
Runtime Optimization of Vector Operations on Large Scale
SMP Clusters

Costin Iancu and Steven Hofmeyr
Lawrence Berkeley National Laboratory

Berkeley, CA, USA
cciancu@lbl.gov, shofmeyr@lbl.gov

ABSTRACT
“Vector” style communication operations transfer multiple
disjoint memory regions within one logical step. These op-
erations are widely used in applications, they do improve
application performance, and their behavior has been stud-
ied and optimized using different implementation techniques
across a large variety of systems. In this paper we present
a methodology for the selection of the best performing im-
plementation of a vector operation from multiple alternative
implementations. Our approach is designed to work for sys-
tems with wide SMP nodes where we believe that most pub-
lished studies fail to correctly predict performance. Due to
the emergence of multi-core processors we believe that tech-
niques similar to ours will be incorporated for performance
reasons in communication libraries or language runtimes.

The methodology relies on the exploration of the appli-
cation space and a classification of the regions within this
space where a particular implementation method performs
best. We use micro-benchmarks to measure the performance
of an implementation for a given point in the application
space and then compose profiles that compare the perfor-
mance of two given implementations. These profiles capture
an empirical upper bound for the performance degradation
of a given protocol under heavy node load. At runtime, the
application selects the implementation according to these
performance profiles. Our approach provides performance
portability and using our dynamic multi-protocol selection
we have been able to improve the performance of a NAS Par-
allel Benchmarks workload by 22% on an IBM large scale
cluster. Very positive results have also been obtained on
large scale InfiniBand and Cray XT systems. This work
indicates that perhaps the most important factor for appli-
cation performance on wide SMP systems is the successful
management of load on the Network Interface Cards.

Categories and Subject Descriptors
C.4 [Performance of Systems]: [Design studies, Mod-
eling techniques]; D.2.4 [Software Engineering]: Met-

This paper is authored by an employee(s) of the United States Government
and is in the public domain.
PACT’08, October 25–29, 2008, Toronto, Ontario, Canada.
ACM 978-1-60558-282-5/08/10.

rics—Performance measures; D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming ;
D.3 [Programming Languages]: [Parallel, Compilers]; I.6.4
[Computing Methodologies]: Simulation and Modeling—
Model Validation and Analysis

General Terms
Performance, Measurement, Languages, Design

Keywords
Parallel Programming, Program Transformations, Perfor-
mance Portability, Communication Code Generation, La-
tency Hiding

1. INTRODUCTION
Contemporary high performance networks provide hard-

ware support for Remote Direct Memory Access (RDMA)
and efficient non-blocking communication. Exploitation of
these features [4, 14, 15, 25] either at the application level or
inside communication libraries has shown considerable per-
formance benefits.

Multiple studies show how to improve the performance
of applications using Put/Get primitives by decomposing
transfers and hiding communication latency through over-
lap. Several classes of applications require the transfer of
multiple disjoint memory regions in a single logical operation
e.g., boundary data in finite difference calculations, particle-
mesh structures or sparse matrices. To address the needs
of these applications, communication layers provide higher
level primitives for such transfers. These operations are usu-
ally referred to in literature as vector or strided and they have
been shown to improve application performance [19, 23, 7].
Most of the native communication layers, such as Elan, In-
finiBand Verbs, IBM LAPI provide an API for these opera-
tions. There are also third party one-sided communication
libraries, such as ARMCI [17] or GASNet [5] that provide
an API and efficient implementations.

The third party communication libraries are very portable,
run on a large variety of modern networks and have been
used as targets for code generation for parallel program-
ming languages: Titanium [31], Co-Array Fortran [20], Uni-
fied Parallel C [28] target GASNet, Global Arrays [18] and
CAF target ARMCI. They usually provide alternate imple-
mentations for the vector operations and match or improve
the performance of the native libraries. In general, vector
style communication primitives are important enough that
they are considered for language level extensions [6] and have



been used for code generation by compilers for parallel pro-
gramming languages [8, 31, 28].

Regardless of their provenance, implementations for trans-
fers of multiple disjoint memory regions usually use a sin-
gle approach: the simple ones pipeline individual messages
while the more sophisticated use data packing with offload-
ing or Active Messages [30]. However, the performance is
highly dependent on system architecture, load and applica-
tion characteristics and it is the case that a “single protocol”
implementation [19, 23] will not offer best performance in
all situations.

In this paper we present a methodology for the selection
of the best performing implementation of a vector operation
from multiple alternative implementations. Our approach is
designed to work for systems with wide SMP nodes and to
our knowledge this is the first published study that presents
a successful methodology for dynamically tuning vector op-
erations on such systems. Due to the emergence of multi-
core processors we believe that techniques similar to ours
will be incorporated for good performance in future com-
munication libraries or language runtimes.

Our approach relies on the exploration of the application
space and a classification of the regions within this space
where a particular implementation method performs best.
We use micro-benchmarks to measure the performance of
an implementation for a given point in the application space
and then compose profiles that compare the performance of
two given implementations. These profiles capture an empir-
ical upper bound for the performance degradation of a given
protocol under heavy node load. At runtime, the application
selects the implementation according to these performance
profiles. We have validated this approach on a large vari-
ety of contemporary networks: InfiniBand, Quadrics, IBM
LAPI and Cray XT3; using the Berkeley UPC compiler and
the GASNet communication layer.

At first glance, the feasibility of our approach seems to be
doomed by the sheer volume of the application space that
needs to be explored: data volume, number of messages,
system size and architecture, communication topology, load
balance are all factors that might affect performance. We
perform a large set of experiments to prune the space of the
performance parameters. Our results indicate that the de-
termining factor is the load on the Network Interface Card
within an SMP node. Using our techniques we eliminate
the performance “noise” caused by congestion and we have
obtained good performance results on several NAS Parallel
Benchmarks application kernels. We have observed perfor-
mance improvements as high as 22% across the whole appli-
cation workload and a maximum of ≈ 250% improvements
in some instance.

2. MOTIVATION
This research has been motivated by our work in devel-

oping a high performance portable compiler for the Unified
Parallel C language. UPC is a Partitioned Global Address
Space programming language that assumes a one-sided com-
munication model. The current UPC implementation uses
a source-to-source translation approach and generates code
that runs on top of the GASNet communication layer. GAS-
Net is a portable high performance one-sided communica-
tion library with efficient implementations on a large variety
of contemporary networks: Quadrics, InfiniBand, Myrinet,
IBM LAPI and the Cray XT family.

