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Abstract—We design and implement distributed-memory par-
allel algorithms for computing maximal cardinality matching in
a bipartite graph. Relying on matrix algebra building blocks, our
algorithms expose a higher degree of parallelism on distributed-
memory platforms than existing graph-based algorithms. In
contrast to existing parallel algorithms, empirical approximation
ratios of the new algorithms are insensitive to concurrency and
stay relatively constant with increasing processor counts. On real
instances, our algorithms achieve up to 300x speedup on 1024
cores of a Cray XC30 supercomputer. Even higher speedups
are obtained on larger synthetically generated graphs where our
algorithms show good scaling on up to 16,384 processors.

I. INTRODUCTION

A matching in a graph is a set of edges without common
vertices, and the number of edges in a matching is its car-
dinality. Computing a matching of maximum cardinality is
an important combinatorial problem in scientific computing
with applications to permute a matrix to its block triangular
form (BTF) via the Dulmage-Mendelsohn decomposition of
bipartite graphs [1], [2], and to compute minimum-weight
matchings used by sparse direct solvers [3]. Most practi-
cal algorithms that compute maximum cardinality matchings
initialize themselves by a matching of maximal cardinality
because the latter can be computed much faster than the
former [4], [5], [6], [7]. Hence, a scalable parallel algorithm
for maximal cardinality matching is a prerequisite to parallel
maximum matching and other dependent problems. In this
paper, we design and implement distributed-memory parallel
algorithms for computing matchings of maximal cardinality
on an unweighted bipartite graph.

In earlier work, effective parallel algorithms for maximal
cardinality matching have been designed and implemented
on both shared and distributed memory systems [5], [8], [9],
[10], [11]. These algorithms achieve parallelism by concur-
rently searching for unmatched neighbors from unmatched
vertices. Even though the existing algorithms perform well
on a small number of processors, they often fail to scale
beyond several hundreds of processors. Limited scalability
is due to the communication overheads of finding partner
vertices to match and updating the matching, which together
dominate the runtime. More importantly, the cardinality of
matching returned by these graph-based algorithms decreases
significantly with the increased concurrency. For example,
Azad et al. [5] demonstrated that the approximation ratio (the
ratio of maximal to maximum cardinality) of a multithreaded
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Fig. 1. Matching qualities attained by Karp-Sipser and Greedy algorithms

on delaunay_n24 graph. Multithreaded algorithms are presented in ear-
lier work [5], whereas distributed algorithms, which are matrix based, are
presented here for the first time.

Karp-Sipser algorithm decreases significantly on a Cray XMT
multiprocessor with more than six thousands threads. Fig. 1
shows that the quality of matchings from the multithreaded
Karp-Sipser decreases by more than 2% on 80 threads of an
Intel multiprocessor and by another 1% on 6400 threads of a
Cray XMT massively multithreaded multiprocessor. This re-
duction in matching quality is undesirable because the reduced
cardinality may significantly increase the runtime of other
dependent algorithms (e.g., a maximum matching algorithm)
that use a maximal matching as an initializer.

We address the limitations of existing graph-based algo-
rithms by redesigning them using matrix algebra. We present
three maximal matching algorithms in matrix algebra. We
represent the input graph by a sparse matrix and the vertex
sets (including matchings) by vectors, and then decompose
the matching algorithms into several steps. The algorithms
employ sparse matrix-vector multiplication (SpMV) to search
for unmatched rows in the matrix from unmatched columns
and vector manipulations to update the current matching.

We show with an extensive set of real and randomly
generated problems that our matrix-based algorithms are more
amenable to parallelization on distributed-memory platforms.
Over diverse set of 11 real input graphs, we achieve an
average of 202x speedup (up to 300x) on 1024 cores of a
Cray XC30 supercomputer (Edison). Even higher speedups
are obtained on larger synthetically generated graphs where
our algorithms show good scaling on up to 16,384 processors,
making them the first algorithms for maximal matching that
scale to tens of thousands of processors. Furthermore, unlike



previous algorithms, the cardinality of matching obtained by
our algorithms is insensitive to concurrency, and remains the
same even on several thousands of processors. For example,
Fig. 1 demonstrates that the newly developed matrix-based
Karp-Sipser algorithm outputs matchings with statistically the
same quality on 1 to 2048 cores of Edison.

II. BACKGROUND AND NOTATIONS

Given a graph G=(V, E) on the set of vertices V and edges
E, a matching M is a subset of edges such that at most one
edge in M is incident on each vertex in V. Given a matching
M in a graph G, an edge is matched if it belongs to M, and
unmatched otherwise. Similarly, a vertex is matched if it is
an endpoint of a matched edge, and unmatched otherwise. If
an edge (u,v) is matched, we call v and v mates of each
other. Given a matching M, the unmatch-degree of a vertex
v is the number of unmatched vertices adjacent to v in the
graph. The number of edges in M is called the cardinality
| M| of the matching. A matching M is maximal if there is no
other matching M’ that properly contains M. M is a maximum
cardinality matching if |M|>|M’| for every matching M.

The cardinality of the maximum matching is the matching
number of the graph. The approximation ratio of a maximal
matching is the ratio of its cardinality to the matching number
of the graph. Every maximal matching has an approximation
ratio greater than or equal to 1/2. This ratio is used to measure
the quality of maximal matching.

This paper solely focuses on maximal cardinality matchings
in a bipartite graph, G=(R, C, F), where the vertex set V'
is partitioned into two disjoint sets R and C, such that every
edge connects a vertex in R to a vertex in C'. Consequently, we
will occasionally drop the adjectives “bipartite” and “maximal
cardinality” when describing our methods.

