
Exploiting Variability for Energy Optimization of Load
Balanced Parallel Programs

Xin Chen, Karsten Schwan

Georgia Institute of Technology

{xchen384, schwan}@gatech.edu

Wim Lavrijsen, Costin Iancu, Wibe de Jong

Lawrence Berkeley National Laboratory

{wlavrijsen, cciancu, wadejong}@lbl.gov

ABSTRACT
In this paper we present optimizations that use DVFS mech-
anisms to reduce the total energy usage of the NWChem
computational chemistry code. The analyses handle dynam-
ically load balanced, well optimized code in a runtime and
programming model independent manner. Our main insight
is that noise is intrinsic to large scale executions and it ap-
pears whenever shared resources are contended. This cri-
teria, particularly important when using one-sided commu-
nication, allows us to identify and manipulate any program
regions amenable to DVFS. We validate our approach us-
ing offline and online analyses. When compared to previous
MPI specific optimizations that make per core decisions, our
scheme can determine a “global” system level frequency for
any portion of the execution. This suits better the hierar-
chical nature of DVFS control in current systems and bodes
well for eventual coarse grained (cabinet, system) hardware
DVFS control in HPC systems.

We have applied our methods to NWChem, and we show
improvements in energy use of 8%, at a cost of less than 1%
in performance when using online optimizations.

1. INTRODUCTION
Optimizations using Dynamic Voltage and Frequency Scal-

ing (DVFS) have been shown [24, 12, 27, 18, 13, 16] to re-
duce energy usage in HPC workloads. As we continue to
scale systems up and out towards Exascale levels of perfor-
mance, power becomes the most important system design
constraint. There exists a fair incentive to deploy these op-
timizations in production, but many questions still require
answers for the next generation of HPC codes and systems.

The rather impressive existing body of work developed
energy optimizations for MPI codes, with the main purpose
of saving energy without affecting performance. Optimiza-
tions try to exploit the combination of synchronous two-
sided Send/Recv communication together with static domain
decomposition and try to predict the “critical path” through
the program execution. Ranks executing on the critical path
need to run fast, while others can be slowed down.

In order to address hardware and software evolutionary
trends, our research tries to expand on the intrinsic assump-
tions behind these MPI centric methods. We use NWChem [26],
which provides open source computational chemistry soft-
ware for simulations of chemical and biological systems.
NWChem is built using a one-sided communication model
and a Global Address Space (PGAS) abstraction, it uses non-
blocking communication and overlap for latency hiding, it
also provides its own internal tasking and dynamic load bal-

ancing mechanisms. The dynamic, adaptive behavior and
hiding communication latency are desiderata for large scale
performance that will become pervasive in scientific codes;
handling them is mandatory for any future success of energy
optimization approaches. We examine several questions:

1. As most codes previously considered used a static do-
main decomposition which leads to static load (im)balance
and repeatable behavior, can we handle codes with dy-
namic load balancing?

2. As previous methods have been validated only under
the assumption that per core DVFS is available, can
we develop a control mechanism for the existing hier-
archical nature of hardware control?

3. As application benchmarks previously considered use
two-sided blocking communication, are there any op-
portunities in codes with one-sided communication with
aggressive overlap?

As many others [24, 18, 13, 17], we exploit the idea that
slack gives a natural indication of DVFS opportunities and
that voltage or frequency can be lowered when tasks are
waiting for external events. Unlike the existing tenet that
slack is predictable, we argue that for dynamic codes (par-
allelism or load balancing) we can not make predictions on
timings of individual processes because of random variabil-
ity, but we can predict, and make use of, that variability
itself. Our insight is that noise is intrinsic to large scale ex-
ecutions and we can recognize its signature whenever code
amenable to DVFS executes. One of our contributions is
a method that allows us to identify and manipulate any
program regions containing: i) blocking or nonblocking one-
sided or two-sided communication; ii) I/O; and iii) DRAM
bandwidth limited execution.

Online, single pass context sensitive analyses [24, 18] that
are input and concurrency independent are required for scal-
ability and the long term success of DVFS optimizations.
We have developed both offline, multi-pass approaches, as
well as single pass, online optimizations. To handle the high
latency of DVFS control on production systems, we use con-
text sensitive program region classification and clustering
algorithms. Our clustering algorithm extends the work by
Lim et al [18] to merge multiple clusters for better toler-
ance of DVFS control latency and greatly increased energy
savings.

As previous analyses assume per core DVFS control and
compute per core assignments, another contribution of our
algorithms is the ability to select a global frequency assign-
ment for highly dynamic codes using either two- or one-sided
communication.

1

We experiment with NWChem using ARMCI [19] one-
sided communication, as well as two-sided MPI. We vali-
date results on a small InfiniBand cluster and simulate our
algorithms for a large scale Cray XC30 system. The com-
bination of the variability criteria with clustering methods
provides us with a programming model and runtime inde-
pendent approach. When using one-sided communication,
both the variability criteria and aggressive region clustering
are required for performance. The importance of recogniz-
ing variability increases with scale. When using two-sided
communication, due to its implicit synchronization seman-
tics less variability is found in the NWChem execution. In
this case, clustering reaps most of the optimization benefits.

With the online algorithm, we observe energy savings as
high as 8.3% and slowdown of 1.5% for one-sided commu-
nication at high concurrency. For two-sided communication
we observe energy savings as high as 20% with negligible
slowdown. For reference, the offline algorithm is able to
almost double the energy savings for one-sided communi-
cation, due to its ability to use the optimal frequency for
any region cluster in the program. This indicates that we
can further tune the online algorithm to increase the energy
savings.

2. BACKGROUND AND MOTIVATION
This work has been motivated by the desire to develop

effective application and runtime independent energy opti-
mizations for the next generation of scientific codes which
are likely to: 1) employ latency hiding and dynamic load bal-
ancing; 2) combine multiple runtimes and parallel libraries.

Slack is the most often used measure to identify DVFS
opportunities in scientific codes and it is commonly defined
as time spent blocked or waiting in communication calls.
As MPI has been the de-facto programming standard for
large scale scientific applications, most of the existing ap-
proaches [24, 12, 18, 13, 16] are tailored for its MPI_Send/MPI_Recv
two sided communication semantics. For two-sided oper-
ations where communication has data transfer, as well as
synchronization semantics, slack captures the network band-
width and latency together with application load imbalance.
Where global synchronization (barriers) operations are con-
cerned, slack captures the application load imbalance.

MPI energy optimizations try to construct a critical path
through the program execution and minimize slack: ranks
executing on the critical path need to run fast, while all
others can be slowed down. Initial studies [23] used offline,
trace based analyses that often solve a global optimization
problem.

For generality and scalability, later optimizations use on-
line analyses. Rountree et al [24] present Adagio, which uses
context sensitive analysis to compute the critical path at
runtime. They try to minimize slack for each MPI operation
in its calling context and use CPU performance counters to
assess the efficacy (slowdown) of DVFS changes. This simple
feedback loop allows Adagio to revert unprofitable decisions
caused misprediction. In order to minimize the overhead of
high DVFS latency, Lim et al [18] present a context sensi-
tive analysis that uses clustering of MPI calls to coarsen the
granularity of program regions subject to DVFS. Theirs is a
more restricted approach, they try different frequencies for a
region/cluster without any feedback, once a decision is made
it never reverts. Their goal is to improve load imbalanced
applications, without affecting load balanced applications.

We do embrace the notion that demonstrating success-
ful online analyses is mandatory for the future adoption of
DVFS techniques, either in hardware or software. Each of
these last two efforts [24, 18] employs only pieces of the
mechanisms we believe to be needed: 1) ability to handle
dynamic behavior; and 2) mitigating high DVFS latency.
The challenge is removing their current limitations and com-
bining them in a manner able to handle the evolution of
hardware design and software practices.