One of the main goals of our research has been to provide
performance portability. GASNet provides a wide commu-
nication interface and for some applications there are mul-
tiple choices for the code generation strategy. Ideally, the
UPC compiler or runtime should be able to choose the best
performing implementation strategy for an application on
a given system. We believe that performance model based
code generation strategies are capable of greatly improv-
ing development productivity and application performance
on large scale parallel systems. From the beginning of this
work, we strove to provide a simple and practical approach
and we tried to prune the performance parameter space in
order to achieve both a lightweight1 system tuning step and
provide a methodology that is intuitive to application and
library developers. We do believe that the more intricate
the knowledge about application characteristics required for
performance tuning, the less the potential for adoption by
developers.

We have already shown [12] good results when using per-
formance models to guide strip-mining and overlap trans-
formations for programs that use Put/Get primitives. These
models are able to choose a good optimization strategy based
on application characteristics and network load and improve
application scalability to a degree hard to match when using
manual transformations.

In this paper we present a performance tuning method-
ology for applications that transfer multiple data regions
in one logical step. Multiple code generation strategies are
available at the application level: blocking communication,
pipelining of non-blocking communication calls or direct calls
to the GASNet vector interface. Multiple implementations
might be also available for the vector interface at the com-
munication library level. Previous studies [19, 23] clearly
indicate the value of using a multi-protocol approach for the
code generation in applications. We are not aware of any
published approach that can accurately select the best per-
forming implementation in all cases, especially in the small
to mid-size transfer ranges that are widely used [29] in sci-
entific applications. One of the limitations of current ap-
proaches is ignoring the behavior at the SMP node level,
when multiple processors within a node are active. A recent
performance study [27] indicates that dual-core processors
issuing word size transfers can use up to 80% of modern
Network Interface Cards capacity, while quad-core proces-
sors can fully saturate the network. With the advent of
multi-core processors we believe that this problem will have
to be explicitly addressed at the communication library level
or at the runtime level.

In the rest of this paper we consider as “wide” SMP nodes
any system where the network is underprovisioned with re-
spect to the processor hierarchy. Section 3 discusses the
state of the art. Section 4 describes the existing interfaces
and the impact of implementations on performance. In Sec-
tion 5 we describe the methodology and finally we present
application results and conclusions.

3. RELATED WORK
The performance of vector communication primitives on

RDMA capable networks has been studied at the implemen-
tation as well as at the application level.

Tipparaju et al [26] present the implementation of host-

1Small number of short running experiments.



assisted zero-copy remote memory access communication
operations on InfiniBand networks and “thin” SMP nodes.
They present various implementation alternatives for trans-
fers of non-contiguous memory regions and use microbench–
marks to show the performance potential of RDMA oper-
ations. One of the conclusions of their study is the im-
portance of using multiple protocols in achieving good sus-
tained performance. Nieplocha et al [19] study the perfor-
mance of strided RDMA operations on the Quadrics QsNetII
network. They describe host-assisted implementations and
implementations that offload data processing to the Net-
work Interface Card and discuss the performance trade-offs
of each approach. They do not provide a methodology for
choosing the best implementation and in particular, their
application performance results indicate that while offload-
ing always performs best when running with one processor
per SMP node, there is no clear winner when utilizing the
full node.

Vector operations have been also studied from the point
of view of their usage in higher level programming abstrac-
tions. Santhanaraman et al [22] discuss implementation al-
ternatives for MPI derived data types over InfiniBand. They
evaluate multiple implementations and show good perfor-
mance improvements when using the existing hardware scat-
ter/gather support. Their data indicates that the SGRS
proposed scheme outperforms the other evaluated schemes
when the length of contiguous data regions is relatively large
or there is a large number of regions transferred. It is not
clear what implementation alternative performs best in the
non-asymptotic case. Coarfa et al [10] discuss using vec-
tor operations in the code generation for CAF programs.
They show promising performance results for the NAS Par-
allel Benchmarks but also comment on problems with the
noisy behavior of these primitives. Su et al [23] discuss
code generation strategies for applications that use irregu-
lar communication in the context of the Titanium program-
ming language. They propose a performance model based
approach for multi-protocol inspector/executor implemen-
tations. Their results show the performance advantages of
the multi-protocol approach at large system scale, but the
approach has not been validated when running with multi-
ple processors per SMP node. Cameron et al [9] present a
performance model that takes into account the influence of
middle-ware on application performance. One of their case
studies is the implementation of strided memory transfers
and their approach is very close in spirit to the approach
in [23]. For these operations their results have been vali-
dated on a thin node (2 processors) SMP cluster in a point-
to-point experiment (2 nodes).

Another relevant research direction is employing machine
learning techniques for automatic algorithm selection as il-
lustrated in STAPL [24]. We believe that similar techniques
are perfectly capable of solving the problem presented here.
However, in this case machine learning will require a large
training overhead, a larger number of parameters and will
provide no performance intuition to application developers.

4. VECTOR OPERATIONS
There are several supported interfaces for vector opera-

tions. The most common form takes as arguments a list of
source and destination addresses and a list of region lengths.
Most native and third party communication libraries sup-
port this interface: Quadrics (e.g. elan_putv), IBM LAPI

and GASNet support this form. InfiniBand supports a re-
stricted form of this interface, Send Gather/Recv Scatter,
where the buffer at one endpoint has to be contiguous. In
order to reduce meta-data overhead, libraries such as IBM
LAPI and GASNet provide a strided version of the inter-
face which takes as arguments a source address, a desti-
nation address, a length, a stride and a message count.
GASNet supports a generic N-stride to N-stride interface.
IBM LAPI also supports generic Data Gather Scatter Pro-
grams (DGSP) and provide a meta-compiler for them. The
proposed [6] UPC level interface includes both vector and
strided operations.

At the implementation level, the simplest optimization
approach is to use non-blocking communication and pipeline
individual messages. More sophisticated implementations
perform packing/unpacking in order to reduce the overhead
of message injection and better utilize bandwidth. Library
providers employ different approaches: 1) a helper thread is
used to perform the packing in ARMCI and IBM LAPI; 2)
the packing is offloaded to the NIC in the ARMCI Quadrics
implementation; 3) the packing is implemented using Active
Messages and polling in GASNet.

The first obvious performance trade-off is whether the
bandwidth and message injection time improvements are
enough to offset the cost of packing when compared to the
pipelined implementations. All of the studies cited in this
paper take into account only this aspect.

Some more subtle problems are posed by the packing im-
plementations, namely fairness and scalability. Offloading
diverts NIC resources to packing and has the potential to
make it unresponsive to other communication requests. In
this case the NIC is oversubscribed. Helper threads divert
CPU resources and have to potential to increase latency due
to context switching and CPU scheduling and also raise the
issue of fairness within an SMP node. In this case the SMP
node is oversubscribed. The GASNet implementation uses
Active Messages and polling and besides fairness problems
it might suffer from attentiveness problems. Since AMs are
served only when threads enter the communication library,
the latency of AM based operations is potentially unbound.
Fairness issues are raised whenever multiple AM based op-
erations are outstanding at a SMP node. Regardless of the
implementation strategy, interrupt based or polling, it might
happen that certain threads will serve a large fraction of the
asynchronous events.