A. Variants of maximal matching algorithms

The function MAXIMAL-MATCH-GRAPH described in Al-
gorithm 1 computes a maximal matching in a bipartite graph
G(R,C, E). The algorithm traverses the neighborhood of an
unmatched vertex v, in C, and if an unmatched neighbor v,.
in R is found, the edge (v, v,) is included in the matching.
The order in which the unmatched vertex v, is selected in Al-
gorithm 1 defines several variants of maximal matching algo-
rithms. If v, is selected at random then the algorithm is called
the Greedy algorithm. In the Karp-Sipser algorithm [12], ver-
tices with one unmatched neighbor (called degree-1 vertices)
are processed before vertices with higher unmatched-degrees.
When there is no degree-1 vertex, Karp-Sipser works similar
to the Greedy algorithm. Finally, when vertices are selected
in the ascending order of unmatch-degrees, Algorithm 1 turns
into a Dynamic Mindegree algorithm.

B. Representing a bipartite graph via a sparse matrix

Let G=(R, C, F) be an undirected and unweighted bipartite
graph with |R|=m and |C|=n. Without loss of generality,
we assume that m>n. Consider an arbitrary ordering of
vertices in each vertex part of G, R = {ry,r2,...,7,} and

Algorithm 1 A maximal matching algorithm based on edge
traversal. Input: A bipartite graph G(R,C, E). Output: A
maximal cardinality matching M.

1: procedure MAXIMAL-MATCH-GRAPH(G (R, C, E))
M <+ ¢
Q<+ C
while Q) # ¢ do
ve <— a vertex from Q > Algorithmic variants
if (ve,vr) € E and v, is unmatched then
M + M U (ve,vyr)
Q < Q\ {ve}

return M

> Unmatched columns

P LN RN

C = {c1,ca,...,cn }. Then, we represent G by an m X n binary
sparse matrix A with |E| nonzero entries (i.e., nnz(A)=|E|)
such that A (4, j)=1 when there is an edge between the ith row
vertex r; and jth column vertex c;. By a reverse construction,
we can also create a bipartite graph from a binary matrix.
Fig. 2 shows an example of representing a bipartite graph with
a sparse matrix. Note that A can be unsymmetric, rectangular
(when m#n), and might have nonzero entries in the diagonal
(when there are edges of the form (r;, ¢;)). Hence, A is not
the adjacency matrix of the bipartite graph G since the actual
adjacency matrix is an (m+mn) x (m+n) square matrix with
zero diagonal.

C. Representing matching and vertex sets via vectors

We use either a dense or a sparse vector to represent a set
of vertices. The difference between these two formats is that
the latter does not explicitly store the nonzero entries. Given
a sparse vector x, nnz(z) denotes the number of nonzero
entries and len(x) denotes the number of both zero and
nonzero entries in z. For a dense vector x, nnz(x)=len(x).
Given a sparse/dense vector x and an index vector I with
max(I)<len(z), z[I] selects the nonzero entries from indices
specified by I. We use subscripts  and ¢ to denote vectors of
row and column vertices, respectively.

In our matching algorithms, we store the mates of row and
columns vertices in two dense vectors mate, and mate.. If
the ith row vertex r; is matched to the jth column vertex
cj, then mate,[i]=j and mate.[j]=i. mate,[i] is set to —1
when 7r; is unmatched. Consider a graph with five column
vertices and f. ={c1, c2,¢5} to be a subset of column vertices
in the graph. Then, we store f, in a sparse vector of length five
with nonzeros in 1st, 2nd and 5th locations: f, =[x, x, 0,0, x].
Here, len(f.)=>5, nnz(f.)=3. Therefore, the indices of the
nonzero entries of a sparse vector represent the actual vertices,
whereas the values stored in nonzero entries store pointers
to other vertices such as parents or mates. We show several
examples of sparse and dense vectors in Fig. 3 in the context
of a matching algorithm.

D. Operations on vectors and matrices

Table I defines several operations on vectors and matrices,
which will be used in matching algorithms. The function
IND(x) returns the local indices of nonzero entries of a
sparse vector x. Since we need to copy nnz(x) indices, the
complexity of this operation is O(nnz(x)). Given a sparse



. Serial Need
Function ~ Arguments Returns Example Complexity Comm?
. local indices of sparse vector: x = (3,0, 2,2,0] No
IND @ sparse vector nonzero entries of x IND(z) = [1,3,4] O(nnz(z))
x: a sparse vector z <— an empty sparse vector sparse vector: z = (3,0, 2, 2, 0]
SLger Y@ dense vector for i € IND(z) dense vector: y = [1,—1,—1,2, —1] O(nnz(z)) No
ezpr: logical expr. on y if (expr(y[i]) then SELECT(z,y = —1) = [0,0, 2,0, 0]
assume size(x) = size(y) z[4] + ]
T: a sparse vector z 4— an empty sparse vector sparse vector: z = (3,0, 2,2, 0]
INVERT  assume max(z) < len(z) for i € IND(x) INVERT(z) = [0,4,1,0,0] O(nnz(x)) Yes
if (z[z[¢]] # 0) then z[z[i]] + ¢
A a sparse matrix
SPMV T: a sparse vector returns A - x see Fig. 2 > nnz(A(:, k)) Yes

SR: a semiring

ke€IND(x)

TABLE 1
BASIC FUNCTIONS NEEDED FOR THE CARDINALITY MATCHING ALGORITHM.

vector x, a dense vector y and a logical expression expr,
the function SELECT(z,y, expr) selects indices I of y where
expr(y) is true and returns x[I]. As shown in the pseudocode
in Table I, SELECT only iterates on the sparse vector, hence the
complexity O(nnz(x)). Given a sparse vector x, the INVERT
function returns the inverted index by swaping the indices and
values of nonzero entries in = and stores the results in a new
sparse vector z. If = has repeated nonzero values, only one of
them is used as index in z (we keep the first index).