First, these and many other approaches [24, 18, 22, 16,
12, 23] have been validated under the assumption that per
core DVFS is available, using only one core per node or
per socket on multicore systems. As modern hardware (e.g.
Intel Haswell) allows control only at the socket level, ex-
tensions to increase the granularity of hardware control are
required. Second, all these techniques rely on the fact that
slack is static per rank and region, therefore predictable.
Our survey of the application codes in these studies shows a
static domain decomposition with “static” load (im)balance.
Third, they were evaluated mostly on benchmarks that use
blocking Send/Recv communication. We have surveyed the
application codes used [24, 18, 16, 12, 23] and we have found
few to none that use non-blocking MPI_Isend/MPI_Irecv op-
erations to overlap communication with computation.

One-sided communication has been recently embraced as
a necessary paradigm to provide application scalability on
the next generation of Peta- and Exascale supercomputers.
Here communication slack is determined mostly by network
performance. The notion of critical path in one-sided com-
munication is also challenging as it may need to be inferred
in an application specific manner that considers Put/Get op-
erations in conjunction with ad-hoc inter-task synchroniza-
tion mechanisms. Some large scale scientific codes [26, 2]
already use non-blocking or one-sided communication in a
very aggressive manner to hide communication latency and
attempt to provide dynamic load balancing. One such ex-
ample is NWChem [26] which can use as a communication
transport either MPI two-sided, or one-sided communication
with MPI 3.0, ARMCI [19], ComEx [6] or GASNet [9]. The
code sends many messages with different sizes, overlapped
with computation in a ever changing communication topol-
ogy. It also contains tasking and dynamic load balancing
mechanisms that determine a highly dynamic execution. To
our knowledge, energy optimizations on one-sided communi-
cation applications have not been demonstrated successfully.

Slack and DVFS opportunity also appear in scientific codes
whenever I/O operations [10] are performed. To our knowl-
edge the existing HPC approaches are MPI specific and do
not target dynamic parallelism or file I/O operations.

Most existing approaches work because inefficiencies (slack)
have a static nature and can be predicted. Software and
hardware evolutionary trends tend to diminish the potential
of such schemes. One-sided communication, communication
overlap optimizations, dynamic tasking and dynamic load
balancing tend to reduce slack, and some make it even un-
predictable. On the hardware side, imbalances in runs at
scale are more often caused by over-commitment of resources
such as memory bandwidth and network or file access, and
these imbalances are stochastic in nature. Finally, the active
power management in modern CPUs manipulates frequency
and voltage based on load and overall power use. This not
only adds a further element of unpredictability, but more-
over, it works against software techniques. In our initial

2

ranking percentile (%)
0 10 20 30 40 50 60 70 80 90 100

pr
ob

ab
ili

ty
 (

%
)

0
1
2
3
4
5
6
7

critical path

ranking percentile (%)
0 10 20 30 40 50 60 70 80 90 100

pr
ob

ab
ili

ty
 (

%
)

0

1

2

3

4

5

fastest path

Figure 1: Quality of prediction of the critical path based on call-
ing context and process in NWChem, for a run of 1024 processes.
Shown is the ranking of the critical (top) and fastest (bottom)
process, in the subsequent re-occurrences of tasks. The proba-
bility of the critical path remaining critical, and of the fastest
remaining so, is less than 10%.

assessment, these considerations almost put paid to the idea
that inter-communication timings have predictive value.

2.1 Identifying DVFS Opportunities for Dy-
namic Program Behavior

Most algorithmic operations in our target application per-
form a sequence of Read-Modify-Accumulate operations on
a global data structure. Each operation is dynamically load
balanced using logical tasks and barriers are executed at the
end, to maintain data consistency.

Thus, we are interested in our ability to predict the re-
occurrence and behavior of the execution between two bar-
riers on any task. We configure NWChem to use one-sided
communication and collect the durations of logical tasks be-
tween barriers, taken as the difference between the exit time
stamp of the previous barrier and the entrance time stamp
of the current one. Differences in these durations among
processes are commonly referred to as slack. In the rest of
this paper, a region refers to the code executed between the
exit of a barrier until the exit of the next barrier. A region
thus includes the algorithmic operations, any slack, and the
communication time of one barrier. The DVFS opportuni-
ties of communication are obvious, and slack is a derived
measure. Thus, we can focus our analysis on the duration
of the algorithmic operations, then extend the conclusions
to the whole region in a straightforward manner.

We run NWChem, and for each region, we sort the pro-
cesses by duration of their logical tasks, label them according
to their “ranking” in this, and collect these rankings per pro-
cess and calling context (described in Section 3). We select
only those regions that are long enough (at least 300µs1)
and have a minimum of 5% difference in duration between
the fastest and slowest process, compared to their average
(i.e. there is a minimum 5% slack). This selects regions for
which DVFS is potentially practical and beneficial.

We select those calling contexts that occur at least 10
times, meaning that there is sufficient repetition for mean-
ingful predicting/learning and for scaling to have an effect.
From these, we take the slowest process, i.e. the critical path,
at the first occurrence of each, and plot their “ranking”, ex-

1This is about 3× the latency of DVFS control.

first occurrence relative standard deviation
0 2 4 6 8 10

su
bs

eq
ue

nt
 o

cc
ur

re
nc

es
 re

l. s
td

. d
ev

.

0

2

4

6

8

10

Figure 2: Quality of prediction of variability per calling context
in NWChem, for a run of 1024 processes. The variability of a re-
occurring calling context is highly correlated with the variability
of the first occurrence of that context, leading to good predictivity.

pressed as a percentile from fastest to slowest, at each sub-
sequent re-occurrence of the same context. The results are
in the top of Figure 1, for a run with 1024 processes.

If the time duration of the first occurrence of a calling
context can be used to predict the durations on subsequent
calls, then there should be a sharp peak at 100%, i.e. the crit-
ical path should remain critical or close to critical. What we
observe, however, is an almost flat distribution, that mod-
erately tapers off towards zero, with less than 10% of the
critical path “predictions” being on the mark.

Still, mispredicting the critical path only leads to missed
opportunities. But mispredicting the fastest path, i.e. the
process that will be scaled down the most, can have dire
performance consequences. We apply the same analysis to
the fastest process for each context as we did for the critical
one, and the results are in the bottom of Figure 1. The
fastest path then, is just as hard to predict as the critical.

We conclude from this data that schemes relying on pre-
dicting the per rank duration of execution are likely to fail
for our target application.

2.2 Employing Variability as a Predictor
In this paper, we will argue that the tables can be turned

around: we can not make predictions on timings of indi-
vidual processes because of random variability, but we can
predict, and make use of, that variability itself. We con-
jecture that besides software causes such as dynamic load
balancing, variability is caused by the intrinsic nature of the
system and the computation. Identifying these causes, de-
termining their variability “signature” and their amenability
to DVFS optimizations, allows us to build energy optimiza-
tions for dynamic program behavior. Our insight is that
no matter what the programmer’s original intentions were,
the stochastic nature of large scale computations allows us
to predict the distribution of inefficiencies (e.g. timing of
slack) in the code and react whenever “signature” distribu-
tions are identified.

Predicting Variability: Figure 2 shows the results of com-
paring the variability of the first occurrence of each context
with its subsequent occurrences, for contexts that repeat at
least 10 times. The correlation is high and it is more likely
that variability increases than decreases when contexts re-
occur. This makes the presence of variability a good indica-
tor. Its magnitude clearly also has predictive value, but we
will not use that in our analysis.