Dwelling deeper upon library internals, packing imple-
mentations usually pipeline the packing / transmission / un-
packing process and they have an internal parameter for the
transmission unit. In the GASNet implementation this is
referred to as AMSize. Implementations pack until filling
the threshold size for a buffer and then transmit. When
the contiguous piece of a vector request is over the thresh-
old, implementations usually use non-blocking communica-
tion primitives directly.

Another orthogonal aspect that determines performance
is the execution model used by application runtimes. The
choice is running an application either with full fledged UNIX
processes or with threads (pthreads). Threads usually share
a “software” connection while processes have their own and
therefore might observe different QoS (fairness) behavior.



100 

100100 

200100 

300100 

400100 

500100 

600100 

700100 

800100 

900100 

10 100 1000 10000 100000 1000000 10000000 

B
a
n

d
w

id
th

 (
K

B
/

s)
 

Size (bytes) 

InfiniBand Bandwidth Repartition for 128 Procs Across Bisection 

Figure 1: Variation of per-pair sustained bandwidth
for 128 processors communication across network bi-
section on an InfiniBand network.

5. PERFORMANCE CHARACTERIZATION
The performance of a given implementation is determined

by a combination of application characteristics and systems
characteristics. For our case, the important application met-
rics are: number and length of messages, communication
topology, degree of parallelism and load balance. The im-
portant system parameters are [1]: o - overhead of initiating
communication, G - bandwidth and overall response to con-
gestion.

Our previous work [12] indicates that on the system side,
unless congestion is present, the variation of performance
parameters is “continuous”, e.g. the variation of overhead
and bandwidth with message size. Measurements of these
parameters show an evolution without large discontinuities
and they can be reasonably well approximated with analy–
tical models. Our first assumption is that when comparing
two implementations, varying parameter values will reveal
large continuous ranges on the variation axis where relative
performance does not change.

Problems appear when a parameter setting causes con-
gestion, i.e. some internal resource is over-committed. For
example pipelining a large number of messages will exhaust
card resources (message queue) and flow control mechanisms
are activated. Examining the fairness [12] of bandwidth al-
location between pairs of communicating processors shows
a large variance in the per-pair sustained bandwidth. Set-
tings with a small number of active processors show little
variance, continuously increasing the system size shows an
asymptotic difference of 100% as illustrated in Figure 1. The
logical communication topology affects this variance: nearest
neighbor communication exhibits very little variance while
cross network communication exhibits a large variance. In
all these cases, performance response becomes noisy and
”discrete” and we are not aware of any performance mod-
eling work that can characterize accurately congestion re-
sponse on these networks.

The second underlying assumption of our approach is that
when one setting for a particular parameter causes con-
gestion, “increasing” that value will still cause congestion.
We assume that when comparing two implementations, the
scheme that avoids congestion will perform faster. Because
increasing the value of a parameter can only increase con-
gestion, we again expect to see large contiguous ranges for
parameters where relative performance is stable, i.e. one
particular implementation is always faster.

foreach(S)

start_time()

for (iters)

foreach(N)

get(S)

end_time()

foreach(S)

start_time()

for(iters)

foreach(N)

get_nb(S)

sync_all

end_time()

foreach(S)

start_time()

for(iters)

foreach(N)

vector_get(N,S)

end_time()

Figure 2: Micro-benchmark code, N is number of
messages, S is message size.

Our characterization approach is based on these obser-
vations. We consider three candidate implementations of
vector operations: 1) blocking Put/Get communication; 2)
pipelined Put/Get; and 3) Active Messages based pack-
ing. We consider the problem parameter space and design
micro-benchmarks to determine how the parameter varia-
tion affects relative performance. Our micro-benchmarks
are designed for the pessimistic case: they measure an up-
per bound for performance degradation under heavy system
load. Contemporary wide node SMP systems are likely to
operate with heavy loads on the Network Interface Cards.
Underwood et al [27] indicate that dual-core processors is-
suing word size transfers can use up to 80% of modern Net-
work Interface Cards capacity, while quad-core processors
can fully saturate the network. Some of the recently de-
ployed large scale systems evaluated here contain eight or
sixteen cores per SMP node.

Based on the micro-benchmark results we produce an or-
dering of the performance of various implementations in a
pruned parameter space. This ordering is used at applica-
tion runtime to choose the best performing implementation
given the parameter setting.

5.1 Classification
We use for the classification a simple micro-benchmark

that transfers N messages of size S using three different im-
plementations: blocking, pipelining and AM based. We vary
the values of N and S, the number of tasks, tasks per node
and communication topology. The number of tasks per node
captures how NICs and SMP nodes respond to congestion.
The total number of tasks captures the network response at
scale. The communication topology captures how the net-
work responds to congested paths. We also consider imple-
mentations running with either pthreads or processes. The
micro-benchmark code is presented in Figure 2.

In the experiments, the value of the numerical param-
eters (N, S, total tasks) is varied in powers of two. The
number of tasks per node is varied from one to the number
of cores per node. We consider two communication topolo-
gies: nearest neighbor (Pi < − > Pi+1) and cross network
(Pi < − > P(i+ P

2 )%P ). Our choice of logical topologies is

motivated by the fact that most likely neighboring logical
indexes will map to physical neighbors on the networks con-
sidered. For each parameter setting we determine the maxi-
mum of the running time across all active entities. We think
this approach best captures the effect of congestion on appli-



System Network CPUs X Nodes
AMD cluster [13] InfiniBand 4x 2 x 320 2.2GHz Opteron

IBM p575 [2] Federation 8 x 111 1.9Ghz POWER5

Cray XT3[3] Custom 2 x 2068 2.6Ghz Opteron

Sun AMD cluster[21] InfiniBand 16 x 3936 1.9Ghz Barcelona

Table 1: Systems Used for Benchmarks

cation performance and we classify implementations based
on this value.

The structure of the micro-benchmark is simple but de-
ceiving. We have extracted predictors using permutations
of the loops inside the micro-benchmark, predictors where
there are barriers present at the end of the foreach(S) loop
iteration or predictors based on the fastest execution (min-
imum execution time) for each parameter setting. Our ap-
plication results show that these predictors did not perform
as well in practice.

6. EXPERIMENTAL RESULTS
We ran the micro-benchmarks on the systems described

in Table 1. The InfiniBand and IBM Federation systems
are connected in a fat-tree topology. The Sun Constellation
system is connected by a full-CLOS network. The Cray
XT system is connected using a 3-D torus topology. Two
systems have thin SMP nodes (two processors per node) and
two systems have wide nodes (eight and sixteen processors
per node).

