Brief Multigrid Intro

- Used to iteratively solve PDEs over a gridded domain
- **Relaxations** update points using neighboring values (stencil computations)
- **Restrictions** and **Interpolations** compute new grid with coarser or finer discretization

![Diagram showing the multigrid process]

- Relax on current grid
- Restrict to coarser grid
- Interpolate to finer grid
Multigrid Cycles

Standard Approaches

V-Cycle

How coarse do we go?

W-Cycle

How many iterations?

Relaxation operator?

Full MG V-Cycle

Standard Approaches
Multigrid Cycles

• Generalize the idea of what a multigrid cycle can look like
• Example:

 • Goal: Auto-tune cycle shape for specific usage
Algorithmic Choice in Multigrid

- Need framework to make fair comparisons
- Perspective of a specific grid resolution
- How to get from A to B?

```
A B
Direct
A B
Iterative
```

```
A
Restrict
?
Interpolate
B
Recursive
```
Algorithmic Choice in Multigrid

• Tuning cycle shape!
 – Examples of recursive options:

 ![Standard V-cycle diagram](image)

Standard V-cycle
Algorithmic Choice in Multigrid

• Tuning cycle shape!
 – Examples of recursive options:

 Take a shortcut at a coarser resolution
Algorithmic Choice in Multigrid

• Tuning cycle shape!
 – Examples of recursive options:

A

Iterating with shortcuts

B
Algorithmic Choice in Multigrid

• Tuning cycle shape!
 – Once we pick a recursive option, how many times do we iterate?

Higher Accuracy

A B C D

• Number of iterations depends on what accuracy we want at the current grid resolution!
Comparing Cycle Shapes

• Different convergence AND execution rates
• Need a way to make fair comparisons
• Measure accuracy: reduction of RMS error
 – Example: A cycle has accuracy level 10^3 if the RMS error of guess is reduced by a 10^3 factor
 – Must train on representative data
 – Imperfect metric: ignores error frequency
• Use accuracy AND time to make comparisons between cycle shapes
Optimal Subproblems

- Plot all cycle shapes for a given grid resolution:

- Idea: Maintain a family of optimal algorithms for each grid resolution

Keep only the optimal ones!

- Idea: Maintain a **family** of optimal algorithms for each grid resolution
The Discrete Solution

• Problem: Too many optimal cycle shapes to remember

• Solution: Remember the fastest algorithms for a discrete set of accuracies
Use Dynamic Programming to Manage Auto-tuning Search

• Only search cycle shapes that utilize optimized sub-cycles in recursive calls
• Build optimized algorithms from the bottom up

• Allow shortcuts to stop recursion early
• Allow multiple iterations of sub-cycles to explore time vs. accuracy space
Auto-tuning the V-cycle

\[
\text{transform Multigrid}_k \\
\text{from } X[n,n], B[n,n] \\
\text{to } Y[n,n] \\
\{
// Base case \\
// Direct solve \\
\}
\]

\[
// Base case \\
// Iterative solve at current resolution \\
\]

\[
// Recursive case \\
// For some number of iterations \\
// Relax \\
// Compute residual and restrict \\
// Call Multigrid, for some i \\
// Interpolate and correct \\
// Relax \\
\}
\]

- **Algorithmic choice**
 - Shortcut base cases
 - Recursively call some optimized sub-cycle

- **Iterations and recursive accuracy** let us explore accuracy versus performance space

- **Only remember “best” versions**
Variable Accuracy Keywords

- **accuracy_variable** – tunable variable
- **accuracy_metric** – returns accuracy of output
- **accuracy_bins** – set of discrete accuracy bins
- **generator** – creates random inputs for accuracy measurement

```plaintext
transform Multigrid_k
from X[n,n], B[n,n]
to Y[n,n]
accuracy_variable numIterations
accuracy_metric Poisson2D_metric
accuracy_bins 1e1 1e3 1e5 1e7
generator Poisson2D_Generator
{
...
```
Training the Discrete Solution

Resolution i

Accuracy 1
- Multigrid Algorithm

Accuracy 2
- Multigrid Algorithm

Accuracy 3
- Multigrid Algorithm

Accuracy 4
- Multigrid Algorithm

Resolution $i+1$

Multigrid Algorithm

Optimized

Training
Training the Discrete Solution

Resolution i

<table>
<thead>
<tr>
<th>Accuracy 1</th>
<th>Accuracy 2</th>
<th>Accuracy 3</th>
<th>Accuracy 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multigrid Algorithm</td>
<td>Multigrid Algorithm</td>
<td>Multigrid Algorithm</td>
<td>Multigrid Algorithm</td>
</tr>
</tbody>
</table>