Causes of Variability: We use microbenchmarks that
time code executed in between two barrier operations to

3

understand where and how variability appears. The code
is either communication, memory, I/O, or compute inten-
sive, and each rank performs the same amount of work,
i.e. the workload is seemingly load balanced. As previous
work on CPU hardware level energy optimizations, indicates
that memory intensive [7] codes are amenable to DVFS, we
distinguish between Flops-limited and DRAM bandwidth-
limited code in the computation benchmarks.

Intuitively, pure computation is expected to be more pre-
dictive and static in nature because the total number of
processes is equal or less than the number of CPU cores
available, while communication, synchronization and I/O
are prime culprits for variability, therefore prime candidates
for DVFS, since there processes have to share limited re-
sources. As shown in Figure 3, in CPU-limited code the
variation in execution time, measured as a standard devia-
tion, is negligible at any scale, while the variation in DRAM
bandwidth-limited code is more than 10× larger across the
board. The shape of the distributions, measured with skew-
ness, gives an extra distinction at scale: although memory
limited code remains mostly normally distributed, CPU lim-
ited code grows a significant2 right-side tail.

For brevity we omit detailed results for communication
and I/O intensive codes, we note that their behavior is qual-
itatively similar to memory intensive codes.

Selecting DVFS Candidates: The previous results in-
dicate that the type of behavior amenable to DVFS (com-
munication, I/O, memory intensity), also causes variability
(variable load imbalance in our case). But from there we can
not simply conclude that variability in NWChem allows us
to select regions for DVFS, as regions with divergent logical
tasks or different size workloads will obviously show vari-
ability as well. We must also show that our criteria handle
those cases in a way that does not hurt the end energy saving
goals or program performance.

While variance measures how far ranks have diverged from
each other through random effects, skewness gives an indica-
tion of the shape (asymmetry) of the distribution, and thus
an estimate of the behavior of the critical path (which in
the case of true divergent logical tasks would not be ran-
dom). Negative skew means the mass of the distribution is
concentrated towards the right of the value range. A nega-
tive skew for the duration samples indicates that most tasks
take a long time, with a fat tail of fast tasks. Intuitively,
this happens when most tasks execute on the “critical path”.
Conversely, positive skew means most tasks are fast, with a
fat tail of slow tasks, meaning that one or a few tasks form
the critical path.

Memory-limited code uses many components of the hard-
ware: the CPU, the full memory hierarchy of caches, mem-
ory controllers, the bus, and the DRAM chips. Stochastic
behavior combined from many sources leads to normal dis-
tributions, per the central limit theorem, and that is what we
observe: skewness is small to non-existent in Figure 3 (bot-
tom). In contrast, variability in CPU-limited code comes
from a single source, which leads to an asymmetric distribu-
tion with large positive skew, caused by a few stragglers.

Clearly, we want to exclude regions with large positive
skew: because it could indicate a CPU-bound region, but
also because it could indicate the existence of a determin-

2As normalized by the standard deviation; the tail is not
significant in an absolute (i.e. wall time) sense.

number of ranks
200 400 600 800 1000 1200 1400 1600 1800 2000

ra
tio

 o
f m

em
or

y-
in

te
ns

iv
e

/ c
pu

-in
te

ns
iv

e
(%

)

0

10

20

30

40

50

60

70

80

90

100

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

relative standard deviations (%)

number of ranks
200 400 600 800 1000 1200 1400 1600 1800 2000

ra
tio

 o
f m

em
or

y-
in

te
ns

iv
e

/ c
pu

-in
te

ns
iv

e
(%

)

0

10

20

30

40

50

60

70

80

90

100

0

5

10

15

20

skewness

Figure 3: Variability measures for CPU and memory bound par-
allel computations: standard deviation (top) and skewness (bot-
tom) of the resulting distributions across ranks. The bottom of
each figure is fully CPU intensive, mixing in memory bandwidth
limited code until fully memory intensive at the top. Results are
shown for increasing number of processes, left to right. Memory
bound code has higher variability, but lower skewness, and the
differences become greater at scale.

istic critical path. Either case would see a large slowdown
in performance if DVFS were applied. We also want to ex-
clude large negative skew: unless the random variations are
(much) larger than the region duration itself, they will not
cause a significant negative skew, because the distribution
is bound on the left by the minimum duration of the task.
But a deterministic imbalance, with some tasks consistently
faster, would cause a large negative skew.

Figure 4 summarizes our strategy of applying DVFS based
on observed variance and skewness for the case of NWChem.
For any observed execution falling in Tile (a) we apply DVFS.
The high variance (larger than a threshold), small positive
skew or negative skew are characteristics of communication,
I/O or DRAM bandwidth limited codes. We do not apply
a cut on large negative skew, because NWChem is well load
balanced, so it is not needed. For any other execution sum-
marized by Tiles (b), (c), (d) and (e) we do not attempt
DVFS. For brevity, we give only the intuition behind our
decision, without any benchmark quantification. Tile (b)
captures code that executes in the last level of shared (con-
tended) cache or code with a critical path. Tile (c) captures
flop-bound code. In this case note that skewness increases
with concurrency. Tile (d) captures code with real load im-
balance, but we cannot determine where. Finally code in
Tile (e) is unlikely to occur in the wild.

Note that it would be possible to use hardware perfor-
mance counters and instrument system calls to get more

4

Not in NWChem

0

-high

+high

Variance

Sk
ew

ne
ss

cut

cut

cut

NO: L3-bound, likely on
critical path NO: likely flop-bound

pr

oc
s

NO: maybe slack, can’t tell

NO: statistically impossible

YES: likely comm, I/
0 or DRAM bound

high

2040 cores, flop-intensive

96 cores, flop-intensive

1032 cores, L3

1032 cores, DRAM bw limited

1032 cores, real imbalance

Figure 4: Classification by skewness and variance. Timings obtained using microbenchmarks at the concurrency indicated in Figure.
Regions using only uncontended resources, e.g. CPU, show low variance, whereas regions using contended resources, such as memory,
have high variance. Flop-bound code has large positive skew at scale, as does any code that has a significant critical path. This leaves
the lower right corner (high variance, low or negative skew) as most amenable to DVFS. Real, consistent, workload imbalance exhibits
large negative skew with high variance, so it is possible to cut on it. However, such imbalance does not happen in NWChem.

detail of the programs behavior, and use that to refine the
selection. However, we have found that logical program be-
haviors do not map so neatly. For example, a polling loop
while waiting for one-sided communication to finish is fully
CPU-bound code, but does benefit from DVFS. In addition,
regions contain a mixture of different behaviors, which com-
bined with true stochastic behavior severely risks over-fitting
when too many parameters are considered.

3. DESIGN AND IMPLEMENTATION
We develop single-pass, online optimizations, as well as

offline optimizations. Both attempt to exploit the iterative
nature of scientific codes: for each region first observe exe-
cution under different frequencies, then decide the optimal
assignment and apply it when re-executed. The online opti-
mization is desired for scalability, while the offline analysis
is more precise and can also be used for tuning of the online
optimization engine.

Region Partition: We have started this study by first
instrumenting barriers and Put/Get operations and under-
standing the dynamic behavior of NWChem. While the code
uses heavily non-blocking communication overlapped with
independent computation, barriers are inserted between phases
to maintain data consistency. For NWChem, instrumenting
at the barrier level captures enough, logically separate, pro-
gram regions with DVFS potential.

To capture the dynamic nature of the execution we use
a context sensitive approach where we identify regions with
a hash, created from the return addresses, at the preceding
barrier.

Frequency Selection: The number of frequency trials to
determine an optimal value directly influences the efficacy
of our online algorithm. As we are interested in a global fre-
quency assignment, we select one frequency per trial. Choos-
ing the wrong frequency will unnecessarily slow down during
learning, trying too many will miss occurrences of regions
that are good candidates. To make online learning faster,

we use the offline version of our technique to understand
the impact of different frequencies on the calibration micro-
benchmarks and NWChem performance.