All of our experiments have been performed using UNIX
processes. In this case the current GASNet and UPC imple-
mentation uses the Network Interface Card for intra-node
communication and we make the distinction between intra-
node and inter-node traffic. In a thread based implementa-
tion our models consider only inter-node traffic.

6.1 Micro-Benchmark Results
Figures 3 and 4 present selected micro-benchmark results.

Figures 3(a)(b) and 4(c)(d) present the relative performance
of two implementations for a vector operation that transfers
NMSG contiguous regions of length SIZE. The three im-
plementations are: 1) AM based packing is labeled VIS; 2)
PIPE denotes an implementation that pipelines the origi-
nal transfers; and 3) BLOCK refers to the implementation
using blocking communication. For example a chart con-
taining VIS/PIPE in the title bar plots TV IS

TP IP E
for the given

transfer. A value less than one will indicate that VIS is
faster than PIPE. For presentation reasons, the magnitude
of the charts has been bounded at five in all cases.

Most of the performance modeling efforts that we are
aware of, measure network performance parameters using
an experimental setting with one processor per SMP node,
usually with uni-directional traffic. All of our results were
obtained with bi-directional traffic.

6.1.1 Node Response
These experiments are designed to evaluate the impact

of the steady state load on the Networking Interface Card
on the performance of vector operations. The first set of
experiments we conduct measures the relative performance
of implementations in a two node setting where only one
processor per node is active. Figures 3 (a)(b) present the
relative performance results for the Sun Constellation sys-
tem and Figure 3(c) shows the best performing protocol.

The results are qualitatively similar on all other systems
considered: the blocking implementation under-performs in
all cases on all systems and there is an observable difference
in the behavior of inter-node and intra-node traffic.

The second set of experiments we conducted measured the
relative performance of implementations where two nodes
are active and all the processors within a node are active.
On the systems with thin SMP nodes, the results are very
similar to the previous case and the blocking implementation
still under-performs in all cases. On these systems it is the
case that processors can not saturate the NIC.

Figure 3(d) shows the best performing protocol for the
inter-node experiment on the Sun system. In this case the
processors can saturate the Network Interface Card and the
pipelined implementation performs worse than the blocking
and the packing implementations. Similar results are ob-
served on the IBM system. On this system, the presence of
a helper thread increases the system noise and the magni-
tude of the performance differences.

A comparison of Figures 3(c) and (d) shows that obtaining
good performance when increasing the number of active pro-
cessors within a SMP node requires a protocol change. Since
both VIS and BLOCK implementations attain a lighter node
load (fewer messages and longer inter-arrival time respec-
tively), this difference illustrates that steady state conges-
tion on the Network Interface Card adversely affects perfor-
mance.

6.1.2 Network Scaling Response
To assess the impact of network scaling on the imple-

mentation of vector operations, we consider both the im-
pact of communication topology and the total number of
active nodes in the system. We consider the nearest neigh-
bor and cross network communication topologies presented
in 5.1 which we examine at increasing concurrency.

Scaling the benchmark with the number of processors af-
fects directly the sustained load on the Network Interface
Card. The fewer the number of participating nodes and the
closer they are situated in the physical network, the higher
the attainable load on the cards. A comparison of Fig-
ures 4(a) and (b) illustrates this. In chart (b) which presents
the relative VIS/PIPE performance on the Cray XT system
for a 32 node cross network experiment, the region where
VIS performs best is larger than the corresponding region
in chart (a) which shows the two node experiment at heavy
communication load. Profiles similar to chart (b) are ob-
servable in the two node case only when running a modified
version of the benchmark that generates a lighter load on
the cards.

For lack of space we do not present a more complete set of
results. On all systems examined, a nearest neighbor exper-
iment is able to generate a higher load on the cards than a
cross network experiment. This manifests as a smaller area
where the VIS implementation performs better for nearest
neighbor. The results for nearest neighbor experiments are
very similar to the results observed for the two node experi-
ments: hence we can discard this topology as a determining
performance parameter.

The question that remains to be answered is whether we
can completely discard communication topology as a deter-
mining performance parameter for vector operations. We
have chosen the node2 predictor as a “baseline” predictor

2Based on communication between two nodes at full utiliza-



2 

8 

32 

128 

512 

0 
1 
2 
3 
4 
5 

1  2  4  8  16
 

32
 

64
 

12
8 

25
6 

51
2 

10
24

 

NMSG 

SIZE(dlbs) 

Sun Constella>on ‐ 1 PPN ‐ VIS/PIPE Intranode 

2 

32 

512 

0 
1 
2 
3 
4 
5 
6 
7 

1  4 

16
 

64
 

25
6 

10
24

 

NM
SG 

SIZE (dbls) 

Sun Constella>on ‐ 1  PPN ‐ VIS/PIPE Internode 

(a) (b)

!"

#"

$"

%&"

'!"

&#"

%!$"

!(&"

(%!"

%)!#"

%" !" #" $" %&
"

'!
"

&#
"

%!
$"

!(
&"

(%
!"

%)
!#

"

*
+
,-

"

,./0"123456"

,78"9:85;<44=>:8"?"%"@@*"?"A<5;""@B:;:C:4"

VIS 

PIPE 
!"

#"

$"

%&"

'!"

&#"

%!$"

!(&"

(%!"

%)!#"

%" !" #" $" %&
"

'!
"

&#
"

%!
$"

!(
&"

(%
!"

%)
!#

"

*
+
,-"

,./0"123456"

,78"9:85;<44=>:8"?"*@A0"?"B<5;"CD:;:E:4"

VIS 

BLOCK 

(c) (d)

Figure 3: Relative performance of implementations reported as the ratio of the duration to perform a
certain transfer. SIZE = length of contiguous region in doubles. NMSG = number of regions.VIS = AM
based packing. PIPE = message pipelining. BLOCK = blocking communication, PPN = processors per
node, NODE = all processors on a node. For example a VIS/PIPE chart plots TV IS

TP IP E
. Values less than 1

indicate that VIS is faster than PIPE for that given transfer. The magnitude of the performance differences
has been limited to 5 for presentation reasons.