Resolution $i+1$

<table>
<thead>
<tr>
<th>Accuracy 1</th>
<th>Accuracy 2</th>
<th>Accuracy 3</th>
<th>Accuracy 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multigrid Algorithm</td>
<td>Multigrid Algorithm</td>
<td>Multigrid Algorithm</td>
<td>Multigrid Algorithm</td>
</tr>
</tbody>
</table>

Optimized

Optimized
Training the Discrete Solution

Accuracy 1 Accuracy 2 Accuracy 3 Accuracy 4

Multigrid Algorithm Multigrid Algorithm Multigrid Algorithm Multigrid Algorithm

Finer

Coarser

Tuning order

Possible choice
(Shortcuts not shown)
Example: Auto-tuned 2D Poisson’s Equation Solver

4096 2048 1024 512 256 128 64 32

Accy. 10 Accy. 10^3 Accy. 10^7

Finer → Coarser
Auto-tuned Cycles for 2D Poisson Solver

Cycle shapes for accuracy levels a) 10, b) 10^3, c) 10^5, d) 10^7

Optimized substructures visible in cycle shapes
Extension to Full Multigrid

• Build auto-tuned Full Multigrid cycles out of auto-tuned V-cycles

• Two phases:
 – Estimation phase: Restrict and recursively call auto-tuned Full Multigrid at coarser grid resolution
 – Solve phase: Interpolate and run auto-tuned V-cycle at current grid resolution

• Choose accuracy level of each phase independently

• Use dynamic programming
Auto-tuned Full Multigrid Cycles for 2D Poisson Solver

Cycle shapes for accuracy levels a) 10, b) 10^3, c) 10^5, d) 10^7
Benchmark Application: Solving 2D Poisson’s Equation

• Solve 2D Poisson’s Equation on random data (uniform over \([-2^{32}, 2^{32}]\)) for problems of size \(2^n\) for \(n = 2, 3, \ldots, 12\)

• Reference Algorithms (also in PetaBricks):
 – Reference Multigrid – Iterate using V-cycle until accuracy target is reached
 – Reference Full Multigrid – Estimate using a standard Full Multigrid iteration, then iterate using V-cycle until accuracy target is reached
Performance Testbed

• Shared memory machines
 – Intel Harpertown – Two quad-core 3.2 GHz Xeons
 – AMD Barcelona – Two quad-core 2.4 GHz Opterons
 – Sun Niagara – One quad-core 1.2 GHz T1

• PetaBricks compiler still under development
 – Some low-level optimizations not yet supported (no explicit pre-fetching or SIMD vectorization)
 – Focus on tuning and comparing cycle shapes
Impact of Auto-tuning Intel Harpertown (2 Sockets, 8 Cores)

The graph shows the relative time (ratio) for different configurations of the Intel Harpertown processor as a function of problem size. The configurations include:

- Reference V
- Reference Full MG
- Autotuned V
- Autotuned Full MG

The x-axis represents the problem size, while the y-axis represents the relative time (ratio) compared to a baseline. The graph illustrates the performance improvements achieved through auto-tuning compared to the reference configurations.
Impact of Auto-tuning
AMD Barcelona (2 Sockets, 8 Cores)
Impact of Auto-tuning
Sun Niagara (4 Cores, 32 Threads)
Tuned Cycles Across Architectures

Tuned cycles to achieve accuracy 10^5 at resolution 2^{11}

i) Intel Harpertown ii) AMD Barcelona iii) Sun Niagara
Selected Related Work

• Auto-tuning Software:
 – FFTW – Fast Fourier Transform
 – ATLAS, FLAME – Linear Algebra
 – SPARSITY, OSKI – Sparse Matrices
 – STAPL – Template Framework Library
 – SPL – Digital Signal Processing

• Tuning Multigrid:
 – SuperSolvers – Composite Linear Solver
 – Cache-Aware Multigrid
 – Thekale, Gradl, Klamroth, Rude (2009) – Optimizing Interations of V-Cycles in Full Multigrid
Future Work

• Add support for auto-tuning other aspects of multigrid
 – Tuning of relaxation, interpolation, and restriction operators
 – Low-level optimizations: explicit prefetch and vectorization

• Add support for tuning data movement in AMR
 – Parameterize tuned subproblems by data location in addition to size and accuracy
 – Try different data layouts during recursion
General PetaBricks
Future Work

• Dynamic choices during execution

• Support for other parallel architectures
 – Distributed memory machines
 – Heterogeneous clusters (e.g. CPU + GPGPU)

• Sparse Matrix support
 – Auto-tune sparse matrix storage format
 – e.g. CSR, CSC, COO, ELLPACK
 – register block sizes, cache block sizes
Conclusion

• Auto-tuning with PetaBricks
 – Algorithmic choice
 – Variable accuracy

• Auto-tuning Multigrid Cycles
 – Construct more efficient multigrid solvers
 – Use dynamic programming
 – Speedup shown over reference algorithms
Thanks!

http://projects.csail.mit.edu/petabricks/