We find that for the online algorithm we only have to
consider two choices: the highest (or default frequency) for
normal execution is a given; for regions where we switch to
a lower frequency, an intermediate roughly in the between
the maximum and the memory frequency works well. Re-
gions that are fully memory bound can be run at the mem-
ory frequency, ones that are fully communication bound at
the lowest. But most DVFS regions are somewhat mixed,
leading to the intermediate choice. This is also substanti-
ated by Austin et al [3] which shows that the energy-optimal
frequency for a code that is mostly, but not wholly, memory-
bandwidth limited is such an intermediate frequency.

Tuning Parameters: The algorithm choices are guided by
several other parameters. To amortize the latency to change
DVFS on the system, we consider as candidates only por-
tions of code that are longer than a multiple (5×) of this
latency. The variability (standard deviation) and skewness
thresholds we determine to first order with microbenchmark
data such as shown in Figure 3. However, the thresholds cut
the same way, so it is possible to create a trade-off. This
is important, because the gain of being right is lower than
the cost of being wrong. In practice therefore, we choose a
tighter skewness threshold with a somewhat looser variabil-
ity threshold. Finally, the thresholds vary moderately with
concurrency and we use samples at different system sizes.

3.1 Region Selection and Clustering
To estimate the variation, we replace barrier calls with

allgather, using linker wraps, send the execution times of
all processes, allowing each process to calculate a standard
deviation and skewness. A region is then considered a can-
didate for frequency scaling if these three criteria are met:

• The total region duration most be more than a thresh-
old, 1ms in our experiments.

5

• The variability in the execution time across the rele-
vant processes, must be more than 3% of the average
duration of the execution.

• Skewness has to be less than 3.

As noted, each of the numeric parameters above parame-
ters is tunable, and depends on the job size (e.g. variability
increases with scale, and decreases for smaller concurrency).
But in practice, we don’t deviate all that much from the
basic values above, because of clustering.

The purpose of clustering is to create larger regions to
scale down, and thus save on switching overhead. There are
three principle components to clustering: creating clusters
of regions where all regions meet the necessary criteria; ex-
tending these clusters with regions of short duration which
can be assumed to be communication bound even as they
are not otherwise selected; and accepting a loss of perfor-
mance to cover a gap between clusters, as switching would
be even more expensive. Clustering for tolerating DVFS la-
tency has been first proposed by Lim et al [18], but they do
not extend or merge clusters.

Each of these components is tunable. A THRESHOLD sets
the minimum size that shorter regions have to meet to form
a cluster. This is the same 1ms mentioned above, as ap-
plied to single regions. With reference to Algorithm 1 it
can be seen that attempts to build clusters are the normal
case. Cluster building resets if a long region that does not
meet the criteria is encountered, but does not stop. Once
a cluster reaches THRESHOLD, it is marked for scaling, which
will happen on the next repetition of the context that started
the cluster. A SHORT cutoff on region duration is used, under
which shorter regions (assumed to be dominated by commu-
nication) can be collected to extend a cluster, even if these
small regions themselves do not meet the selection criteria.
Finally a BRIDGE cutoff is used to allow clusters to combine
to super-clusters, where the cost of the bridge is accept-
able compared to the cost of switching frequencies twice. A
bridge is build until it gets too large, after which normal
clustering restarts, or reaches a new cluster.

The actual values chosen need not be highly tuned, and
we don’t change them with scale. The reason is interaction
of the different parts of the algorithm. For example, choose
the SHORT cutoff too tight, and bridging will cover most cases
anyway. Likewise, the purpose of collecting short regions is
not so much to increase the size of clusters (short regions,
by definition, have little impact in overall energy savings or
program performance), but rather to allow building longer
bridges in parts of the program that are dominated by com-
munication, and hence to save on frequency switching. We
choose the SHORT threshold to be 5× the communication cost
a barrier, and the BRIDGE cutoff to be 10× the cost of DVFS
latency (i.e. the expected average bridge size would be half
that, thus balancing the cost of DVFS against the cost of
scaling a fully CPU-bound region).

3.2 Online and Offline Algorithms
In the online analysis we start executing the instrumented

program and data is collected at each barrier operation. At
the second and subsequent occurrences of any candidates,
the algorithm chooses a different global frequency to try. As
noted, we use only two target frequencies. The decision to
scale is made at the second occurrence. The time is again
collected after the execution and if a too large slowdown,

Algorithm 1: Clustering of regions
Input: context, region, and is noisy
Result: program state update

1

2 /* decisions is a dictionary of <context, DVFS decision>, State is program state and

either CLUSTERING, SCALING, or BRIDGING */

3

4 /* SHORT, STDEV, SKEW, and BRIDGE are tunable parameters, see text */

5

6 if is noisy then
7 /* collect this region into a cluster */

8 collect(context, region)
9 return

10 else
11 /* reject, unless very short, or not too long and in between clusters */

12 if SHORT < region then
13 if State == SCALING then
14 /* potential end of previous cluster, start of a new bridge */

15 cluster ← 0
16 State ← BRIDGING

17 if State == BRIDGING then
18 bridging(context, region)
19 return

20 reset local state()

21 else
22 /* short region: communication dominates, collect anyway */

23 collect(context, region)

24 return

25

26 procedure collect(context, region)
27 if State == BRIDGING then
28 /* (potential) start of a new cluster */

29 cluster ← 0
30 State ← CLUSTERING

31 switch State do
32 case CLUSTERING

33 cluster ← sum(cluster, region)
34 local decisons[context] = SCALE

35 if THRESHOLD < cluster then
36 /* cluster has grown large enough */

37 State ← SCALING

38 scaling(context, region)

39 case SCALING

40 scaling(context, region)

41

42 procedure scaling(context, region)
43 if pending decisions then
44 decisions.update(local decisions)
45 decisions.update(bridge decisions)
46 reset local state()

47 decisons[context] = SCALE

48

49 procedure bridging(context, region)
50 cluster ← sum(cluster, region)
51 bridge decisons[context] = SCALE

52 if BRIDGE < cluster then
53 /* distance from last cluster has grown too large */

54 reset local state()

55

determined by the ratio of the frequencies plus a margin,
is seen in the average time across all ranks, the region will
have to re-enter the decision process and may be reverted.
Since the average is used, all processes will arrive at the same
decision. If the decision gets reverted, that would apply to
the next occurrence.

In the offline analysis, we run the same algorithm, but
allow the decision to scale to apply retro-actively. Thus,
contexts that occur only once, most importantly initializa-
tion, and the first iteration of a repeating context can scale
as well in offline. Further, the offline analysis can select the
most energy-optimal candidate, given a constraint on perfor-
mance loss, from a static set of frequencies. Thus, the offline
analysis gives us an indication of how much optimization is
unexploited by the more conservative online optimization.

4. EVALUATION
We evaluate the efficacy of our optimizations on the NWChem

application described in Section 4.2. We compare the online
and offline optimization approaches on a small cluster and
simulate results at scale using 1,034 cores, as described in
Section 4.1. For completeness we have attempted to com-
pare against MPI based approaches, Adagio [24] and the

6

clustering [18] algorithm. The results are described in Sec-
tion 4.6.

4.1 Experimental Methodology
Platforms: One experimental platform is the Teller [25]
cluster with four AMD A10-5800K processors and 16GB
main memory per node. There are seven available frequen-
cies for scheduling, ranging from 1.4 GHz to 3.8 GHz. Each
node runs on Red Hat Enterprise server 6.2 and Linux kernel
2.6.32, and the frequency switching is implemented on top of
the cpufreq [1] library. The other platform is the Edison [8]
Cray XC30 system at NERSC, with two 12-core Intel Ivy
Bridge 2.4 GHz processors per node and 5,576 total nodes,
133,824 cores in total. Frequencies can be set in increments
of 0.1 GHz from 1.2 GHz to 2.4 GHz.