2 

16 

128 

1024 

0 
1 
2 
3 
4 
5 
6 

1  2  4  8  16  32  64  128 

256 

512 

NM
SG 

SIZE(dbls) 

Cray XT ‐ NODE ‐ VIS/PIPE Internode 

2 
8 

32 
128 

512 

0 

1 

2 

3 

1  2  4  8  16  32  64  128 
256 
512 

NM
SG 

SIZE(dbls) 

Cray XT ‐  32NODE ‐ VIS/PIPE Cross 

(a) (b)

2 

8 

32 

128 

512 

0 
2 
4 
6 
8 

10 

1  2  4  8  16
 

32
 

64
 

12
8 

25
6 

51
2 

10
24

 

NM
SG 

Nu
m
be

r o
f M

isp
re
dic

:o
ns
 

SIZE (dbls) 

Sun Constella:on ‐ Mispredic:on  Count (MAX) 
2:1024 Procs 

2 
8 
32 
128 
512 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 

1  2  4  8  16  32  64  128  256  512 1024 

NM
SG Pe

rfo
rm

an
ce
 Lo

ss
 (%

) 

SIZE (dbls) 

Sun ConstellaGon ‐ MispredicGon  Performance 
Loss 1024 Procs 

(c) (d)

Figure 4: Impact of concurrency on observed performance and accuracy of predictions. Figure (c) presents
the distribution of mispredictions when using the node predictor as a baseline and increasing the concurrency
from 2 to 1024 processors. Height of bars shows the number of concurrency levels where mispredictions occur.



2 
8 

32 
128 

512 
0 

1 

1  2  4  8 
16

 
32

 
64

 
12

8 
25

6 
51

2 
10

2 4 

NM
SG 

SIZE (dbls) 

Sun Constella>on ‐ NODE MIN/MAX Predictor 
Disagreement  

2 

32 

512 
0 
2 
4 
6 
8 

10 

1  4 
16  64 

256 
1024 

NM
SG 

Nu
m
be

r o
f M

isp
re
di
c:
on

s 

SIZE (dbls) 

Sun Constella:on ‐ Mispredic:on Count (MIN) 
2:1024 Procs 

(a) (b)

Figure 5: Behavior of “optimistic” predictors (minimum based). (a) Disagreement in prediction between
optimistic and pessimistic predictors. (b) Lack of accuracy at scale of optimistic predictors.

and extracted from cross predictors the points in the (SIZE,
NMSG, Procs) space where the protocol choices are differ-
ent. The concurrency is varied depending on the system
from two processors to 512 or 1024 processors.

For each point in this intersection space we examine the
performance penalty of using the wrong protocol. The re-
sults indicate that using a predictor that underestimates
load, such as a cross predictor, will result in most cases,
when mis-predicting, in a choice with a greater performance
penalty impact than using a predictor obtained under heav-
ier load, such as the node predictor. For example, in Fig-
ure 4(a) and (b) for the point (256, 16), the (b) cross predic-
tor will choose the VIS implementation as the best candi-
date. Based on the node predictor (a), this implementation
is four times slower than the PIPE implementation. Doing
the reverse exercise will result in choice that exhibits only a
30% slowdown. Similar trends are observed when compar-
ing predictors at increasing concurrency. While we have not
explored the whole (topology, concurrency) parameter space
we believe that based on the trends observed for samples in
this space we can safely eliminate topology as a determining
performance factor.

The other parameter of interest is the concurrency level.
Optimized vector operations perform well for the cases where
the length of the contiguous pieces of memory transferred is
small to medium (KB). For these cases, it is unlikely3 that
the total volume of transferred data will reach the threshold
where the scale heavily affects the total throughput (achiev-
able bisection bandwidth) and the fairness of the bandwidth
allocation between communicating node pairs. This argu-
ment is valid on all systems with a fat-tree network topology.
On the Cray XT system, preliminary results are encourag-
ing, but we are still lacking some experimental data due to
system or communication software problems.

Figure 4(c) presents the total number of mispredictions
across all concurrencies examined on the Sun Constellation
system (up to 1024 processors), when using the node pre-
dictor as a baseline. For each point in the (SIZE, NMSG)
space we select the best performing node level protocol and
compare it to the best performing protocol at the given con-
currency. The magnitude of the bars shows the number of
concurrency levels where experimental data does not match

tion.
3Previous studies and our own experience indicate that scale
effects are observable only for large transfers (MB). Band-
width saturation occurs at 64KB messages on the InfiniBand
networks and at ≈ 200KB on the Federation network.

the baseline predictor. For example, on the Sun system we
have run experiments varying the concurrency from 32 pro-
cessors to 1024 processors in powers of two, accounting for
770 experiments. For this data set, the baseline node predic-
tor is able to choose the best performing protocol in 93.7%
of the cases. Similar results are observed for the nearest
neighbor topology and on all systems. For all systems and
communication topologies the protocol differences are clus-
tered on the protocol switch boundary for the baseline node
predictor. Figure 4(d) illustrates the magnitude of perfor-
mance loss when using the baseline predictor at 1024 pro-
cessors concurrency.

The internal packing and pipelining threshold within GAS-
Net is static with AMSize = 1500 bytes and of particular
interest are the differences clustered at the lines SIZE=128
(1024 bytes) and SIZE=256 (2048 bytes). The mispredic-
tions occurring at these values across all systems indicate
that performance benefits can be achieved by further tun-
ing the packing strategy of contiguous messages around this
threshold size.

Based on the experimental data, we believe that we can
safely discard both communication topology and concur-
rency level as determining performance factors and use only
node based predictors. We conclude that instantaneous Net-
work Interface Card load is the determining performance
factor for vector operation implementations.

6.2 Building a Predictor
Our predictors are based on the relative performance charts

obtained for a two processor micro-benchmark run and for
a two node micro-benchmark run. We use different predic-
tors for intra-node and inter-node communication. For a
given vector operation we extract the total number (N) of
disjoint memory regions and the size (S) of the contiguous
region. We then select the fastest implementation for the
(2blog(S)c, 2blog(N)c) point. All the results in this paper are
obtained using this classification scheme.

We consider several predictors that combine intra-node
and inter-node processor (P) and node (N) profiles. In the
rest of this paper we label predictors as intra-inter, based on
the profile used. For example a predictor labeled P-N will
use the processor profile for intra-node communication and
the node profile for inter-node communication.

