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Abstract—With the emergence of on-chip networks, the power

consumed by router buffers has become a primary concern. Buffer-

less flow control addresses this issue by removing router buffers,

and handles contention by dropping or deflecting flits. This work

compares virtual-channel (buffered) and deflection (packet-switched

bufferless) flow control. Our evaluation includes optimizations for

both schemes: buffered networks use custom SRAM-based buffers

and empty buffer bypassing for energy efficiency, while bufferless

networks feature a novel routing scheme that reduces average

latency by 5%. Results show that unless process constraints lead

to excessively costly buffers, the performance, cost and increased

complexity of deflection flow control outweigh its potential gains:

bufferless designs are only marginally (up to 1.5%) more energy

efficient at very light loads, and buffered networks provide lower la-

tency and higher throughput per unit power under most conditions.

I. INTRODUCTION

Continued improvements in VLSI technology enable inte-

gration of an increasing number of logic blocks on a single

chip. Scalable packet-switched networks-on-chip (NoCs) [7]

have been developed to serve the communication needs of such

large systems. As system size increases, these interconnects

become a crucial factor in the performance and cost of the chip.

Compared to off-chip networks, on-chip wires are cheaper

and buffer cost is more significant [7]. Router buffers are used

to queue packets or flits that cannot be routed immediately

due to contention [6]. Several proposals eliminate router buffers

to reduce NoC cost. In these bufferless schemes, contending

packets or flits are either dropped and retransmitted by their

source [9] or deflected [2], [18] to a free output port. Frequent

retransmissions or deflections degrade network performance.

However, under light load, dropping or deflecting may occur

infrequently enough to have a small impact on performance.

Bufferless flow control proposals often report large area and

power savings compared to conventional buffered networks (e.g.

60% area and up to 39% energy savings in a conventional CMP

network [18]). However, previous work has aimed to reduce the

cost of router buffers. For example, by using custom SRAM-

based implementations, buffers can consume as little as 6%

of total network area and 15.5% of total network power in a

flattened butterfly (FBFly) network [14], [17]. Furthermore, flits

can bypass empty buffers in the absence of contention [24], re-

ducing dynamic power consumption in lightly-loaded networks.

These optimizations may reduce buffering overhead up to a point

where the extra complexity and performance issues of bufferless

flow control outweigh potential cost savings.

In this paper, we compare a state-of-the-art packet-switched

bufferless network with deflecting flow control, BLESS [18],

and the currently-dominant virtual channel (VC) buffered flow

control [6]. To perform an equitable comparison, we optimize

both networks. In particular, VC networks feature efficient

custom SRAM buffers and empty buffer bypassing. We also

propose a novel routing scheme for BLESS, where flits bid for

all outputs that would reduce their distance to their destinations

regardless of dimension order constraints. In an 8×8 2D mesh

with 5×5 routers and uniform traffic, this routing scheme

reduces latency by 5% over dimension-ordered routing (DOR).

We find that bufferless flow control provides a minimal

advantage at best: in a lightly-loaded 8×8 2D mesh, bufferless

flow control reduces power consumption by only 1.5%, mostly

due to buffer leakage power, when using a high-performance,

high-leakage process. However, at medium or high loads the

buffered network offers significantly better performance and

higher power efficiency with 21% more throughput per unit

power, as well as a 17% lower average latency at a 20%

flit injection rate. The buffered network becomes more energy

efficiency at flit injection rates of 7% (11% with low-swing

channels). Buffer optimizations play a crucial role: at a flit in-

jection rate of 20%, buffers without bypassing consume 8.5× the

dynamic power with bypassing. Finally, the age-based allocator

required to prevent livelocks in BLESS is 81% slower than an

input-first separable switch allocator used in VC flow control.

The rest of this paper is organized as follows: Section II

provides the necessary background on bufferless interconnects.

Section III discusses our evaluation methodology. Section IV

presents our novel routing scheme for BLESS. Section V exam-

ines the implications for router microarchitecture. In Section VI

we present our evaluation and results. Section VII discusses

further design parameters that can affect our comparisons.