Methodology: On both systems we are interested in at-
the-wall power consumption, this being the ultimate indi-
cator of any energy savings. We use micro-benchmarks to
determine the DVFS latency to calibrate our optimizations.
On Teller we use the PowerInsight [15] interface to col-
lect power data, which is integrated with the application
level time stamps to yield energy consumption. The DVFS
switching latency is ≈ 100µs. Results reported for Teller are
from actual runs when applying our optimizations.

On Edison power is measured with by the Cray power
monitoring counters, which sample energy with a frequency
of about 10 Hz, and which can be read from a virtual filesys-
tem under /proc. As Edison is a large scale production
system, the only DVFS control allowed is at job startup
time, when a single frequency can be selected. Therefore,
our results on Edison are obtained through simulations. As
a baseline we consider the application running unmodified
and with the system default policy. This nominally runs
at the highest available frequency, but also allows the hard-
ware to clock down for energy savings, or up (turbo-boost)
for performance. We run the application at selected fre-
quency steps, statically requested at start-up. To account
for optimization overhead, the application is linked with our
instrumentation library, which replaces barriers with collec-
tive communication and performs the analysis as if scaling
could occur. For any frequency, we build trace files obtained
by averaging on each task the duration of a region across at
least five runs.

To simulate the offline algorithm, we assume the appli-
cation starts with the default system behavior and imple-
ment the algorithm already described, using the trace files.
We process the traces, form clusters and select the best fre-
quency for each cluster. Note that allgather overhead is
already included in the execution and during the simulation
we add a configurable DVFS change overhead as necessary.
Each cluster and region in the resulting program is “run”
at the frequency indicated by the simulation, as if a priori
known. For the online algorithm, we use only one target fre-
quency, and run the simulation with the extra DVFS latency
added.

As an extra validation step for the simulation results, we
have compared the clusters selected by the simulation for
Edison with the clusters selected by the online algorithm
when running on Teller at similar concurrency. There is a
very high overlap in selected regions, which confirms that
we do indeed select during simulation the portion of the
execution amenable to DVFS.

4.2 NWChem
NWChem [26] delivers open source computational chem-

istry software using Coupled-Cluster (CC) methods, Den-
sity Functional Theory (DFT), time-dependent DFT, Plane
Wave Density Functional Theory and Ab Initio Molecular
Dynamics (AIMD). Due to its ability to run from small (lap-
top) to very large scale, NWChem supports a vibrant scien-
tific community with impressive research output. The code
base contains more than 6 Million lines of code written in
Fortran, C and C++ implementing state-of-the art program-
ming concepts mandatory for large performance. The main
abstraction in NWChem is a globally addressable memory
space provided by Global Arrays [20]. The code uses both
one-sided communication paradigms (ARMCI [19], GAS-
Net [?], ComEx [6], MPI 3.0 RMA), as well as two sided
communication (MPI). Most methods implement a Read-
Modify-Update cycle in the global address space, using log-
ical tasks that are load balanced. Communication is aggres-
sively overlapped with other communication and computa-
tion operations. The code also provides its own resilience
approach using application level checkpoint restart.

With two sided MPI as the transport layer, the code per-
forms a sequence of overlapped Isend | Probe | Recv(ANY_SOURCE)
operations. With ARMCI as the transport layer, the code
runs in an asymmetric configuration where proper “ranks”
are supplemented with progress threads that perform mes-
sage unpacking and Accumulate operations, driven by an in-
terrupt based implementation. With GASNet [9] as a trans-
port layer, progress is ensured by polling and accumulating
inside the operations that wait for message completion. Ac-
cumulates are implemented using an Active Messages based
approach.

We have experimented with the MPI back-end in order
to provide a comparison with other MPI tools. Our opti-
mizations were able to handle the MPI back-end with good
results, since the overhead of communication is higher than
in the ARMCI case. For brevity we concentrate present-
ing ARMCI results, see Section 4.6 for MPI. The GASNet
back-end is still in experimental stage and we are working
on finishing its implementation, under a separate project.
For the final version of the paper we plan to add GASNet
based results, which can give us an interesting comparison
point between the energy efficiency of polling and progress
thread based network attentiveness schemes. However, note
that the ARMCI back-end is more challenging due to its
asymmetric runtime configuration.

For this paper we experiment with the CC and DFT meth-
ods, as these account for most usage of NWChem. CC is set
to run with and without I/O (writing partial simulation re-
sults to disk for resilience reasons). We used two different
science production runs: simulation of the photodissocia-
tion dynamics and thermochemistry of the dichlorine oxide
(Cl2O) molecule, and of the core part of a large metallopro-
tein. We examine each method at increasing concurrency:
132 cores, 528 cores and 1034 cores scale (22 per node),
as they exhibit different dynamic behaviors. For DFT, we
simulate at 120 cores (20 per node). DFT execution is com-
putation intensive.

4.3 Dynamic Behavior of NWChem
Figure 5 shows the cumulative distribution function (CDF)

of the total region duration and imbalance for a 1034 cores
run of NWChem. Imbalance (or slack) is computed as the

7

difference in execution between the fastest and the slowest
rank to enter a barrier. Slack is virtually non-existent, as
a result of dynamic load balancing in NWChem. As indi-
cated, a very large fraction of regions (more than 50%) are
very short, on the order of several tens of µs. On the other
hand, these short regions account for at most 10% of the
total execution time and need to be clustered to prevent
excessive frequency switching. For reference, the program
executes 204,452 barriers during this run. The most rel-
evant regions for DVFS are longer (in the few ms range)
and repeat only about 10 times, which indicates that online
learning needs to be fast. This also means that an energy
optimization approach needs to be able to handle both short
execution regions, as well as long running program regions.

When executing the program on Edison with different fre-
quencies, the default system assignment provides the most
performant execution at good energy efficiency. For refer-
ence, a static frequency assignment of 2.4 GHz is nominally
the highest possible frequency, but setting it explicitly will
switch off turbo-boost and DVFS by the hardware. In com-
parison to straight 2.4 GHz, the default assignment gains
8% in performance at a cost of 13% in energy, with most of
that cost incurred during a single, long, region in initializa-
tion (and thus not available to recoup in an online analysis,
which requires repetition).

210 310 410
0

0.2

0.4

0.6

0.8

1

(a) CDF of regions

1 10 210
0

0.2

0.4

0.6

0.8

1

(b) CDF of slack times

Figure 5: Region and slack time cumulative distribution func-
tions, for 1034 cores, coupled cluster.

4.4 Impact of Algorithmic Choices on NWChem
Performance and Energy

On Teller, we can run our optimizations and perform
DVFS at runtime using up to 128 cores. For brevity, we
do not discuss these results in detail. The Edison CPUs
have much better hardware power management and energy
optimizations on the Cray platform are more challenging.
For reference, on Teller for CC we observe as much as 7.4%
energy savings for a 1.7% slowdown provided by an online
optimization that uses 3.4 GHz as the target frequency.