We explore vertices from one side of a bipartite graph to the
other side by using SpMV over a semiring. For the purposes
of this work, a semiring is defined over (potentially separate)
sets of ‘scalars’, and has its two operations ‘multiplication’
and ‘addition’ redefined. We refer to a semiring by listing
its scaling operations, such as the (multiply, add) semiring.
The usual semiring multiply for breadth-first search (BFS) is
select2nd, which returns the second value it is passed. The
BFS semiring is defined over two sets: the matrix elements are
from the set of binary numbers whereas the vector elements
are from the set of integers. This usage of a semiring is less
strict than the definition used in mathematics.

Consider a bipartite graph G(R, C, E), its matrix represen-
tation A, and a set of column vertices f.. Then, Fig. 2 shows
the execution of the SpMV A - f. over the (select2nd, min)
semiring. SpMV returns the set of row vertices explored by f..
The (select2nd, min) semiring can be replaced by (select2nd,
max) or other equivalent semirings.

E. Related Work

There has been a large body of research on the theory of
parallel matching algorithms, e.g., Karpinski and Rytter [13].
However, most of these algorithms are based on parallel
random access machine (PRAM) model, and they are often
impractical on modern parallel platforms. Considerable inter-
est in parallel algorithms has been observed recently with work
on approximation as well as exact algorithms on shared and
distributed memory platforms. Patwary et al. [11] have imple-
mented a parallel Karp-Sipser algorithm (in a general graph)
on a distributed memory machine using an edge partitioning of
the graph. On some real graphs, their algorithm achieved up to
38x speedups on 64 processors, whereas on other graphs their
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Fig. 2. Tllustration of traversing a bipartite graph G(R,C, E) via SpMV.
The bipartite graph with five row and five column vertices is shown in the
left. Matched and unmatched vertices are shown in filled and empty circles,
respectively. Thin lines represent unmatched edges and thick lines represent
matched edges. The binary matrix A represents the bipartite graph where
an “x” denotes an edge in G. f. represents the set of unmatched column
vertices. The sparse matrix-vector multiplication A - f. over the (select2nd,
min) semiring first selects columns that have nonzeros in f. (shown in gray)
and then in each row, retains the minimum product from the selected columns.
The indices of the result vector f, denote row vertices explored from f. and
the value f-[¢] denotes the column vertex that explored the ith row vertex.

algorithm did not scale at all. Langguth et al. describe their
work on parallelizing the Push-Relabel algorithm for bipartite
maximum matching on both shared and distributed-memory
platforms [7], [14]. However, their distributed-memory push-
relabel algorithm did not scale well beyond 64 processors [14].

Parallel algorithms for weighted matching have also been
studied [15]. Recently, Sathe et al. have reported 4x to 64x
speedups on 1024 processors of a Cray XE6 for a parallel
auction algorithm [16]. Half-approximation algorithms for
weighted matching have been implemented on both shared
and distributed memory computers with good speedups [17],
[18], [19], [20].

III. MATRIX ALGEBRA BASED FORMULATION OF
MATCHING ALGORITHMS
A. The greedy matching algorithm

The function MAXIMAL-MATCH-MTX in Algorithm 2 de-
scribes the greedy matching algorithm using matrix algebra
building blocks. As inputs, the algorithm takes a matrix



Algorithm 2 Maximal matching algorithm based on matrix algebra. Inputs: A binary m X n sparse matrix A denoting a
bipartite graph G(R, C, E) where |R| = m, |C| = n, and |E| = nnz(A). Dense vectors mate,, and mate. store the mates of
row and column vertices (-1 for unmatched vertices). Output: Updated mate, and mate, with a maximal cardinality matching.

1: procedure MAXIMAL-MATCH-MTX(A, mate., mate,)
2: fr + A sparse vector of size m with f.[i{] =1

> Unmatched row vertices

3: fe < A sparse vector of size n with f.[i] =1 > Unmatched column vertices
4: AT + TRANSPOSE(A) > Transpose matrix

5: de SPMV(AT, fr» SR=(select2nd,+)) > Degrees of column vertices to unmatched row vertices

6: fe < SELECT(f.,d. > 0) > Remove isolated vertices

7: repeat

8: > Step 1: Discover unmatched rows from unmatched columns (one step of BFS)

9: fr < SPMV(A, f., SR=(select2nd,min)) > Explore row vertices from unmatched column vertices
10: fr < SELECT(fr, mate, = —1) > Unmatched visited row vertices
11:

12: > Step 2: Update matching
13: te + INVERT(f) > For each column vertex, select one of its children if available
14: J < IND(%.)