All the experimental results for the application workload
have been obtained using pessimistic predictors obtained by
examining the performance the slowest communicating pro-
cessor pair (maximum time). We have examined also sev-



0 

0.5 

1 

1.5 

2 

2.5 

16‐A 

64‐A 

16‐B 

64‐B 

144‐C 

16‐A 

64‐A 

16‐B 

64‐B 

144‐C 

16‐A 

64‐A 

16‐B 

64‐B 

128‐C 

256‐C 

BT  SP  MG 
Pe

rfo
rm

an
ce
 C
om

pa
re
d 
to
 A
M
 b
as
ed

 
Im

pl
em

en
ta
Bo

n 

IBM p575 

BLOCK 

P‐N 

N‐N 

P‐P 

PIPE 

VIS 

0.8 

0.9 

1 

1.1 

1.2 

16‐A 

64‐A 

16‐B 

64‐B 

64‐C 

144‐C 

16‐A 

64‐A 

16‐B 

64‐B 

64‐C 

144‐C 

16‐A 

64‐A 

16‐B 

64‐B 

128‐A 

256‐A 

128‐B 

256‐B 

128‐C 

256‐C 

512‐C 

BT  SP  MG 

Per
form

anc
e Co

mp
are

d to
 AM

 bas
ed I

mp
lem

ent
aCo

n 

Sun ConstellaCon 

BLOCK 

P‐HN 

P‐N 

N‐N 

P‐P 

PIPE 

VIS 

Figure 6: Performance of benchmarks using dynamic optimization techniques compared to the perfor-
mance of AM based implementations. Values higher than 1 indicate performance improvements. Both
systems contain wide SMP nodes.

eral “optimistic” predictors obtained under lighter system
load or using the fastest execution (minimum time) ob-
served across all pairs.

Figure 5(a) shows the points in the (SIZE, NMSG) space
where the pessimistic predictor disagrees with the optimistic
(minimum) predictor on the best performing protocol on
the Sun system for a two nodes experiment. While the op-
timistic node based predictor has a structure similar to Fig-
ure 3(c), the pessimistic predictor, the protocol choices are
different and the former does not choose the blocking imple-
mentation in any case. Figure 5(b) shows the distribution
of mispredictions with increasing concurrency when using
the optimistic node predictor as a baseline. Note that the
differences are not clustered on boundaries any longer and
appear in the region where the optimistic predictor chooses
the pipelined implementation. Similar behavior is observed
on the wide node IBM p575 cluster.

We believe that previous performance modeling efforts [9,
23] are able to predict well only on parts of the whole param-
eter space and have a behavior similar to the optimistic pre-
dictors. Intuitively, the misprediction space of previous ap-
proaches is captured by the “union” of Figures 5(a) and (b).

6.3 Application Results

We validate our optimization framework using the MG,
SP and BT application kernels from the NAS [16] Parallel
Benchmarks suite. We have a complete set of results for all
systems except the Cray XT system where we have encoun-
tered problems with the software stack.

We compare the performance of blocking (BLOCK), pipe–
lined (PIPE), AM based packing (VIS) and dynamically op-
timized implementations using our predictors. All versions
are based on the officially released UPC implementation [28]
of the NAS benchmarks, which we use as a performance
baseline. All baseline implementations use blocking com-
munication. All the performance models and heuristics de-
scribed in this paper have been integrated in the Berkeley
UPC compiler and runtime and are fully automated. For a

detailed description of the optimization infrastructure and
application level optimizations applied see [11].

The benchmarks exhibit different characteristics. In MG,
the communication granularity varies dynamically at each
call site. SP issues requests (Put) to transfer a variable num-
ber of mid-size contiguous regions. The requests in BT (Put
and Get) vary from small to medium sizes. For all bench-
marks, the count and granularity of messages varies with
problem class and system size. Table 2 illustrates these dif-
ferences for a class B problem running on 64 processors. Vet-
ter and Mueller [29] indicate that large scientific applications
show a significant amount of small to mid-size transfers and
all the benchmark instances considered in this paper exhibit
this characteristic.

Figure 6 presents the performance results obtained on the
Sun Constellation and the IBM systems which contain the
wide SMP nodes. We report Pimpl/PV IS , where PV IS rep-
resents the performance of the AM based implementation.
We use for the comparison the performance in operations
per second as reported by the benchmarks. Values larger
than one signify performance improvements. Each bench-
mark has been run at least for ten times on each system and
we report the average performance across all runs. Since
our technique tries to eliminate the performance degradation
and noise due to congestion, we believe that the average per-
formance reflects best its benefits. In general our technique
improves both on the best performance of a benchmark set-
ting and the variability of execution times across different
runs. The impact is more pronounced on the systems with
“wide” SMP nodes. Of particular interest is the IBM p575
cluster which exhibits a very noisy performance behavior
and the impact of our techniques is most pronounced.

On the Sun Constellation system, best behavior is pro-
duced by the static P-P and P-HN4 predictors which im-
prove overall performance by 2.5% across the whole work-
load, with maximum improvements of 15% for some bench-
mark settings. Relatively similar behavior is observed on the

4HN stands for half-node.



thin node InfiniBand cluster. On the IBM p575 cluster we
have performed experiments where notification of commu-
nication operations is performed using either interrupts or
a polling implementation. The interrupt based implementa-
tion produces a higher node load and lower end-to-end per-
formance for all benchmarks. The best behavior is produced
by the static N-N predictor which improves performance by
22% across the whole workload. For the polling based im-
plementation, our approach improves performance by 17%
across the whole workload. Some benchmarks ran two to
three times faster on this system.

On the IBM p575 system, node N-N based predictors offer
best performance in all cases. The software stack instanti-
ates hidden helper threads and nodes are over-committed at
any time during the execution. On this system, our imple-
mentation will use a static N-N predictor in all cases. On
the Sun Constellation system, node based (N-N, P-N) pre-
dictors offer better performance at lower concurrency. At
high concurrency, predictors obtained for lighter node load
(P-P, P-HN) offer better performance. At high concurrency,
heavy node load is harder to sustain since load imbalance
is likelier to occur (e.g. threads leave barriers at different
times) and protocol traffic is likelier to be delayed inside
the network. In our implementation we statically use the
P-HN predictor. We believe that on this system choosing
a predictor dynamically based on instantaneous node load
estimation will not improve performance significantly. We
plan to examine dynamic predictors in the near future.

Figure 7 shows the performance impact of using an “op-
timistic” predictor obtained for a benchmark setting with
lighter node load. In this case barrier operations have been
inserted after the measurements for each setting of the (S,N)
parameters. On the Sun system, our dynamic optimization
technique provides performance across the whole workload
that is indistinguishable from the static VIS implementation.
Similar results are observed on the IBM system. Using pre-
dictors obtained for even more optimistic behavior such as a
minimum based predictor results in workload performance
inferior to that of a static VIS protocol. We have also exper-
imented with predictors obtained at different concurrency.
Our results indicate that predictors tailored for the concur-
rency level do not improve the performance of the considered
workload beyond the level obtained with node predictors.

The overall benchmark results illustrate the pitfalls of
achieving performance portability across different system ar-
chitectures or even on the same system at different scales and
demonstrate the benefits of model based multi-protocol im-
plementations for vector operation and in general for com-
munication generation. For example, on the IBM system,
each static implementation (blocking, pipelined or AM based)
performs best in some case. On the Sun Constellation sys-
tem, pipelining messages does not perform well at all when
whole nodes are used. On the thin node systems, blocking
communication does not perform well. Table 2 illustrates
these trends by showing the protocol choices on the Sun
Constellation system for selected (class B, 64 processors)
instances of the benchmarks. Our approach is capable of
improving the performance when compared to any single
static vector implementation and our results indicate that
each available protocol has been chosen for some applica-
tion setting.