-­‐2.0%	

0.0%	

2.0%	

4.0%	

6.0%	

8.0%	

10.0%	

12.0%	

14.0%	

CC
-­‐1
32
	

CC
-­‐5
28
	

CC
-­‐1
03
4	

CC
-­‐1
32
	

CC
-­‐5
28
	

CC
-­‐1
03
4	

CC
-­‐1
32
	

CC
-­‐5
28
	

CC
-­‐1
03
4	

CC
-­‐1
32
	

CC
-­‐5
28
	

CC
-­‐1
03
4	

CC
-­‐1
32
	

CC
-­‐5
28
	

CC
-­‐1
03
4	

CC
-­‐1
32
	

CC
-­‐5
28
	

CC
-­‐1
03
4	

CC
-­‐1
32
	

CC
-­‐1
32
	

CC
-­‐5
28
	

CC
-­‐1
03
4	

CC
-­‐1
32
	

CC
-­‐5
28
	

CC
-­‐1
03
4	

CC
-­‐1
32
	

CC
-­‐5
28
	

CC
-­‐1
03
4	

CC
-­‐1
32
	

CC
-­‐5
28
	

CC
-­‐1
03
4	

CC
-­‐1
32
	

CC
-­‐5
28
	

CC
-­‐1
03
4	

CC
-­‐1
32
	

CC
-­‐5
28
	

CC
-­‐1
03
4	

2.4	
 GHz	
 2.2	
 GHz	
 2.1	
 GHz	
 2	
 Ghz	
 1.8	
 GHz	
 1.6	
 GHZ	
 2.4	
 GHz	
 2.2	
 GHz	
 2.1	
 GHz	
 2	
 Ghz	
 1.8	
 GHz	
 1.6	
 GHZ	

Energy	
 Savings	
 Program	
 Slowdown	

Figure 6: Summary of results on Edison for CC running at
increasing concurrency (132,518,1034) and with different target
low frequency for the online algorithm.

In the rest of this section we will use simulation results
from the Edison system. Figure 6 presents results for the
online optimizations of the CC run. The labels contain the
concurrency, e.g. CC-1034 refers to a run on 1,034 cores.
For each configuration we allow the low frequency to take
the values indicated on the x−axis. For reference, the runs
perform 75,233, 75,085 and 204,452 regions when running on
132, 528 and 1,034 cores respectively. The typical execution
is on the order or 20 minutes or more.

The execution of CC-132 is dominated by memory in-
tensive computation and we observe energy savings as high
as 7.8% for a slowdown of 3.9% when varying to 1.6 GHz.
When using the “default” target 2.1 GHz frequency, the op-
timization saves 6.5% energy for a 1% slowdown. A low
frequency is selected for about 25% of the total program
execution using ≈ 3, 600 DVFS switches. The execution of
CC-528 is dominated by a combination of memory intensive
execution and communication. The energy savings are as
high as 8.3%, for a slowdown of only 0.8%. Low frequency
is selected roughly for 33% of the execution, using ≈ 8, 000
switches.

The execution of CC-1034 is dominated by a combination
of I/O and communication. In the best case we observe
savings of 4.4% at the expense of a 1.5% slowdown. Low
frequency is selected for about 23% of the execution, using
≈ 70, 000 switches. Although the overhead of DVFS switch-
ing is higher for this benchmark, the runtime overhead is
caused mostly by our algorithm that replaces barrier oper-
ations with Allgather and accounts for roughly 1% slow-
down.

The large scale runs illustrate that our design choice to
compute a unique system-wide frequency carries inherent
overhead. We have considered optimizations to improve
performance by reverting Allgather back to barriers af-
ter online learning finishes. Due to the code structure in
NWChem, this is non-trivial as barriers in the code are tex-
tually unaligned and contexts that have been decided may
align with new contexts on different ranks. We believe to
have a solution, full implementation not finished at the time
of the writing.

Figure 6 also illustrates that most of the benefits are ob-
tained when lowering the frequency to 2 GHz or 2.1 GHz,
close to the memory frequency but not lower. This validates
our choice of considering only one target frequency and in
practice we use 2.1 GHz as default.

0.00%	

1.00%	

2.00%	

3.00%	

4.00%	

5.00%	

6.00%	

7.00%	

8.00%	

9.00%	

A
LL
	

-­‐	
 S
U
PE

R
	

-­‐	
 S
H
O
R
T	

-­‐	
 S
KE

W
	

-­‐	
 S
TD

D
EV

	

A
LL
	

-­‐	
 S
U
PE

R
	

-­‐	
 S
H
O
R
T	

-­‐	
 S
KE

W
	

-­‐	
 S
TD

D
EV

	

A
LL
	

-­‐	
 S
U
PE

R
	

-­‐	
 S
H
O
R
T	

-­‐	
 S
KE

W
	

-­‐	
 S
TD

D
EV

	

CC-­‐132	
 CC-­‐528	
 CC-­‐1034	

Energy	
 Savings	
 Slowdown	

Figure 7: Impact of algorithmic design choices on the efficacy
of the online algorithm using a target frequency of 2.1 GHz on
Edison.

Figures 7 and 8 provide some quantitative detail about
the influence of our algorithm design choices. Overall, they
illustrate the fact that both clustering and the variability cri-

8

0.00%	

5.00%	

10.00%	

15.00%	

20.00%	

25.00%	

30.00%	

35.00%	

AL
L	

-­‐	
 S
UP

ER
	

-­‐	
 S
HO

RT
	

-­‐	
 C
LU

ST
ER

	

-­‐	
 S
TD

DE
V	

AL
L	

-­‐	
 S
UP

ER
	

-­‐	
 S
HO

RT
	

-­‐	
 C
LU

ST
ER

	

-­‐	
 S
TD

DE
V	

AL
L	

-­‐	
 S
UP

ER
	

-­‐	
 S
HO

RT
	

-­‐	
 C
LU

ST
ER

	

-­‐	
 S
TD

DE
V	

CC-­‐132	
 CC-­‐528	
 CC-­‐1034	

Execu=on	
 Coverage	

Figure 8: Percentage of the execution time at low frequency as
determined by algorithmic choices on Edison using a target of
2.1 GHz.

teria are required in practice to cover the spectrum of code
dynamic behavior. We present energy savings, slowdown
and execution coverage for multiple algorithms, compared
to the complete online algorithm labeled ALL. Each label
designates the criteria we subtract from the full algorithm
in a progressive manner: “-SUPER” denotes lack of forming
super-clusters (i.e. BRIDGE = 0 Algorithm 1), “-SHORT” de-
notes ignoring short regions (i.e. SHORT = 0), “-CLUSTER”
denotes no clustering at all. Finally “-STDDEV” denotes an
algorithm that ignores completely variability, but still cuts
on skewness. For reference, the series labeled“-SHORT”(i.e.
no refinement beyond clustering) is an approximation of the
clustering algorithm presented by Lim et al [18].

For CC-132 and CC-528, most of the benefits are provided
by the clustering, rather than the variability selection crite-
ria. Also note that forming super-clusters is mandatory for
performance, as illustrated by the increase in energy savings
and decrease in overhead for “-SUPER” when compared to
“-SHORT” for CC-132 and CC-528. When increasing con-
currency, the variability selection criteria provides most of
the benefits of the optimization, and clustering improves be-
havior only slightly. Similar conclusions can be drawn when
examining the execution coverage in Figure 8, rather than
performance improvements.

-­‐4.0%	

1.0%	

6.0%	

11.0%	

16.0%	

CC
-­‐1
32
	

CC
-­‐IO

-­‐1
32
	

CC
-­‐1
32
-­‐M

PI
	

DF
T-­‐
12
0	

CC
-­‐5
28
	

CC
-­‐IO

-­‐5
28
	

CC
-­‐1
03
4	

CC
-­‐IO

-­‐1
03
4	

CC
-­‐1
32
	

CC
-­‐IO

-­‐1
32
	

CC
-­‐1
32
-­‐M

PI
	

DF
T-­‐
12
0	

CC
-­‐5
28
	

CC
-­‐IO

-­‐5
28
	

CC
-­‐1
03
4	

CC
-­‐IO

-­‐1
03
4	

Online	
 Offline	

Energy	
 Savings	
 Slowdown	

Figure 9: Comparison of energy savings and slowdown for CC,
CC-IO, DFT and CC-MPI when using online and offline opti-
mizations on Edison with a target low frequency of 2.1 GHz.