Finally, Section VIII concludes this paper.

II. BACKGROUND

Deflection flow control was first proposed as “hot-potato”

routing in off-chip networks [2]. Recent work has found that

network topology is the most important factor affecting perfor-

mance, and that global or history-related deflection criteria are

beneficial [16]. Furthermore, dynamic routing can be used to

provide an upper bound for delivery time [4].

In this paper, we consider BLESS, a state-of-the-art bufferless

deflection flow control proposal for NoCs [18]. In BLESS, flits

bid for their preferred output. If the allocator is unable to grant

that output, the flit is deflected to any free output. This requires

that routers have at least as many outputs as inputs. Flits bid

for a single output port, following deterministic DOR. To avoid

livelock, older flits are given priority. Finally, injecting flits to

a router requires a free output port to avoid deflecting flits to

ejection ports.

Two BLESS variants were evaluated in [18], FLIT-BLESS

and WORM-BLESS. In FLIT-BLESS, every flit of a packet can

be routed independently. Thus, all flits need to contain routing

information, imposing overhead compared to buffered networks,

where only head flits contain routing information. To reduce

this overhead, WORM-BLESS tries to avoid splitting worms by

providing subsequent flits in a packet with higher priority for

allocating the same output as the previous flit. However, worms
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may still have to be split under congestion, and WORM-BLESS

still needs to be able to route all flits independently.

Due to the lack of VCs, traffic classes need to be separated

with extra mechanisms or by duplicating physical channels. Ad-

ditionally, BLESS requires extra logic and buffering at network

destinations to reorder flits of the same packet arriving out

of order. The number of packets that can arrive interleaved is

practically unbounded, unlike VC networks where destinations

just need a FIFO buffer per VC.

While most bufferless proposals either drop or deflect flits,

both mechanisms can be combined [8]. Other techniques also

eliminate buffers: circuit-switching relies on establishing end-

to-end circuits in which flits never contend [15]. Finally, elastic

buffer flow control [17] uses channels as distributed FIFOs in

place of router buffers.

III. METHODOLOGY

We use a modified version of Booksim [5] for cycle-accurate

microarchitecture-level network simulation. To estimate area and

power we use ITRS predictions for a 32nm high-performance

process [12], operating at 70◦C. Modeling buffer costs accu-

rately is fundamental in our study. Orion [23] is the standard

modeling tool in NoC studies, but a recent study shows that it

can lead to large errors [13], and the update fixing these issues

was not available at the time of this work. Instead, we use the

models from Balfour and Dally [1], which are derived from

basic principles, and validate SRAM models using HSPICE.

We assume a clock frequency of 2GHz and 512-bit packets.

We model channel wires as being routed above other logic and

include only repeater and flip-flop area in channel area. The

number and size of repeaters per wire segment are chosen to

minimize energy. Our conservative low-swing model has 30%

of the full-swing repeated wire traversal power and twice the

channel area [11]. Router area is estimated using detailed floor-

plans. VC buffers use efficient custom SRAM-based buffers.

We do not use area and power models for the allocators, but

perform a detailed comparison by synthesizing them. Synthesis

is performed using Synopsys Design Compiler and a low-power

commercial 45nm library under worst-case conditions. Place

and route is done using Cadence Silicon Encounter. Local clock

gating is enabled.

We choose FLIT-BLESS for our comparisons. FLIT-BLESS

performs better than WORM-BLESS [18], but incurs extra

overhead because all flits contain routing information. However,

in our evaluation we do not model this overhead, giving BLESS

a small advantage over buffered flow control.

We use two topologies for a single physical network with

64 terminals. The first is an 8×8 2D mesh with single-cycle

channels. Routers are 5×5 and have one terminal connected

to them. The second is a 2D FBFly [14] with four terminals

connected to each router. Therefore, there are 16 10×10 routers

laid out on a 4×4 grid. Short, medium and long channels are

two, four and six clock cycles long, respectively. Injection and

ejection channels are a single cycle long. For both topologies,

one clock cycle corresponds to a physical length of 2 mm. These

channel lengths are chosen so that both networks cover an area

of about 200 mm2, a typical die size in modern processes [22].