(N,S) P-P N-N P-HN P-N Count Max
(26, 65) V-P B-B V-B V-B 23684 3.4 V/B

(13, 65) P-P B-B P-B P-B 4408 6.7 V/B

(169, 65) V-V B-V V-V V-V 1407 0.86 V/B

(169, 5) V-V V-V V-V V-V 2703 1

(169, 25) V-V V-V V-V V-V 2923 1

(5, 578) B-V B-B B-B B-B 5628 12 V/B

(65, 34) V-V V-V V-V V-V 5979 1

(5, 338) P-P B-B P-B P-B 2807 8.5 V/B

(120, 13) V-V B-V V-V V-V 3246 1

(65, 66) V-V B-B V-V V-B 134 1.05 V/B

(33, 34) V-V B-V V-V V-V 126 1

(17, 18) V-V B-B V-B V-B 126 1.65 V/B

(9, 10) V-P B-B V-B V-B 126 1.42 V/B

(5, 6) B-P B-B B-B B-B 126 1.44 V/B

(3, 4) B-P B-B B-B B-B 126 2.36 V/B

(2, 3) B-B B-B B-B B-B 126 2.07 V/B

Table 2: Sample protocol choice for BT (top), SP
(mid) and MG (bottom) on the Sun Constellation
system. Class B, 64 processors. N = number of
messages, S = message size in doubles. Count = ap-
proximate number of calls per process. Max = the
maximum performance impact as reported by our
node predictor for inter-node communication. We
report the time for the VIS implementation com-
pared to the time of the dominant protocol on the
line.

7. DISCUSSION
There are several directions where our work can be ex-

tended. One direction is to provide more accurate process
and node predictors by increasing the sampling in the (size,
number of messages) space and providing neighbor based
interpolation for points in this space. We have eliminated
communication topology and concurrency level as important
parameters of our performance models and the current ex-
perimental results seem to validate this choice. The experi-
mental data indicates that mispredictions infrequently occur
with the increasing concurrency level at the protocol bound-
aries in the (S, N) space. Increasing concurrency beyond the
level validated in this paper (1024 processors) might require
predictor refinement. We believe that we can still synthesize
only a very limited number of predictors using two possible
approaches. One approach is to choose the profile with the
least potential performance impact in case of misdiagnosing
the instantaneous setting. For example, choosing for each
point in the (S,N) space the prediction with the least per-
formance impact at any concurrency level might result in a
good overall predictor. Another simpler approach suggested
by the existing data is to determine ranges of concurrency
and refine the predictors along protocol boundaries.

The applications we examined are written in a relatively
bulk synchronous manner and our static predictors were able
to provide good performance results. For more asynchronous
and load unbalanced applications dynamic load estimation
might be required. However, note that the currently ac-
cepted notion of load balance refers to the amount of work
per processor and most applications currently deemed as
load imbalanced still tend to exchange data in lock-steps.
Our current implementation allows developers to select the



0.8 

0.9 

1 

1.1 

16‐A 

64‐A 

16‐B 

64‐B 

64‐C 

144‐C 

16‐A 

64‐A 

16‐B 

64‐B 

64‐C 

144‐C 

16‐A 

64‐A 

16‐B 

64‐B 

128‐C 

256‐C 

Pe
rfo

rm
an

ce
 Co

mp
are

d t
o A

M
 ba

se
d I

mp
lem

en
ta@

on
 

Sun Constella@on ‐ "Light Load" Predictor 

BLOCK 

P‐HN 

P‐N 

N‐N 

P‐P 

PIPE 

VIS 

Figure 7: Impact of predictor choice on overall per-
formance: predictor obtained for a “lighter” node
load.The micro-benchmark used measures perfor-
mance for each parameter setting (S,N) in isola-
tion, i.e. contains barriers after each setting. Similar
trends are observed with MIN based predictors.

predictors and the principles we present are simple and in-
tuitive.

Most applications that use dense data structures tend to
perform vector operations that transfer same sized data re-
gions. Even more “dynamic” applications, such as an UPC
Computational Fluid Dynamics benchmark which has been
extracted from an Adaptive Mesh Refinement framework ex-
hibits this characteristic. As future work, we will extend our
approach for applications where communication is irregular,
e.g. sparse data structures.

Our current implementation is driven by a compiler and
implemented as a wrapper around communication library
interfaces. An interesting question is where do mechanisms
similar to ours belong: at the communication library level or
at the Network Interface Card driver level. We believe that
these mechanisms should be incorporated at driver level for
several reasons. Instantaneous load estimation is easiest to
perform and changes in system or communication library
(e.g. MPI or GASNet) software do not usually permeate to
that level. For example, the IBM p575 system is a dual-rail
system and software changes in the communication striping
algorithm might require re-tuning of the predictors used.
Incorporating the mechanisms at driver level will alleviate
the need for re-tuning when software changes happen.

Although our methodology has been validated only for
a one-sided communication paradigm, we believe that the
approach is directly applicable to two-sided communication
paradigms such as MPI and the implementation of scatter-
gather operations and MPI Derived Data Types could ben-
efit from it.

8. CONCLUSION
Previous work on optimizing vector style operations has

concentrated on clusters composed of thin SMP nodes. Sev-
eral performance models have been proposed to select the
best performing implementation for a given application set-
ting. A common trait of previous studies is that the models
seem to fail in the presence of wide SMP nodes. In wide SMP
systems applications can generate a heavier load on the Net-
work Interface Cards and can possibly generate steady state
operation in a congested regimen.

In this paper we study the performance aspects of the im-
plementation of vector operations and propose a simple and
intuitive methodology for the tuning of these operations in a
multi-protocol setting. Our results show good performance
improvements across a variety of large scale systems.

Our results indicate that the determining performance as-
pect in clusters composed of wide SMP nodes is handling of
the instantaneous load on the Network Interface Cards. Our
approach is based on the assumption that given multiple im-
plementation choices there are situations where the imple-
mentation that avoids congestion will perform best even if
it will under-perform in an un-congested setting.

We believe that our results are of interest to both com-
munication library and application developers.

Acknowledgments: The authors would like to thank James
Browne at TACC for the access to the Sun Constellation
system (ranger).



9. REFERENCES
[1] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and

C. Scheiman. LogGP: Incorporating Long Messages
into the LogP Model for Parallel Computation.
Journal of Parallel and Distributed Computing,
44(1):71–79, 1997.

[2] Bassi IBM p575 POWER5. LBNL National Energy
Research Supercomputing Center.