For brevity, we did not provide detailed results for all
benchmarks as they show similar trends to the CC runs. In
Figure 9 we show results for runs of CC-IO, which runs the
resilience methods, DFT and selected configurations running
on MPI. For CC-IO we observe even better energy savings
than for CC, due to extra optimization potential during I/O
operations. The DFT execution is flops-limited and as al-
ready described in Section 2.2 our approach does not identify
many regions as DVFS candidates. MPI results are further
discussed in Section 4.6.

4.5 Optimality of Online Algorithm
In order to converge rapidly, the online algorithm observes

the execution of any region for a small number of repetitions
and if necessary varies the frequency to a unique predeter-
mined value. This leaves untapped optimization potential:
any region could be lowered to any given frequency given a
priori knowledge. In Figure 9 we include for reference the
energy savings and the slowdown for the offline trace based
optimization approach that uses a similar clustering and se-
lection criteria, but it can choose the optimal frequency for
any given cluster. As illustrated, the offline approach almost
doubles the energy savings for similar or slightly lower run-
time overhead. In particular, we now observe 11% savings
at 1,034 cores for CC-1034. Note that in the offline ap-
proach Allgather operations are not necessary in the trans-
formed program. This indicates that any method to improve
the target frequency selection for a cluster is likely to im-
prove the energy savings provided by our approach. We have
started to consider several approaches.

4.6 Impact of Communication Paradigm
The results presented so far have been for NWChem con-

figurations using one-sided communication. Our method can
handle both one- and two-sided communication codes, for
brevity we offer a summary of our findings when running
NWChem configured to use two-sided MPI as a transport.

We have also attempted to compare against MPI based
approaches, Adagio and the clustering implementation in [18].
As both handle only per core DVFS decisions, we have at-
tempted first running with one MPI rank per socket. Adagio
aborted on NWChem, due to its large number of ISend/Probe/Wait
operation count. The clustering used by Lim et al can be
directly applied to our benchmarks.

First, the application runs much slower, and for our con-
figurations we have observed more than 4× slowdown on
Edison when comparing MPI with ARMCI performance. A
large contribution is attributed to slower communication.
Due to the two-sided nature, instrumenting at barrier gran-
ularity shows that the code exhibits less imbalance than runs
with ARMCI, as induced by the multiple ISend/Wait oper-
ations performed between barriers.

When compared with the one-sided configuration, we ob-
serve much higher energy savings (up to 20%) when using
MPI for communication. The portion of the execution af-
fected is also higher, up to 50%. Since the MPI code is seem-
ingly balanced, clustering provides most of the optimization
benefits, while the variability criteria provides a safety valve.
This validates the design of the algorithm presented by Lim
et al [18], as it provides most of the energy savings available.
We use different selection criteria when clustering, namely
variability, but after that, we do add back short regions,
which is what their algorithm uses for its clustering criteria.
For example, our full optimization (ALL) provides energy
savings of 13% with a slowdown of 3.3%, while an algorithm
similar to Lim’s that does pure clustering (-SHORT) attains
9.3% savings with 0.9% slowdown. Note that adding the
(presumed communication bound) short regions (-SUPER)
so that the selection criteria are similar, too, results in 11.8%
savings, for a cost of 2.9%.

5. DISCUSSION
We believe that our approach works for codes that are

load balanced as a result of static decomposition or dynamic

9

mechanisms. Programming languages such as Chapel [4],
X10 [5] and Habanero [14] embrace dynamic parallelism and
load balancing as first class citizens. Their runtime imple-
mentation uses either MPI or one-sided communication li-
braries. The equivalent of a barrier in these cases is the
“finish” of a parallel region. We believe our variability
based approach provides the right framework for these new
languages.

At the application level, instrumenting point-to-point com-
munication calls (Put/Get, Isend/Irecv, I/O) provides an
easy partition of the program execution into regions amenable
to per core DVFS. At the other end of the spectrum, in-
strumenting global or group synchronization calls (barriers
or collective operations) provides for easy partitioning into
regions amenable to hierarchical system control. Due to
the need for enforcing data dependencies, turns out that
programmers tend to insert enough global synchronization
even in heavily asynchronous codes. Were global or group
synchronization not present, the question remains how to
generalize our approach to different hardware DVFS control
granularities.

During this research, we have striven to provide hardware
and runtime independent mechanisms and we have tried to
eschew the use of hardware performance counters. These
may be used by any libraries and hijacking them hampers
portability in large code bases. Furthermore, measuring
hardware events between communication calls is misleading:
polling, I/O, asymmetric execution inside progress threads
in NWChem get misclassified without very detailed changes
across the whole software stack.

Finally, we emphasized practicality and did not attempt to
build optimal approaches. By refining the instrumentation
level, specializing for a particular implementation or refining
the granularity of control, there may be more potential for
energy savings in NWChem.

6. OTHER RELATED WORK
Energy and power optimizations have been explored from

different perspectives: hardware, data center, commercial
workloads and HPC. At the hardware level, memory in-
tensity [7] has been used to identify DVFS opportunities.
To our knowledge, approaches similar in spirit are imple-
mented in hardware in the Intel Haswell processors. Exist-
ing HPC techniques [24] consider computational intensity
(instructions per cycle or second) as a measure of applica-
tion speed under DVFS. As busy waiting, polling and remote
invocations are widely used now inside implementations, it
may be more challenging to attribute hardware cycles to
software constructs.

Raghavendra et al [21] discuss coordinated power manage-
ment for the data center level. They present a hierarchical
control infrastructure for capping peak or average power.
Their detailed simulation illustrates the challenges of tun-
ing these schemes even for small scale systems.

In the HPC realm, most optimizations use slack in MPI
as their optimization criteria. Initial studies [23] used of-
fline, trace based analyses that often solve a global opti-
mization problem using linear programming. In particular,
these analyses do not handle non-blocking MPI communi-
cation Isend/Wait. An optimization strategy is built for a
single input at a given concurrency. While more generality
can be attained by merging solutions across multiple inputs

or scales, these methods suffer an intrinsic scalability prob-
lem introduced by tracing.

Later approaches improve scalability using online [24, 18]
analyses and mitigate high DVFS latency using clustering [18]
techniques. We have already highlighted the differences and
extensions allowed by our approach.

Other approaches that consider hybrid MPI+OpenMP
codes [16], are able to make per DVFS domain (socket) de-
cisions, as long as only one MPI rank is constrained within
a DVFS domain. The initial studies use offline analyses and
consider MPI and OpenMP in disjunction. The strategy pre-
ferred strategy for the OpenMP regions seems to be turning
cores off completely. Extensions to handle codes with more
dynamic parallelism or when running a parallel region over
multiple clock domains are required.

Programming model independent approaches tend to be
used by hardware or only within the node [7] and use time
slicing. The program is profiled for a short period of time
and a DVFS decision is made for the rest of the time slice.
For HPC, CPU-Miser [11] employs this technique. Applica-
tion dependent approaches identify and annotate algorith-
mic stages and iterations, using either online (Jitter [12])
or offline [13] analyses. The workloads considered in these
studies are MPI with static (im)balance and DVFS control
per core.

Energy optimizations for one-sided communication is ex-
amined by Vishnu [27] using the ARMCI implementation.
They design specific interrupt based mechanisms for the
ARMCI progress thread and lower voltage when waiting
for communication completion. The evaluation is performed
using micro-benchmarks that perform blocking communica-
tion, e.g. put followed by fence with no overlap, and with
per core DVFS. The ARMCI implementation of NWChem
performs overlapped non-blocking communication.

Recent work by Ribic and Liu [22] describes the design
of an energy efficient work-stealing runtime for Cilk. Their
approach tries to optimize for the critical path (workpath-
sensitive), while keeping in mind the relative speed of work-
ers (workload-sensitive). While the hardware used for eval-
uation supports clock domains, the evaluation is performed
running with only one core per domain, to avoid interference
between decisions made on each core.

