
Auto-tuning Multigrid
with PetaBricks

Cy Chan
Joint Work with:

Jason Ansel
Yee Lok Wong

Saman Amarasinghe
Alan Edelman

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Algorithmic Choice in Sorting

2

Presenter
Presentation Notes
I’m going to begin with a motivating example. Consider the problem of sorting an array. There are lots of algorithms to do it, such as these four shown here.

The best choice of which algorithm to use depends on your machine, data type, and array size. Additionally, three of these choices are recursive, so these algorithms can call each other. So how do you decide what to use?

Algorithmic Choice in Sorting

3

Presenter
Presentation Notes
One choice is to pick a way and hard code it. For example, the C++ Standard Template Library recursively calls a 2-way merge sort until the array size is less than 16, at which point it switches to insertion sort.

Algorithmic Choice in Sorting

4

Presenter
Presentation Notes
We found that when using a single core on a recent Xeon processor, it’s better to start with Radix Sort, switch to a 4-way Merge Sort, then Insertion Sort.

Algorithmic Choice in Sorting

5

Presenter
Presentation Notes
When we add parallelism using 8 cores, the best algorithm we found changed to using Merge Sort, then Quick Sort, then Insertion Sort.

Algorithmic Choice in Sorting

6

Presenter
Presentation Notes
Now switching to a Sun Niagara, we found that sticking with Merge Sort, but changing the number of ways to merge was the fastest.

Clearly, we need a way to manage the problem of determining which algorithmic choices to make.

Variable Accuracy Algorithms

• Lots of algorithms where the accuracy of output
can be tuned:
– Iterative algorithms (e.g. solvers, optimization)
– Signal processing (e.g. images, sound)
– Approximation algorithms

• Can trade accuracy for speed

• All user wants: Solve to a certain accuracy as
fast as possible using whatever algorithms
necessary!

7

Presenter
Presentation Notes
In addition to contending with algorithmic choice, there are lots of algorithms where the accuracy of the output can be tuned.

The PetaBricks Language

• General purpose language and auto-tuner
• Support for algorithmic choices and variable

accuracy built into the language
• Specify multiple algorithms and accuracy

levels
• Auto-tune parameters (e.g. number of

iterations) to produce programs of different
accuracy

• Multigrid is a prime target:
– Iterative linear solver algorithm
– Lots of choices!

8

Presenter
Presentation Notes
To address these issues, our research group developed the programming language and auto-tuner called PetaBricks.

Outline

• Auto-tuning with PetaBricks
• Tuning the Multigrid V-Cycle
• Extension to Auto-tuning Full Multigrid

Cycles
• Performance Results

9

transform Sort
from A[n]
to B[n]
{

// Recursive case, merge sort
to(B b)
from(A a) {

(a1, a2) = Split(a);
b1 = Sort(a1);
b2 = Sort(a2);
b = Merge(b1, b2);

}

OR

// Base case, insertion sort
to(B b)
from(A a) {

b = InsertionSort(a);
}

}

PetaBricks Language
Example: Sort

10

Merge sort

Merge sort Merge sort

Insertion sort

4096

2048

1024

Modeling Costs

• No simultaneous model for all of these!
• Solution: Use learning!

11

Algorithmic Complexity

Compiler Complexity

Memory System Complexity

Processor Complexity

All impact performance

Presenter
Presentation Notes
So how does the autotuner decide what choices to make? One option is to develop a model and cost function and solve for the algorithm that minimizes the cost.

PetaBricks Work Flow

12

PetaBricks Compiler

Tunable Executable

PetaBricks Source

Configuration File

Static Executable

A Very Brief Multigrid Intro
• Used to iteratively solve PDEs over a gridded domain
• Relaxations update points using neighboring values

(stencil computations)
• Restrictions and Interpolations compute new grid with

coarser or finer discretization

13

R
es

ol
ut

io
n

Compute Time

Relax on current grid

Restrict to coarser grid

Interpolate to finer grid

Presenter
Presentation Notes
So how do we apply this framework to multigrid? Not all of you may be familiar with multigrid, so here’s a very brief introduction.

Multigrid Cycles

14

Standard Approaches

Relaxation operator?

How many iterations?

How coarse do we go?

V-Cycle W-Cycle

Full MG V-Cycle

Presenter
Presentation Notes
Here are some standard multigrid cycles
Lots of choices to make here: what relaxation operator to use, how many iterations? How coarse do we go?
Further, who’s to say we even need to pick one of these standard shapes?

Multigrid Cycles

• Generalize the idea of what a multigrid cycle can
look like

• Example:

• Goal: Auto-tune cycle shape for specific usage
15

direct or iterative shortcut

relaxation
steps

Presenter
Presentation Notes
You could also try taking shortcuts by solving directly or iteratively before reaching the coarsest level. How do you know which shape will work for best for your problem? It could be that something more complex would work really well for your particular problem.