We assume a two-stage router design. The VC network

features input-first separable round-robin allocators, speculative

switch allocation [21] and input buffer bypassing [24]. No

communication protocol is assumed. The VC network uses

DOR for the mesh and FBFly. The deflection network uses

multidimensional routing, explained in Section IV. We do not

assume adaptive routing for the VC network since such a

comparison would require adaptive routing for the bufferless

network as well. We choose the number of VCs and buffer slots

to maximize throughput per unit power. While this penalizes

the VC network in area efficiency, power is usually the primary

constraint.

We generate results for either uniform random traffic or we

average over a set of traffic patterns: uniform random, random

permutation, shuffle, bit complement, tornado and neighbor [5].

This set is extended for the FBFly to include transpose and a

traffic pattern that illustrates the effects of adversarial traffic for

networks with a concentration factor. Averaging among traffic

patterns makes our results less sensitive to effects caused by

specific traffic patterns.

IV. ROUTING IN BUFFERLESS NETWORKS

BLESS networks use DOR [18]. In VC networks, DOR pre-

vents cyclic network dependencies without extra VCs. However,

in bufferless networks flits never block waiting for buffers, so

there can be no network deadlocks, making DOR unnecessary.

We propose two oblivious routing algorithms that decrease

deflection probability. We observe that a flit often has several

productive outputs (i.e. outputs that would get the flit closer to

its destination). For example, in a 2D mesh, those are the two

outputs shown in Figure 1(a), unless the flit is already at one

of the axes of its final destination. Our first routing algorithm,

multi-dimensional routing (MDR), exploits choice by having

flits request all of their productive outputs. If both outputs are

available, the switch allocator assigns one pseudorandomly.

With MDR, there is one productive output in each dimension

with remaining hops. If a flit exhausts all hops in a dimension,

it will have one less productive output, increasing its deflection

probability. We can improve MDR by prioritizing the dimension

that has the most remaining hops, which increases the number

of productive outputs at subsequent hops. We call this scheme

prioritized MDR (PMDR). Figure 1(b) shows an example path

with PMDR in a 2D mesh. Due to PMDR, all the hops except

the last one have two productive outputs. In an FBFly with

minimal routing, flits only take one hop in each dimension,

so PMDR is equivalent to MDR. However, PMDR increases

allocator complexity: since a BLESS allocator already needs to

prioritize flits by age, PMDR requires either prioritizing output

ports or two allocation iterations.

Figure 2 compares DOR, MDR and PMDR in mesh and

FBFly bufferless networks. In the mesh, MDR offers 5% lower

average latency than DOR and equal maximum throughput. In

the FBFly, MDR achieves 2% lower average latency and 3%

higher maximum throughput. Under a sample 20% flit injection

rate, 13% more flits were only able to choose a single output

with DOR compared to MDR. Also, PMDR achieves only

marginal improvements over MDR (0.5% lower average latency

in the mesh). Given its higher allocator complexity, we use MDR

for the rest of the evaluation.

V. ROUTER MICROARCHITECTURE

This section explores router microarchitecture issues pertinent

to our study of bufferless networks.
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Figure 1. MDR and PMDR routing algorithms for deflection bufferless networks.
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Figure 2. Comparison of DOR, MDR and PMDR routing algorithms.
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Figure 3. BLESS allocator implementation.

A. Allocator Complexity

We design and implement an age-based BLESS allocator,

shown in Figure 3. Requests are partially ordered according

to their age by the sorting blocks shown on the left, each

of which sorts two requests. The output arbiters satisfy the

oldest request first, and forward conflicting requests to the next

arbiter. The oldest incoming flit is guaranteed to not be deflected,

thus preventing livelocks. Although the logic of each arbiter is

simple, all requests need to be granted [18] because all flits need

to be routed. This creates a long critical path that passes through

each output. This critical path scales linearly with router radix.

Note that this design would perform slightly worse than the

idealized BLESS allocator that we use in our simulation-based

evaluation, as it trades off accuracy for cycle time.