15: matec[J] < tc > Match column vertices with their selected children
16: tr < INVERT(¢c) > Selected row vertices pointing to their unique parents
17: I < IND(t,)

18: matey[I] < tr > Match an unmatched row vertex with its unique parent
19:

20: > Step 3: Update unmatched column vertices f.
21: mde < SPMV(AT,tT, SR=(select2nd,+)) > Degrees of all column vertices to the newly matched row vertices
22: J < IND(md.) > Indices of column vertices adjacent to the newly matched row vertices
23: de[J] + de[J] — md. > Update unmatch-degrees of column vertices
24: fe < SELECT(f., mate. = —1) > Keep unmatched columns
25: fe < SELECT(fc,d. > 0) > Keep unmatched columns with positive degrees
26: until no vertex is matched in the last iteration
Before Iteration Step 1 Step 2 Step 3 After Iteration
(a) initial state (b) SpMV (c) unmatched rows d) update mate, (e) update mate, (f) update f, (9) final state
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Fig. 3. A working example of one iteration of a maximal matching algorithm described in Algorithm 2. Matched and unmatched vertices are shown in filled
and empty circles, respectively. Thin lines represent unmatched edges and thick lines represent matched edges. The vectors f, d, and mate represent the
current unmatched vertices, unmatch-degree of vertices, and mates of the matched vertices. Subscripts 7 and ¢ denote row and column vertices, respectively.
The temporary vectors t, and t. store unmatched row and column vertices that are matched in this iteration (see Step 2 of Algorithm 2). (a) An initial
matching and associated data structures before an iteration, (b) exploring the neighbors of unmatched column vertices f. where arrows direct from children
to parents, (c) keep only the unmatched row vertices as children, (d) match column vertices to their unique children, (e) match row vertices to their unique
parents, (f) update f. by removing newly matched columns and columns with no unmatched neighbors, and (g) a maximal matching is obtained. In Subfigs.

(d) and (e), arrows show the direction of matching.

A representing a bipartite graph and two dense vectors
mate,, and mate. storing the mates of row and column ver-
tices. MAXIMAL-MATCH-MTX returns a maximal cardinality
matching by updating mate, and mate.. At first, we create
two sparse vectors f. and f, storing the unmatched row and
column vertices. The values of f. are set to their indices to
facilitate BFS traversals. We keep both A and its transpose
AT so that we can traverse the graph from both row and
column vertices. The dense vector d. of size n stores the
unmatch-degree of column vertices. Initially, we compute d.
by multiplying AT by f, over the (select2nd, +) semiring.

One pass over the repeat-until block in Algorithm 2 defines

an iteration of the algorithm. Fig. 3 demonstrates the execution
of one iteration of the MAXIMAL-MATCH-MTX function. In
this example, the bipartite graph has five row vertices and five
column vertices. Two of the vertices are matched before the
current iteration (Subfig. 3(a)). We divide each iteration of
MAXIMAL-MATCH-MTX into three steps described below.

Step 1: Explore graph from unmatched column vertices.
Let f. be the set of unmatched column vertices at the beginning
of an iteration. In this step, we discover a set of row vertices
fr reachable from f. by using SpMV over the (select2nd,
min) semiring, as illustrated in Fig. 2. If we consider f. to be
the current frontier, the SpMV is essentially conducting one




iteration of BFS-based graph traversal. In this context, vertices
in f,. have unique parents in f. and construct a forest of unit
height as shown in Fig. 3(b). The parents of row vertices are
stored as nonzero values in f.. Since we are only interested
in unmatched vertices, the matched rows are removed from f,.
(Subfig. 3(c)), which concludes Step 1 of the algorithm.

Step 2: Update matching. We update mates of column
vertices by calling INVERT(f,.) that selects a unique child
for each vertex in f. and update mate. accordingly. Note
that, in Step 1, an unmatched column vertex in f. might have
acquired more than one child, e.g., r; and ro are children of
c1 in Fig. 3(b). In this case, INVERT matches a vertex in f,
to exactly one of its children. To update mate,, we execute
INVERT on the newly matched column vertices. This process is
described between lines 13—-18 of Algorithm 2 and illustrated
in Subfigs. 3(d) and 3(e).

Step 3: Update unmatched column vertices. After updat-
ing mates, we remove the newly matched columns from f,.
For example, after matching c¢; and c5 in Subfig. 3(d), we have
a single unmatched column vertex co. We could start the next
iteration with f, ={ca}. Since ¢y has no unmatched neighbor,
we can remove it from f, to reduce work in future iterations.
For this purpose, we update the unmatch-degree d. of column
vertices by first computing the degree md, of column vertices
to the newly matched row vertices and then subtracting md,.
from d.. (lines 21-23 of Algorithm 2). In our example in Fig. 3,
we have no more unmatched vertices, hence the algorithm
returns with a maximal matching shown in Subfrig. 3(g).

Algorithm 3 Modified Step 1 of Algorithm 2 needed for the
Karp-Sipser algorithm.

: f& « SELECT(f.,d. = 1) > degree-1 column vertices
if nnz(fl) # 0 then > Process degree-1 vertices
fr < SPMV(A, f}, SR=(select2nd,min))

> Process other vertices
fr < SPMV(A, f., SR=(select2nd,min))

else

A

B. The Karp-Sipser algorithm

We can convert Algorithm 2 into the Karp-Sipser algorithm
by replacing Step 1 with Algorithm 3. Here, f! is the set of
unmatched column vertices that have unmatch-degree equal to
1. fl is easy to compute because we update unmatch-degree of
column vertices in Step 3 of every iteration in Algorithm 2. If
1L is not empty, we explore the neighborhood of these degree-
1 vertices (lines 3—4 of Algorithm 3) and try to match them,
otherwise we proceed with the greedy algorithm.

C. The Dynamic Mindegree algorithm

We can convert Algorithm 2 into the Dynamic Mindegree
algorithm by using the (select2nd, mindegree) semiring in
line 9. Here, the vector entries are {parent, degree} pairs
for the SPMV. Hence, the (select2nd, mindegree) semiring
operates on a set of binary numbers and a set of pairs
of integers. As before, select2nd returns the second value
it is passed, i.e., the {parent, degree} pair. The mindegree
operation takes two {parent, degree} pairs and returns the

pair with minimum degree. The mindegree operation can be
implemented as a function or a lambda expression in C++.
The rest of Algorithm 2 remains unchanged for Dynamic
Mindegree.