Algorithmic Choice in Multigrid

• Need framework to make fair comparisons
• Perspective of a specific grid resolution
• How to get from A to B?

16

A B

Direct

Iterative

A B

Recursive

A B
?

Restrict Interpolate

Algorithmic Choice in Multigrid

• Tuning cycle shape!
– Examples of recursive options:

17

Standard V-cycle

A B

Algorithmic Choice in Multigrid

• Tuning cycle shape!
– Examples of recursive options:

18

Take a shortcut at a coarser resolution

A BA B

Algorithmic Choice in Multigrid

• Tuning cycle shape!
– Examples of recursive options:

19

Iterating with shortcuts

A B

Algorithmic Choice in Multigrid

• Number of iterations depends on what accuracy
we want at the current grid resolution!

20

• Tuning cycle shape!
– Once we pick a recursive option, how many times do

we iterate?

A B C D

Higher Accuracy

Comparing Cycle Shapes

• Different convergence AND execution
rates

• Need a way to make fair comparisons
• Measure accuracy: reduction of RMS error

– Example: A cycle has accuracy level 103 if the
RMS error of guess is reduced by a 103 factor

– Must train on representative data
– Imperfect metric: ignores error frequency

• Use accuracy AND time to make
comparisons between cycle shapes

21

• Plot all cycle shapes for a given grid resolution:

• Idea: Maintain a family of optimal algorithms for
each grid resolution

Optimal Subproblems

22

Better

Keep only the
optimal ones!

• Problem: Too many optimal cycle shapes to
remember

• Solution: Remember the fastest algorithms for a
discrete set of accuracies

The Discrete Solution

23

Remember!

Use Dynamic Programming
to Manage Auto-tuning Search

• Only search cycle shapes that utilize optimized
sub-cycles in recursive calls

• Build optimized algorithms from the bottom up

• Allow shortcuts to stop recursion early
• Allow multiple iterations of sub-cycles to explore

time vs. accuracy space

24

transform Multigridk
from X[n,n], B[n,n]
to Y[n,n]
{

// Base case
// Direct solve

OR

// Base case
// Iterative solve at current resolution

OR

// Recursive case
// For some number of iterations

// Relax
// Compute residual and restrict
// Call Multigridi for some i
// Interpolate and correct
// Relax

}

Auto-tuning the V-cycle

• Algorithmic choice
– Shortcut base cases
– Recursively call

some optimized sub-
cycle

• Iterations and
recursive accuracy
let us explore
accuracy versus
performance space

• Only remember
“best” versions

25

?

Variable Accuracy Keywords
• accuracy_variable – tunable variable
• accuracy_metric – returns accuracy of output
• accuracy_bins – set of discrete accuracy bins
• generator – creates random inputs for accuracy

measurement

26

transform Multigridk
from X[n,n], B[n,n]
to Y[n,n]
accuracy_variable numIterations
accuracy_metric Poisson2D_metric
accuracy_bins 1e1 1e3 1e5 1e7
generator Poisson2D_Generator
{

…

Training the Discrete Solution

27

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Accuracy 1 Accuracy 2 Accuracy 3 Accuracy 4

Optimized

Resolution i

Resolution
i

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Resolution
i+1 Training

Resolution i+1

Training the Discrete Solution

28

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Accuracy 1 Accuracy 2 Accuracy 3 Accuracy 4

Optimized

Resolution i

Resolution
i

Resolution
i+1 Optimized

Resolution i+1

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Training the Discrete Solution

29

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Finer

Coarser

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Accuracy 1 Accuracy 2 Accuracy 3 Accuracy 4

Tuning order Possible choice
(Shortcuts not shown)

2x

1x

Training

Optimized

Training

Optimized

Optimized

Example: Auto-tuned 2D
Poisson’s Equation Solver

30

Accy. 10 Accy. 103 Accy. 107

Finer

Coarser

Auto-tuned Cycles for
2D Poisson Solver

31

Cycle shapes for accuracy levels a) 10, b) 103, c) 105, d) 107

Optimized substructures visible in cycle shapes

Extension to Full Multigrid
• Build auto-tuned Full Multigrid cycles out of auto-

tuned V-cycles
• Two phases:

– Estimation phase: Restrict and recursively call auto-
tuned Full Multigrid at coarser grid resolution

– Solve phase: Interpolate and run auto-tuned V-cycle
at current grid resolution

• Choose accuracy level of each phase
independently

• Use dynamic programming

32

Auto-tuned Full Multigrid
Cycles for 2D Poisson Solver

33

Cycle shapes for accuracy levels a) 10, b) 103, c) 105, d) 107

Benchmark Application:
Solving 2D Poisson’s Equation

• Solve 2D Poisson’s Equation on random data
(uniform over [-232, 232]) for problems of size 2n

for n = 2, 3, …, 12
• Reference Algorithms (also in PetaBricks):