Table I compares our BLESS allocator and an input-first

separable speculative switch allocator with round-robin arbiters

for a VC network with 2 VCs [3]. Dynamic power is estimated

by applying Synopsys Design Compiler’s default activity factor

Figure 4. Empty buffer bypassing.

Table I
ALLOCATOR SYNTHESIS COMPARISON.

Aspect Sep. I.-F. Age-based Delta

Number of nets 1165 1129 0%

Number of cells 1100 1050 0%

Area (µm2) 2379 2001 -16%

Cycle time (ns) 1.6 2.9 +81%

Dyn. power (mW) 0.48 0.27 -44%

to all inputs. The VC network switch allocator represents a rea-

sonable design and has comparable cycle time to other separable

and wavefront allocators [3], [5]. We compare against the switch

allocator because a similar VC allocator has a shorter critical

path and speculation parallelizes VC and switch allocation [3].

As Table I shows, the age-based allocator has an 81% larger

delay. If the allocator is on the router’s critical path, this will

either degrade network frequency or increase zero-load latency

if the allocator is pipelined. The separable allocator has a larger

area than the age-based allocator, and consumes clock tree and

flip-flop power because it needs to maintain state for the round-

robin arbitration. However, the difference is a small fraction of

the overall router power.
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Figure 5. Latency and power comparison.

B. Buffer Cost

Our models assume efficient custom SRAM blocks for

buffers [1], which impose a smaller overhead compared to other

implementation options. However, designers might be unable

to use such designs, e.g. due to process library constraints.

Using either standard-size SRAM blocks or flip-flop arrays will

likely make buffers more costly, increasing the motivation for

eliminating them or reducing their size.

Additionally, we use empty buffer bypassing [24], shown in

Figure 4. This allows flits to bypass empty buffers in the absence

of contention, reducing dynamic power under light load.

We find that these schemes suffice to implement efficient

buffers, but additional techniques could be applied. For instance,

leakage-aware buffers [20] reduce leakage by directing incoming

flits to the least leaky buffer slots and supply-gating unused

slots. Also, to increase buffer utilization and reduce buffer size,

researchers have proposed dynamic buffer allocation [19].

To check the accuracy of our models, we synthesized and

then placed and routed a 5×5 mesh VC router with 2 VCs

and 8 buffer slots per VC. Due to process library constraints,

we were only able to use flip-flop arrays for buffers. With this

implementation, the flip-flop arrays occupied 62% of the overall

router area and consumed 18% of the router power at a 20% flit

injection rate with uniform random traffic. A compiler-generated

SRAM block from the same library would occupy 13% of the

router area. The SRAM area results are in line with our models.

VI. EVALUATION

This section presents a quantitative comparison of BLESS

and VC flow control and discusses design tradeoffs.

A. Latency and Throughput

Figure 5 presents latency and power as a function of flit

injection rate. VC routers are optimized for throughput per unit

power. They have 6 VCs with 9 buffer slots per VC in the mesh,

and 10 slots per VC in the FBFly. The VC network has a 12%

lower latency for the mesh on average across injection rates,

and 8% lower for the FBFly. At a sample 20% flit injection

rate, the VC network has a 17% lower latency for the mesh, and

10% lower for the FBFly. Deflecting flits increases the average

channel activity factor for a given throughput. As shown, the

VC network provides a 41% higher throughput for the mesh,

and 96% higher for the FBFly. If we average over the set of

traffic patterns, the VC network provides a 24% and 15% higher

throughput for the mesh and FBFly, respectively.

Due to the larger activity factor, the deflection network

consumes more power than the buffered network for flit injection

rates higher than 7% for the mesh and 5% for the FBFly. For

lower injection rates, buffer power is higher than the power

consumed by deflections. However, even then the deflection

network never consumes less power than 98.7% of the VC

network power for the mesh, and 98.9% for the FBFly. The

higher power in VC networks is mainly due to buffer leakage.
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Figure 6. Blocking or deflection latency distribution.