D. Serial complexity

The computational complexity of every iteration of Algo-
rithm 2 depends on the functions described in Table I. Since
SPMV dominates other operations in terms of serial com-
plexity, it determines the serial runtime of the matrix-based
algorithms. The cost of a single SpMV with a sparse vector x
depends on the number of nonzeros of x and their locations.
The number of multiplications is D cjyp(,) 7z (A(: k)), as
listed in Table I as well.

First, note that two SPMYV calls (lines 9 and 21) in
Algorithm 2 use two different vectors. The first SPMV with
the (select2nd, min) semiring uses unmatched columns in the
vector x. By contrast, the second SPMV with the (select2nd,
+) semiring uses the newly matched row vertices as the vector.
Since the number of newly matched vertices is smaller than
the number of unmatched vertices, the cost of the first SPMV
is often higher than the other. Hence, we only discuss the cost
of the first SPMV. (However, two SpMVs traverse the graph
from opposite directions, hence their costs also depend on the
nonzero structure.)

In the first iteration, the SPMV in line 9 of Algorithm 2
uses a dense vector because all column vertices are unmatched
at the beginning. Hence, the cost of the first iteration of
Greedy, Dynamic Mindegree, and Karp-Sipser (when there
is no degree-1 vertices in the input graph) algorithms is
O(nnz(A)). However, in the presence of degree-1 vertices
in the input graph, the cost of the first iteration of Karp-
Sipser depends on the number of degree-1 vertices. The cost of
subsequent iterations depend significantly on the algorithm and
input graphs (e.g., see Fig. 6). However, all of our algorithms
spend most of their time in the first iteration. For example,
Fig. 6 shows that every algorithm spends at least 18% of their
total runtime in the first iteration on GL7d19.

IV. DISTRIBUTED MEMORY PARALLEL ALGORITHM
A. Data distribution and storage

We use the CombBLAS framework [21] which distributes
its sparse matrices on a 2D p,. X p, processor grid. Processor
P(i,j) stores the submatrix A;; of dimensions (m/p,) x
(n/p¢) in its local memory. The CombBLAS uses the doubly
compressed sparse columns (DCSC) format to store its local
submatrices for scalability, and uses a vector of {index,
value} pairs for storing sparse vectors. To balance load across
processors, we randomly permute the input matrix A before
running the matching algorithms.

Vectors are also distributed on the same 2D processor grid.
For a distributed vector v, the syntax v;; denotes the local n /D
length piece of the vector owned by the P(i,j)th processor.
The syntax v; denotes the hypothetical n/p, or n/p. length
piece of the vector collectively owned by all the processors
along the ith processor row P(i,:) or column P(:,1).



B. Analysis of the distributed algorithm

We measure communication by the number of words moved
(W) and the number of messages sent (S). The cost of
communicating a length m message is a+ Sm where « is the
latency and S is the inverse bandwidth, both defined relative to
the cost of a single arithmetic operation. Hence, an algorithm
that performs I arithmetic operations, sends S messages, and
moves W words takes T' = F' + oS + W time.

A 2D SpMV algorithm for the case of sparse input and
output vectors has previously been used in the specialized
context of distributed memory BFS [22], which we leverage
here. A 2D SpMV algorithm for the case of dense vectors
is also provided in CombBLAS. As discussed before, serial
SpMV performs - c1yp () 72 (A(:, k)) multiplications. The
total work of the parallel algorithm is the same (i.e. our parallel
SpMV is work efficient), but the load balance depends on the
exact distribution of nonzeros in A and z. Hence, we will
be analyzing the parallel running time with the assumption
that nonzeros of A and z are i.i.d. distributed. This provides
a lower bound on the running time and the actual observed
performance can be worse in the presence of load imbalance.

The allgather phase of SpMV has cost

prfl

T

Ty = a(pr - 1) + 3

using the ring algorithm, which is the default algorithm for
large (> 512KB) messages on many MPI implementations
such as MPICH [23]. Recall that x; is the n/p. length
piece collectively owned by the ith processor column, which
needs to be gathered at each processor on that processor
column. The all-to-all phase, assuming the pairwise-exchange
algorithm that is typical for long messages in many MPI
implementations, has the cost

Tooa = a(pe — 1) + ﬂz nnz(Aq;(c, k)

k€IND(x)

By contrast, INVERT requires a permutation of vector entries
among all processors, and has per-processor cost of

Tinverr = nnz(xij) + a(p — 1) + B nnz(z;;)
n n
=—+falp-1)+p-
P P

using personalized all-to-all. INVERT is also work-efficient but
communication intensive. We perform certain approximations
to make these analyses comparable to each other. First we
use asymptotics, p — 1 = p, second we assume a square pro-
cessor grid p,=p.=p, and finally we assume i.i.d. distributed
nonzeros in A and z.

If x is f percent full, and A has on average d nonzeros per
column, then the arithmetic cost of SpMV per processor is

fnd  fnd nnz(A)
-2y

vPVP P p
for some column k. In the worst case, i.e., in the absence of
nonzero collusions, the amount of words moved due to all-to-
all is the same as the arithmetic cost. Allgather phase moves

nnz(z;) nnz(Aq;(:, k))

fn/\/p words, resulting in a total cost for SpMV as:

nd nd n

Tsemv ’ +2a\/]5+f5(p +\/i)>

From that, we see that INVERT has a factor of ,/p higher

latency cost, which hurts performance on large concurrencies

and smaller matrices where the latency term dominates. In

other words, INVERT is the potential bottleneck in the strong

scaling regime. On the other hand, in the weak scaling regime,

SPMYV is projected to be the bottleneck when /p > d due

to worse scaling of the allgather phase. Any future reductions

in communication costs of SPMV would make our algorithm
even more scalable.