7. CONCLUSION
In this paper we have explored DVFS optimizations for

codes using one-sided communication and dynamic load bal-
ancing. Previous successful approaches developed for two-
sided MPI rely on the predictability of code behavior. Our
work indicates that while behavior is not really predictable
for NWChem and one-sided communication, we can recog-
nize the statistical signature of portions of the execution
amenable to DVFS. Using variability and skewness as pri-
mary indicators for a region’s proclivity for execution at low
frequency, we develop an online control algorithm based on
region clustering. A distinguishing feature of our algorithm
is that it can compute a unique system-wide frequency as-
signment, and it therefore eliminates the limitations of pre-
vious work that relies on per core DVFS control. Our eval-
uation for NWChem shows that our online approach is able
to provide good energy savings at high concurrency in pro-
duction runs, with little runtime overhead. We also provide
a comparison with an offline trace based optimization, that
uncovers even more energy savings potential.

10

8. REFERENCES

[1] Linux cpufreq governors.
https://www.kernel.org/doc/Documentation/cpu-
freq/governors.txt.

[2] Namd scalable molecular dynamics.
http://www.ks.uiuc.edu/Research/namd/.

[3] B. Austin and N. J. Wright. Measurement and
interpretation of microbenchmark and application
energy use on the cray xc30. In Proceedings of the 2Nd
International Workshop on Energy Efficient
Supercomputing, E2SC ’14, pages 51–59, Piscataway,
NJ, USA, 2014. IEEE Press.

[4] B. L. Chamberlain, D. Callahan, and H. P. Zima.
Parallel programmability and the chapel language.
Int. J. High Perform. Comput. Appl, pages 1094–3420.

[5] P. Charles et al. X10: An object-oriented approach to
non-uniform cluster computing. SIGPLAN Not.,
40(10), Oct. 2005.

[6] ComEx: Communications Runtime for Exascale.
http://hpc.pnl.gov/comex/.

[7] Q. Deng, D. Meisner, A. Bhattacharjee, T. F.
Wenisch, and R. Bianchini. Coscale: Coordinating cpu
and memory system dvfs in server systems. In
Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture,
MICRO-45, pages 143–154, Washington, DC, USA,
2012. IEEE Computer Society.

[8] Edison.
https://www.nersc.gov/users/computational systems/edison/.

[9] GASNet: Global-Address Space Networking.
http://gasnet.lbl.gov/.

[10] R. Ge. Evaluating parallel i/o energy efficiency. In
Proceedings of the 2010 IEEE/ACM Int’L Conference
on Green Computing and Communications & Int’L
Conference on Cyber, Physical and Social Computing,
GREENCOM-CPSCOM ’10, pages 213–220,
Washington, DC, USA, 2010. IEEE Computer Society.

[11] R. Ge, X. Feng, W.-c. Feng, and K. W. Cameron. Cpu
miser: A performance-directed, run-time system for
power-aware clusters. In Proceedings of the 2007
International Conference on Parallel Processing, ICPP
’07, pages 18–, Washington, DC, USA, 2007. IEEE
Computer Society.

[12] N. Kappiah, V. W. Freeh, and D. Lowenthal. Just in
time dynamic voltage scaling: Exploiting inter-node
slack to save energy in mpi programs. In
Supercomputing, 2005. Proceedings of the ACM/IEEE
SC 2005 Conference, pages 33–33, Nov 2005.

[13] D. Kerbyson, A. Vishnu, and K. Barker. Energy
templates: Exploiting application information to save
energy. In Cluster Computing (CLUSTER), 2011
IEEE International Conference on, pages 225–233,
Sept 2011.

[14] V. Kumar, Y. Zheng, V. Cavé, Z. Budimlić, and
V. Sarkar. Habaneroupc++: A compiler-free pgas
library. In Proceedings of the 8th International
Conference on Partitioned Global Address Space
Programming Models, PGAS ’14, pages 5:1–5:10, New
York, NY, USA, 2014. ACM.

[15] J. H. Laros, P. Pokorny, and D. DeBonis.
Powerinsight-a commodity power measurement

capability. In Green Computing Conference (IGCC),
2013 International, pages 1–6. IEEE, 2013.

[16] D. Li, B. de Supinski, M. Schulz, K. Cameron, and
D. Nikolopoulos. Hybrid mpi/openmp power-aware
computing. In Parallel Distributed Processing
(IPDPS), 2010 IEEE International Symposium on,
pages 1–12, April 2010.

[17] J. Li, L. Zhang, C. Lefurgy, R. Treumann, and W. E.
Denzel. Thrifty interconnection network for hpc
systems. In Proceedings of the 23rd International
Conference on Supercomputing, ICS ’09, pages
505–506, New York, NY, USA, 2009. ACM.

[18] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal.
Adaptive, Transparent CPU Scaling Algorithms
Leveraging MPI Communication Regions. In Parallel
Computing, 37(10-11), 2011.

[19] J. Nieplocha and B. Carpenter. ARMCI: A portable
remote memory copy libray for distributed array
libraries and compiler run-time systems. In Proc. of
the 11 IPPS/SPDP’99 Workshops Held in
Conjunction with the 13th Intl. Parallel Processing
Symp. and 10th Symp. on Parallel and Distributed
Processing, 1999.

[20] J. Nieplocha et al. Advances, applications and
performance of the global arrays shared memory
programming toolkit. Int. J. High Perform. Comput.
Appl., 20(2), May 2006.

[21] R. Raghavendra, P. Ranganathan, V. Talwar,
Z. Wang, and X. Zhu. No ”power” struggles:
Coordinated multi-level power management for the
data center. In Proceedings of the 13th International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XIII,
pages 48–59, New York, NY, USA, 2008. ACM.

[22] H. Ribic and Y. D. Liu. Energy-efficient work-stealing
language runtimes. In Proceedings of the 19th
International Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS ’14, 2014.

[23] B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh,
B. R. de Supinski, and M. Schulz. Bounding energy
consumption in large-scale mpi programs. In
Proceedings of the 2007 ACM/IEEE Conference on
Supercomputing, SC ’07, pages 49:1–49:9, New York,
NY, USA, 2007. ACM.

[24] B. Rountree, D. K. Lownenthal, B. R. de Supinski,
M. Schulz, V. W. Freeh, and T. Bletsch. Adagio:
Making dvs practical for complex hpc applications. In
Proceedings of the 23rd International Conference on
Supercomputing, ICS ’09, pages 460–469, New York,
NY, USA, 2009. ACM.

[25] Teller.
http://www.sandia.gov/asc/computational systems/HAAPS.html.

[26] M. Valiev et al. NWChem: A comprehensive and
scalable open-source solution for large scale molecular
simulations. Computer Physics Communications,
181(9):1477–1489, 2010.

[27] A. Vishnu, S. Song, A. Marquez, K. Barker,
D. Kerbyson, K. Cameron, and P. Balaji. Designing
energy efficient communication runtime systems: a
view from pgas models. The Journal of
Supercomputing, 63(3):691–709, 2013.

11

	1 Introduction
	2 Background and Motivation
	2.1 Identifying DVFS Opportunities for Dynamic Program Behavior
	2.2 Employing Variability as a Predictor

	3 Design and Implementation
	3.1 Region Selection and Clustering
	3.2 Online and Offline Algorithms

	4 Evaluation
	4.1 Experimental Methodology
	4.2 NWChem
	4.3 Dynamic Behavior of NWChem
	4.4 Impact of Algorithmic Choices on NWChem Performance and Energy
	4.5 Optimality of Online Algorithm
	4.6 Impact of Communication Paradigm

	5 Discussion
	6 Other Related Work
	7 Conclusion
	8 References