These small power gains are outweighed by the allocator com-

plexity and the other issues discussed in this paper. Furthermore,

if a network always operates at such low injection rates, it is

likely overdesigned because the datapath width need not be this

wide, making the network more expensive than necessary.

Without empty buffer bypassing, the dynamic buffer power

increases significantly, as detailed in Section VI-B. In this case,

the deflection network consumes less power for flit injection

rates lower than 17% for the mesh, and 12.5% for the FBFly.

This emphasizes the importance of buffer bypassing.

Figure 6 shows the distribution of cycles that flits spend

blocked in buffers or being deflected in the 2D mesh for a 20%

injection rate. It was generated by subtracting the corresponding

zero-load latency from each flit’s measured latency. Since the

latency imposed by an extra hop is 3 cycles (2 cycles to traverse

a router and 1 to traverse a link), and each deflection adds

an even number of hops, the deflection network histogram

has spikes every 6 cycles. Thus, this graph also shows the

distribution of the number of deflections per flit. In contrast,

the VC network has a smooth latency distribution. The average

blocking latency for the VC network is 0.75 cycles with a

standard deviation of 1.18, while the maximum is 13 cycles.

For the deflection network, the average is 4.87 cycles with a

standard deviation of 8.09, while the maximum is 108 cycles.

Since the average zero-load latency is 19.5 cycles, the VC

network has 17% lower latency. These higher latency variations

may be crucial to performance: in timeout-based protocols,

high latencies will cause spurious retransmissions, and many

workloads use synchronization primitives that are constrained

by worst-case latency (e.g. barriers).

Figure 7 shows throughput versus area and power Pareto-

optimal curves for both networks. Each point of each curve

represents the maximum packet throughput achievable by a

design of a given area or power. Results are averaged over the set

of traffic patterns of each topology. These curves were generated

by sweeping the datapath width so that a packet consists of 3 to

18 flits. They illustrate that power or area savings of a network

can be traded for a wider datapath, which increases maximum

throughput. Thus, points of equal area or power do not indicate

an equal datapath width.

As illustrated, the mesh VC network provides 21% more

throughput per unit power on average, and requires 19% less

power to achieve equal throughput compared to BLESS. The

deflection network provides 5% more throughput per unit area

due to the buffers occupying 30% of the area, as explained

in Section VI-B. Consequently, the deflection network requires

6% less area to achieve equal throughput. If the VC network

was optimized for area, the buffers would be significantly

smaller. The FBFly VC network provides 21% and 3% more

throughput per unit power and area respectively. Achieving

equal throughput requires 19% less power and 3% less area.

Widening the datapath favors the buffered network. While

buffer and channel costs scale linearly with datapath width,

crossbar cost scales quadratically. Therefore, taking extra hops

becomes more costly. Allocation cost becomes less significant

because it is amortized over the datapath width. However, that

cost is relatively small, as shown in Section VI-B. The quadratic

crossbar cost is also the reason the VC FBFly is more area

efficient than the deflection network, since widening the datapath

to equalize throughput has a larger impact in the area of high-

radix routers.

B. Power and Area Breakdowns

Figure 8 shows the power and area breakdowns for the mesh

with a 20% flit injection rate. Each router has 6 VCs, with

9 buffer slots per VC. The buffer cost without bypassing is

included. Output clock and FF refer to the pipeline flip-flops at

output ports that drive the long channel wires. Crossbar control

is the power for the control wires routed to crossbar crosspoints.

Channel traversal refers to the power to traverse the repeated

channel segments. Channel clock is the clock wire power to

the channel pipeline flip-flops. Leakage power is included for

buffers and channels.

For a 20% flit injection rate, the average channel activity

factor is 24.7% on the VC network and 29.3% on the deflection

network. The extra 4.6% is due to deflections. This extra power

equals 5.5× the buffer access and leakage power. Buffer leakage

power is only 0.6% of the overall network power. Removing

the buffers saves 30% of the overall network area. The same

SRAM buffers without bypassing consume 8.5× the dynamic

power with bypassing.