V. EXPERIMENTAL SETUP
A. Platform

We evaluate the performance of parallel matching algo-
rithms on Edison, a Cray XC30 supercomputer at NERSC. In
Edison, nodes are interconnected with the Cray Aries network
using a Dragonfly topology. Each compute node is equipped
with 64 GB RAM and two 12-core 2.4 GHz Intel Ivy Bridge
processors, each with 30 MB L3 cache. We used Intel C++
Compiler (icc 15.0.1) to compile the code, and Cray’s MPI
implementation on Edison is based on MPICH2. We use one
thread per MPI process in all of our experiments (flat MPI).

B. Input Graphs

Table II describes a representative set of graphs from the
University of Florida sparse matrix collection [24] and several
randomly generated instances. We generated random graphs
with skewed degree distribution by using the recursive graph
generator called RMAT. We set the RMAT parameters a, b, ¢,
and d to 0.57,0.19,0.19,0.05 respectively and the average
degree to 16 unless otherwise stated. These parameters are
identical to the ones used for generating synthetic instances
in the Graph500 BFS benchmark [25]. Like Graph500, to
compactly describe the size of a graph, we use the scale
variable to indicate that the graph has 2°%/¢ vertices.

We work with the matrices directly without constructing any
graphs. We interpret the matrices in the following way. Let A
be an m X n matrix with nnz nonzero entries. We consider the
matrix representing an undirected bipartite graph G(RUC, E)
where every row (column) of A is represented by a vertex in
R (C), and each nonzero entry A[i, j] of A is represented by
two edges (r;,c;) and (c;,r;) connecting the ith row and jth
column vertices. We maintain both A and its transpose so that
we can search graphs from both directions.

VI. RESULTS
A. Quality of matching

We measure the quality of a maximal matching by its
approximation ratio. The matching number needed to compute
the approximation ratio is computed by the serial maximum
matching software by Duff ef al. [4]. When the graph is larger
than the capacity of the local memory such as the randomly



Class Graph #Rows (m)  #Columns (n) nnz Maximum  Description
(x10%) (x10%) (x10%)  Card. (%)
Scientific hugetrace 16.00 16.00 96.00 100.00 Frames from 2D Dynamic Simulations
delaunay_n24 16.77 16.77 201.33 100.00 Delaunay triangulations of random points
Scale-free amazon0312 0.40 0.40 6.40 99.56 Amazon product co-purchasing network
coPapersDBLP 0.54 0.54 60.98 99.95 Citation networks in DBLP
Networks wikipedia 3.56 3.56 90.06 58.70 Wikipedia page links
road_usa 23.94 23.94 115.42 94.90 USA street networks
Rectangular ~ LargeRegFile 2.11 0.80 4.94 100.00 circuit simulation problem
Ruccil 1.98 0.11 7.79 100.00 least squares problem
tp-6 0.14 1.01 11.53 100.00 linear programming problem
GL7d19 1.91 1.96 37.32 100.00 combinatorial problem
spal_004 0.01 0.32 46.17 100.00 linear programming problem
Random ER-26 67.11 67.11 2147.48 100.00 Erd6s-Rényi random graphs
RMAT-26 32.80 32.80 2103.85 51.02 RMAT random graphs (param: .57,.19,.19,.05)
TABLE II

TEST PROBLEMS FOR EVALUATING THE MATCHING ALGORITHMS. THE PROBLEMS ARE GROUPED INTO FIVE CLASSES. IF NEEDED, THE MATRIX IS
TRANSPOSED SO THAT m > n. MAXIMUM MATCHING CARDINALITIES ARE SHOWN AS A FRACTION OF THE MINIMUM OF m AND n.
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Fig. 4. Approximation ratios attained by serial matrix- and graph-based algorithms.

generated ER and RMAT graphs, we used a preliminary ver-
sion of our distributed-memory maximum matching algorithm.

At first, we compare the quality of serial matrix-based algo-
rithms with the sequential graph-based algorithms developed
by Duff er al. [4]. Fig. 4 shows the comparisons. For Greedy
algorithm, there is no clear winner: graph-based algorithm
performs better on 5 problems, whereas matrix-based algo-
rithm performs better on 4 problems. However, for Karp-Sipser
and Dynamic Mindegree, graph-based algorithms consistently
outperform the matrix-based algorithms. This behavior is not
unexpected because the original Karp-Sipser and Dynamic
Mindegree algorithms process vertices based on their unmatch-
degrees that are updated after matching every vertex. Since
our matrix-based algorithms process all unmatched vertices
simultaneously in order to increase concurrency, the matching
quality might reduce slightly. However, the matching quality
obtained from a parallel graph-based algorithm decreases
rapidly as we increase the concurrency [5]. Using Fig. 1, we
already discussed in the introduction that a graph-based Karp-
Sipser algorithm could lose more than 3% of the matching
quality on multithreaded multiprocessors with several thou-
sands of threads. By contrast, on the same graph, the quality
of matrix-based algorithms remains statistically the same on
thousands of processors as shown in Fig. 1.