[3] Bigben Cray XT3 MPP. Pittsburgh Supercomputing
Center.

[4] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick.
Optimizing Bandwidth Limited Problems Using
One-Sided Communication and Overlap. Proceedings
of the 20th International Parallel and Distributed
Processing Symposium (IPDPS), 2006.

[5] D. Bonachea. GASNet Specification, v1.1. Technical
Report CSD-02-1207, University of California at
Berkeley, October 2002.

[6] D. Bonachea. Proposal for Extending the UPC
Memory Copy Library Functions and Supporting
Extensions to GASNet, v1.0. Technical Report
LBNL-56495, Lawrence Berkeley National Laboratory,
2004.

[7] S. Byna, W. D. Gropp, X.-H. Sun, and R. Thakur.
Improving the Performance of MPI Derived Datatypes
by Optimizing Memory-Access Cost. In IEEE
International Conference on Cluster Computing, 2003.

[8] Co-Array Fortran - Technical Specification. Available
at http://www.co-array.org/caf def.htm.

[9] K. Cameron, R. Ge, and X.-H. Sun. lognP and log3P:
Accurate Analytical Models of Point-to-Point
Communication in Distributed Systems. IEEE
Transactions on Computers, 2007.

[10] Y. Dotsenko, C. Coarfa, and J. Mellor-Crummey. A
Multiplatform Co-array Fortran Compiler. In
Proceedings of the IEEE Parallel Architecture and
Compilation Techniques Conference (PACT), Antibes
Juan-les-Pins, France, 2004.

[11] C. Iancu, W. Chen, and K. Yelick. Performance
Portable Optimizations for Loop Containing
Communication Operations. In Proceedings of the
2008 ACM International Conference on
Supercomputing (ICS’08), 2008.

[12] C. Iancu and E. Strohmaier. Optimizing
Communication Overlap for High-Speed Networks.
Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming
(PPoPP), 2007.

[13] Jacquard AMD Opteron cluster. LBNL National
Energy Research Supercomputing Center.

[14] N. Koziris, A. Sotiropoulos, and G. I. Goumas. A
Pipelined Schedule to Minimize Completion Time for
Loop Tiling with Computation and Communication
Overlapping. Journal of Parallel and Distributed
Computing, 63(11):1138–1151, 2003.

[15] M. Krishnan and J. Nieplocha. Optimizing
Performance on Linux Clusters Using Advanced
Communication Protocols: Achieving Over 10
Teraflops on a 8.6 Teraflops Linpack-Rated Linux
Cluster. Proceedings of the 6th International
Conference on Linux clusters: The HPC Revolution,
2005.

[16] The NAS Parallel Benchmarks. Available at
http://www.nas.nasa.gov/Software/NPB.

[17] J. Nieplocha and B. Carpenter. ARMCI: A Portable
Remote Memory Copy Library for Distributed Array
Libraries and Compiler Run-Time Systems. Lecture
Notes in Computer Science, 1586:533–??, 1999.

[18] J. Nieplocha, R. Harrison, and R. Littlefield. Global
Arrays: A Non-Uniform Memory Access Programming
Model for High-Performance Computers. In The
Journal of Supercomputing, volume 10, 1996.

[19] J. Nieplocha, V. Tipparaju, and M. Krishnan.
Optimizing Strided Remote Memory Access
Operations on the Quadrics QsNetII Network
Interconnect. In HPCASIA ’05: Proceedings of the
Eighth International Conference on High-Performance
Computing in Asia-Pacific Region, page 28,
Washington, DC, USA, 2005. IEEE Computer Society.

[20] R. Numrich and J. Reid. Co-Array Fortran for Parallel
Programming. Technical Report RAL-TR-1998-060,
Rutherford Appleton Laboratory, 1998.

[21] Ranger SUN Constellation linux Cluster. Texas
Advanced Computing Center, University of Texas at
Austin.

[22] G. Santhanaraman, D. Wu, and D. K. Panda.
Zero-Copy MPI Derived Datatype Communication
over InfiniBand. In Recent Advances in Parallel
Virtual Machine and Message Passing Interface, 11th
European PVM/MPI Users’ Group Meeting, 2004.

[23] J. Su and K. Yelick. Automatic Support for Irregular
Computations in a High-Level Language. In
Proceedings of the 19th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’05),
2005.

[24] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue,
N. M. Amato, and L. Rauchwerger. A Framework for
Adaptive Algorithm Selection in STAPL. In
Proceedings of the tenth ACM SIGPLAN symposium
on Principles and Practice of Parallel Programming,
(PPoPP’05), 2005.

[25] V. Tipparaju, M. Krishnan, J. Nieplocha, and D. P.
G. Santhanaraman. Exploiting Non-blocking Remote
Memory Access Communication in Scientific
Benchmarks. Proceedings of the 2003 International
Conference on High Performance Computng,
HiPC’2003, 2003.

[26] V. Tipparaju, G. Santhanaraman, J. Nieplocha, and
D. K. Panda. Host-Assisted Zero-Copy Remote
Memory Access Communication on InfiniBand. In
18th International Parallel and Distributed Processing
Symposium, 2004.

[27] K. Underwood, M. Levenhagen, and R. Brigthwell.
Evaluating NIC Hardware Requirements to Achieve
High Message Rate PGAS Support on Multi-Core
Processors . In Proceedings of the International
Conference for High Performance Computing,
Networking, Storage and Analysis (SC07), 2007.

[28] UPC Language Specification, Version 1.0. Available at
http://upc.gwu.edu.

[29] J. Vetter and F. Mueller. Communication
Characteristics of Large-Scale Scientific Applications
for Contemporary Cluster Architectures. Proceedings
of the 2002 International Parallel and Distributed
Processing Symposium (IPDPS), 2002.

[30] T. von Eicken, D. E. Culler, S. C. Goldstein, and
K. E. Schauser. Active Messages: A Mechanism for
Integrated Communication and Computation. In 19th
International Symposium on Computer Architecture,
pages 256–266, Gold Coast, Australia, 1992.

[31] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto,
B. Liblit, A. Krishnamurthy, P. Hilfinger, S. Graham,
D. Gay, P. Colella, and A. Aiken. Titanium: A
High-Performance Java Dialect. In Proceedings of the
ACM 1998 Workshop on Java for High-Performance
Network Computing. ACM Press, 1998.


	1 Introduction
	2 Motivation
	3 Related Work
	4 Vector Operations
	5 Performance Characterization
	5.1 Classification

	6 Experimental Results
	6.1 Micro-Benchmark Results
	6.1.1 Node Response
	6.1.2 Network Scaling Response

	6.2 Building a Predictor
	6.3 Application Results

	7 Discussion
	8 Conclusion
	9 References