In general, there is no fixed relationship between the number

of buffering events in a VC network and the number of de-

flections in a BLESS network, but intuitively, both increase at

roughly the same rate with network utilization, as they depend

on contention events. Thus, it is insightful to compare the energy

of a buffer read and write with the energy consumed in a

deflection. Writing and then reading a single 64-bit flit from

and to an input buffer consumes 6.2pJ, while a channel and

router traversal takes 20.9pJ (80% of this energy is consumed

in the channel). A deflection induces at least 2 extra traversals,

causing 42pJ of energy consumption, 6.7× the dynamic energy

for buffering the contending flit instead. Therefore, increasing

router and channel traversals with deflections is not energy-

efficient.

C. Low-swing Channels

Low-swing channels favor the deflection network because

they reduce deflection energy. With our low-swing channel

model, the VC mesh network offers 16% more throughput per

unit power than the deflection network for the mesh and 18%

more for the FBFly. Also, the VC network offers comparable
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Figure 7. Throughput versus power and area Pareto-optimal curves.

(1% more) throughput per unit area for the mesh, and 6%

more for the FBFly. This increase in area efficiency for the

VC network is due to differential signaling, which doubles

the channel area, thus reducing the percentage of the total

area occupied by the buffers to 19%. Moreover, the deflection

network consumes less power for flit injection rates smaller than

11% for the mesh, and 8% for the FBFly. However, compared to

the VC network, the power consumed by the deflection network

is never less than 98.5% for the mesh and 99% for the FBFly.

Figure 9 illustrates the results for the mesh.

D. Deadlock and Endpoint Buffers

In a network with a request-reply protocol, destinations might

be waiting for replies to their own requests before being able

to serve other requests [10]. Those replies might be sent from

a distant source or might face heavy contention. Therefore,

arriving requests might find the destination’s ejection buffers to

be full, without a mechanism to prevent or handle this scenario.

Preventing this requires ejection buffers able to cover for all

possible sources and their maximum outstanding requests. As

an example, in a system with 64 processors where each node

can have 4 outstanding requests to each of four cache banks

(16 requests total), each processor and cache bank needs to

buffer 256 requests. This requires a total buffer space of 128KB,

whereas an 8×8 2D mesh with 2 VCs, each having 8 64-

bit buffer slots, needs 20KB. Note that 20KB is only a small

fraction of the system-wide SRAM memory in many designs

(e.g. CMPs with multi-megabyte caches). Alternatively, flits that

cannot be buffered can be dropped, deflected back to the router,

or extra complexity needs to be added, such as feedback to the

router so that flits are sent to the ejection port only if there

is buffer space for them. This issue becomes more severe with

more complex protocols.

E. Flit Injection

Injection in deflecting flow control requires feedback from

the router because at least one output port must be free [18].

However, acquiring this information is problematic, specially

if the round-trip distance between the router and the source is

more than one clock cycle. Alternatively, flits can be deflected

back to the source if there is no free output. However, this causes

contention with ejecting flits and costs extra energy. In any case,

the injection buffer size may need to be increased to prevent the

logic block (e.g. the CPU) from blocking.

F. Process Technology

Our evaluation uses a 32nm high-performance ITRS-based

process as a worst case due to its high leakage current. To

illustrate the other extreme, we use the commercial 45nm low-

power library used for synthesis in Section V-A. Its leakage

current is negligible. With empty buffer bypassing, the deflection

network never consumes less energy than the VC network. Both
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Figure 9. Power consumption with varying injection rate and throughput-power Pareto-optimal curves with low-swing channels.

consume approximately the same amount of power even for

very low injection rates. Furthermore, the VC mesh described

in Section VI-A provides 21% more throughput per unit power

and 10% more throughput per unit area. Therefore, there are

no design points that would make the deflection network more

efficient in this process.

Changing process technologies affects the buffer to overall

network power cost ratio. Extremely costly buffer implementa-

tions would increase this ratio in favor of the bufferless network.

In such processes, the bufferless network might be the most

efficient choice. However, even the 32nm high-leakage process

we used does not fall in this category. In any case, design

effort should first be spent on implementing the buffers more

efficiently before considering bufferless networks.