We quantify the variability of matching quality by the coef-
ficient of variation (CV) of approximation ratios on different
number of processors. Let r1,72,...,7, be the approximation
ratios achieved by an algorithm on 1,2, ..., p processors. Then,
CV is computed as the ratio of standard deviation of r; to their
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Fig. 5. The stability of matching qualities of matrix-based matching algo-
rithms. The algorithms are run on 1 to 1024 processors for real graphs, and
on 128 to 8,100 processors for random graphs.

mean and expressed as a percentage. The higher the CV of
an algorithm the more variable its matching quality is. Fig. 5
shows the CVs of matching quality of three maximal matching
algorithms on eight input graphs from Table II. Rectangular
matrices are not shown because every algorithm achieves
100% approximation ratio on these graphs, hence CV becomes
zero. We observe that all of our algorithms are quite stable
on these eight graphs as we vary the number of processors.
The highest variation is observed on delaunay_n24 by
Karp-Sipser, which is still smaller then 0.1%. The small
variations in matching quality originate from the random
permutations of input matrices performed for load balance.
Hence, this less than 0.1% CV, albeit small, can in practice
be completely eliminated if the random permutations are fixed
for all concurrencies.
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Fig. 7. Strong scaling of maximal matching algorithms on 12 graphs. On each graph (except ER-26), we report the maximum speedup attained by the fastest
algorithm on 1024 cores of Edison. On ER-26, the speedup is reported on 8192 cores relative to the runtime on 128 cores.

B. Progression of algorithms

The number of iterations needed by three matching algo-
rithms differs significantly depending on input graphs. Gen-
erally, Karp-Sipser needs the largest number of iterations and
Dynamic Mindegree needs the smallest. For example, Fig. 6
shows the fraction of time spent and fraction of vertices
matched (relative to the cardinality of the final maximal
matching) in each iteration of our algorithms on GL7d19
graph. On this graph, Greedy algorithm takes 11, Karp-Sipser
takes 48, and Dynamic Mindegree takes 7 iterations before
completion. Both Greedy and Dynamic Mindegree match
fewer new vertices and take shorter time as the algorithms
progress from one iteration to the next. Hence, first few
iterations of these two algorithms perform most of the work.

By contrast, the iterations of Karp-Sipser can be grouped
into few iteration-clusters, where an iteration-cluster begins
with a spike and ends before the next spike in Fig. 6(b).
For example, iterations 8-12 create the 4th iteration-cluster
in Fig. 6(b). In the first iteration of an iteration-cluster (except
the first iteration-cluster), we have no degree-1 vertices; hence
the algorithm performs one step of the Greedy algorithm
(line 6 of Algorithm 3). In subsequent iterations within the
iteration-cluster, the algorithm matches degree-1 vertices as
they are discovered. The Dynamic Mindegree algorithm often
packs an iteration-cluster of Karp-Sipser into a single iteration.
Therefore, the number of iteration-clusters in Karp-Sipser
often equals to the number of iterations required by Dynamic
Mindegree, e.g., they are the equal on GL7d19 as shown in
Fig. 6. Since Dynamic Mindegree needs fewer synchronization
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When we increase the number of processors by 64X, the algorithms slows
down by a factor less than 2x.

points, it usually runs faster than Karp-Sipser at the expense
of slightly smaller matching cardinality.

C. Scalability

We show the strong scaling of three maximal matching
algorithms in Fig. 7. On seven out of eleven real input graphs,
matching algorithms achieve more than 200x speedups on
1024 cores. Two other graphs (Ruccil and tp-6) achieve
more than 130x speedups. Only two graphs show moder-
ate scaling: amazon0312 39x, and LargeRegFile 81X.
In fact, our algorithms stop scaling after 64 processors on
amazon0312 and LargeRegFile because these graphs
have the fewest number of edges (6.4 and 4.94 millions
respectively) in our problem set. For these small graphs,
processors do not have enough work when p is greater than
64, which limits the performance.

The scalability of matrix-based algorithm on higher number
of processors can be realized on larger graphs. For example, in
Fig. 7, matching on ER-26 runs 48X faster when we increase
p by 64x. Fig. 8 shows the strong scaling of RMAT random
graphs on up to 16,384 cores. Recall that RMAT-30 denotes
a graph with about 1 billion vertices and 34 billion edges. We
observe that larger graphs scale better than smaller graph on
very large number of processors, as expected. For example, on
RMAT-30, every algorithm achieves more than 8x speedup
when we go from 1,024 to 16,384 processors. By contrast, on
RMAT-26, greedy algorithm achieves only 3x speedup and
Karp-Sipser stops scaling for the same range of processors.
Therefore, our algorithms have the ability to scale on very

large number of processors as long as we have enough work
to utilize the available computing resources. Among three
algorithms presented in this paper, Dynamic Mindegree scales
the best and Karp-Sipser scales the worst on large number
of processors as can be seen in Fig. 8. When we go from
1,024 to 16,384 cores (i.e., 16 x increase), Dynamic Mindegree
achieves about 15x,10x, and 6x speedups on RMAT-30,
RMAT-28, and RMAT-26, whereas Karp-Sipser achieves
about 8x,3x, and Ox speedups on RMAT-30, RMAT-28,
and RMAT-26. The greedy algorithm sits in between Dynamic
Mindegree and Karp-Sipser. According to our discussed in the
previous subsection, Dynamic Mindegree scales better than
Karp-Sipser because the former requires fewer iteration than
the latter (i.e., the former performs more work than the latter
per iteration).

We now turn to the weak scaling of the matching algorithms.
Fig. 9 shows the weak scaling on RMAT random graphs where
we run our algorithm from scale 28 to 32. Note that RMAT
graph at scale=32 has 232 = 4 billions vertices and 68 billion
edges. For weak scaling, the number of processors doubles
for each increase in scale of RMAT graphs. We observe that
the number of processors increased by 64x slows down our
algorithms by a factor less than 2x. Hence, the matrix-based
algorithms can utilize even larger number of processors if large
enough graphs become available.