– Reference Multigrid – Iterate using V-cycle until
accuracy target is reached

– Reference Full Multigrid – Estimate using a standard
Full Multigrid iteration, then iterate using V-cycle until
accuracy target is reached

34

Performance Testbed

• Shared memory machines
– Intel Harpertown – Two quad-core 3.2 GHz Xeons
– AMD Barcelona – Two quad-core 2.4 GHz Opterons
– Sun Niagara – One quad-core 1.2 GHz T1

• PetaBricks compiler still under development
– Some low-level optimizations not yet supported (no

explicit pre-fetching or SIMD vectorization)
– Focus on tuning and comparing cycle shapes

35

Impact of Auto-tuning
Intel Harpertown (2 Sockets, 8 Cores)

Impact of Auto-tuning
AMD Barcelona (2 Sockets, 8 Cores)

Impact of Auto-tuning
Sun Niagara (4 Cores, 32 Threads)

Tuned Cycles
Across Architectures

39

Tuned cycles to achieve accuracy 105 at resolution 211

i) Intel Harpertown ii) AMD Barcelona iii) Sun Niagara

Selected Related Work
• Auto-tuning Software:

– FFTW – Fast Fourier Transform
– ATLAS, FLAME – Linear Algebra
– SPARSITY, OSKI – Sparse Matrices
– STAPL – Template Framework Library
– SPL – Digital Signal Processing

• Tuning Multigrid:
– SuperSolvers – Composite Linear Solver
– Sellappa and Chatterjee (2004), Rivera and Tseng (2000)

– Cache-Aware Multigrid
– Thekale, Gradl, Klamroth, Rude (2009) – Optimizing

Interations of V-Cycles in Full Multigrid

Future Work

• Add support for auto-tuning other aspects of
multigrid
– Tuning of relaxation, interpolation, and restriction

operators
– Low-level optimizations: explicit prefetch and

vectorization
• Add support for tuning data movement in AMR

– Parameterize tuned subproblems by data location in
addition to size and accuracy

– Try different data layouts during recursion

41

General PetaBricks
Future Work

• Dynamic choices during execution
• Support for other parallel architectures

– Distributed memory machines
– Heterogeneous clusters (e.g. CPU + GPGPU)

• Sparse Matrix support
– Auto-tune sparse matrix storage format

– e.g. CSR, CSC, COO, ELLPACK
– register block sizes, cache block sizes

42

Conclusion

• Auto-tuning with PetaBricks
– Algorithmic choice
– Variable accuracy

• Auto-tuning Multigrid Cycles
– Construct more efficient multigrid solvers
– Use dynamic programming
– Speedup shown over reference algorithms

43

Thanks!

44

http://projects.csail.mit.edu/petabricks/

	Auto-tuning Multigrid�with PetaBricks
	Algorithmic Choice in Sorting
	Algorithmic Choice in Sorting
	Algorithmic Choice in Sorting
	Algorithmic Choice in Sorting
	Algorithmic Choice in Sorting
	Variable Accuracy Algorithms
	The PetaBricks Language
	Outline
	PetaBricks Language�Example: Sort
	Modeling Costs
	PetaBricks Work Flow
	A Very Brief Multigrid Intro
	Multigrid Cycles
	Multigrid Cycles
	Algorithmic Choice in Multigrid
	Algorithmic Choice in Multigrid
	Algorithmic Choice in Multigrid
	Algorithmic Choice in Multigrid
	Algorithmic Choice in Multigrid
	Comparing Cycle Shapes
	Optimal Subproblems
	The Discrete Solution
	Use Dynamic Programming�to Manage Auto-tuning Search
	Auto-tuning the V-cycle
	Variable Accuracy Keywords
	Training the Discrete Solution
	Training the Discrete Solution
	Training the Discrete Solution
	Example: Auto-tuned 2D�Poisson’s Equation Solver
	Auto-tuned Cycles for�2D Poisson Solver
	Extension to Full Multigrid
	Auto-tuned Full Multigrid Cycles for 2D Poisson Solver
	Benchmark Application:�Solving 2D Poisson’s Equation
	Performance Testbed
	Impact of Auto-tuning�Intel Harpertown (2 Sockets, 8 Cores)
	Impact of Auto-tuning�AMD Barcelona (2 Sockets, 8 Cores)
	Impact of Auto-tuning�Sun Niagara (4 Cores, 32 Threads)
	Tuned Cycles�Across Architectures
	Selected Related Work
	Future Work
	General PetaBricks�Future Work
	Conclusion
	Thanks!