VII. DISCUSSION

Our quantitative evaluation tries to cover the design parame-

ters that are most likely to affect the tradeoffs between buffered

and bufferless networks. However, it is infeasible to characterize

the full design space quantitatively. In this section we qualita-

tively discuss the effect of varying additional parameters.

Traffic classes: Systems requiring a large number of traffic

classes or VCs may have allocators slower than the age-

based allocator of Section V-A. However, more traffic classes

also increase the demand for endpoint buffering discussed in

Section VI-D. For a single traffic class, we have shown that at

least a buffered network with 2 VCs is more efficient than a

deflection network.

Network size: While network size affects the relevant trade-

offs, smaller networks provide fewer deflection paths. The

deflection and buffering probabilities are similarly affected by

size. Thus, none of the two networks is clearly favored by

varying network size.

Sub-networks: A deflection network design could be divided

into sub-networks to make it more efficient, but the same is

true for the VC network. For each sub-network of the deflection

network, we can apply our findings to design a similar and more

efficient buffered network.

Dropping flow-control: Dropping flow control faces different

challenges. For example, its allocators are not constrained to

produce a complete matching. However, dropping flow control

requires buffering at the sources. Dropping, as deflecting, causes

flits to traverse extra hops, which translates to energy cost and

increased latency. Therefore, the fundamental tradeoff between

buffer and extra hop costs remains. However, the number of

extra hops in dropping networks is affected by topology and

routing more than in deflection networks. In general, dropping

flow control may be more or less efficient than deflection flow

control, depending on a particular network design.

7



Self-throttling sources: In our evaluation, traffic sources do

not block under any condition (e.g. if a maximum number

of outstanding requests is reached). Self-throttling sources are

more likely to be blocked when using a deflection network

due to its latency distribution, as discussed in Section VI-A.

Blocking the sources hides the performance inefficiencies of the

network by controlling the network load. This favors network-

level metrics, but penalizes system performance. For example,

in a CMP, blocking the CPUs increases execution time, which

is the performance measurable by end users. Complete system

implementations are likely to use self-throttling sources. There-

fore, performing an equitable comparison requires taking the

number of cycles that sources are blocked into account.

VIII. CONCLUSIONS

We have compared state-of-the-art buffered (VC) and deflec-

tion (BLESS) flow control schemes. We improve the bufferless

network by proposing MDR to reduce deflections. This reduces

average latency by 5% in an 8×8 2D mesh, compared to DOR.

We also assume efficient SRAM-based buffers that are bypassed

if they are empty and there is no contention. The deflection

network with MDR consumes less power up to a flit injection

rate of 7%. However, it never consumes less power than 98.7%

of that of the VC network. Networks constantly operating at low

injection rates are likely overdesigned as they don’t need such

large datapaths.

In the same 8×8 2D mesh, VC flow control provides a 12%

smaller average latency compared to deflection flow control. At

a flit injection rate of 20%, the average VC network blocking

flit latency is 0.75 cycles with a standard deviation of 1.18,

while for the deflection network the average deflection latency

is 4.87 cycles with a standard deviation of 8.09. The VC

network achieves a 21% higher throughput per unit power.

Furthermore, the BLESS allocator has an 81% larger cycle

time than a separable input-first round-robin speculative switch

allocator. Finally, bufferless flow control needs large buffering

or extra complexity at network destinations in the presence of

a communication protocol.

Our work extends previous research on deflection flow con-

trol by performing a comprehensive comparison with buffered

flow control. Our main contribution is providing insight and

improving the understanding of the issues faced by deflection

flow control.

Our results show that unless process constraints lead to

excessively costly buffers, the performance, cost and complexity

penalties outweigh the potential gains from removing the router

buffers. Even for the limited operation range where the buffer-

less network consumes less energy, that energy is negligible (up

to 1.5%) and is accompanied by the shortcomings presented

in this paper. Therefore, we believe that design effort should

be spent on more efficient buffers before considering bufferless

flow control.
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