D. Breakdown of runtime

Fig. 10 shows the breakdown of where the runtime is spent
by the Dynamic Mindegree algorithm on 64 and 1024 cores
of Edison. On 64 cores, Dynamic Mindegree spends about
40% — 60% time on graph traversal where the algorithm
searches for row vertices from unmatched column vertices
(Step 1 of Algorithm 2) and about 20%—30% time on updating
degrees and unmatched vertices (Step 3 of Algorithm 2). Up-
dating matching (Step 2 of Algorithm 2) is a communication
intensive step; therefore it takes less than 20% time on 64
cores. However, on 1024 cores, updating matching becomes
the most expensive step for most smaller graphs because of the
increased communication needed by this step. However, larger
graphs such as RMAT-26, ER-26, and road_usa can still
hide the communication time of updating matching and spend
less than 10% of total runtime on this step.
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Fig. 10. Breakdown of time spent on different steps of the Dynamic Mindegree algorithm run on 64 and 1024 cores of Edison.

VII. CONCLUSION AND FUTURE WORK

Using matrix-algebraic primitives, we present the first
distributed-memory algorithms for maximal cardinality match-
ing in bipartite graphs that scale to tens of thousands of
processors. We represent three different algorithms in the same
matrix algebraic framework, only with minimal modifications
to the underlying semiring operations and data structures. All
three algorithms benefit from fast parallel implementations of a
handful of matrix-algebraic primitives that they are built upon.
Unlike previous algorithms, ours maintain a stable approxima-
tion ratio that is insensitive to increasing concurrency, a trait
that is important for exascale-level parallelism.

Finding a distributed data structure that can be used to
traverse the bipartite graph from both sides without storing
both A and AT would reduce the storage requirements by
up to 50%. Such a data structure, Compressed Sparse Blocks
(CSB) [26], which allows efficient SpMV on both A and
AT without explicitly storing AT, exists in shared memory.
Developing a distributed-memory CSB, which can perform
SpMV not just with dense vectors but also sparse vectors,
is considered future work.

ACKNOWLEDGMENTS

This work is supported by the Applied Mathematics Pro-
gram of the DOE Office of Advanced Scientific Computing
Research under contract number DE-AC02-05CH11231. We
used resources of the NERSC supported by the Office of Sci-
ence of the DOE under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] A. Pothen and C.-J. Fan, “Computing the block triangular form of a
sparse matrix,” ACM Trans. Math. Softw., vol. 16, pp. 303-324, 1990.
T. A. Davis and E. Palamadai Natarajan, “Algorithm 907: KLU, a direct
sparse solver for circuit simulation problems,” ACM Trans. Math. Softw.,
vol. 37, no. 3, p. 36, 2010.

X. S. Li and J. W. Demmel, “SuperLU_DIST: A scalable distributed-
memory sparse direct solver for unsymmetric linear systems,” ACM
Trans. Math. Softw., vol. 29, no. 2, pp. 110-140, 2003.

1. S. Duft, K. Kaya, and B. Ugar, “Design, implementation, and analysis
of maximum transversal algorithms,” ACM Trans. Math. Softw., vol. 38,
no. 2, pp. 13:1- 13:31, 2011.

A. Azad, M. Halappanavar, S. Rajamanickam, E. G. Boman, A. Khan,
and A. Pothen, “Multithreaded algorithms for maximum matching in
bipartite graphs,” in /PDPS. 1EEE, 2012, pp. 860-872.

[2]

[3]

[4]

[51

[6] K. Kaya, J. Langguth, F. Manne, and B. Ugar, “Push-relabel based algo-
rithms for the maximum transversal problem,” Computers & Operations
Research, vol. 40, no. 5, pp. 1266-1275, 2013.

J. Langguth, A. Azad, M. Halappanavar, and F. Manne, “On parallel
push-relabel based algorithms for bipartite maximum matching,” Paral-
lel Computing, vol. 40, no. 7, pp. 289-308, 2014.

J. C. Setubal, “Sequential and parallel experimental results with bipartite
matching algorithms,” Univ. of Campinas, Tech. Rep. 1C-96-09, 1996.
J. Magun, “Greeding matching algorithms, an experimental study,”
Journal of Experimental Algorithmics, vol. 3, p. 6, 1998.

J. Langguth, F. Manne, and P. Sanders, “Heuristic initialization for
bipartite matching problems,” Journal of Experimental Algorithmics,
vol. 15, pp. 1-3, 2010.

M. M. A. Patwary, R. H. Bisseling, and F. Manne, “Parallel greedy graph
matching using an edge partitioning approach,” in HLPP’10. ACM,
2010, pp. 45-54.

R. M. Karp and M. Sipser, “Maximum matching in sparse random
graphs,” in FOCS’81. 1EEE, 1981, pp. 364-375.

M. Karpinski and W. Rytter, Fast parallel algorithms for graph matching
problems. Clarendon Press, 1998, vol. 98.

J. Langguth, M. M. A. Patwary, and F. Manne, “Parallel algorithms for
bipartite matching problems on distributed memory computers,” Parallel
Computing, vol. 37, no. 12, pp. 820-845, 2011.

D. P. Bertsekas and D. A. Castafion, “Parallel synchronous and asyn-
chronous implementations of the auction algorithm,” Parallel Comput-
ing, vol. 17, pp. 707-732, September 1991.

M. Sathe, O. Schenk, and H. Burkhart, “An auction-based weighted
matching implementation on massively parallel architectures,” Parallel
Computing, vol. 38, no. 12, pp. 595-614, 2012.

U. V. Catalyurek, F. Dobrian, A. Gebremedhin, M. Halappanavar, and
A. Pothen, “Distributed-memory parallel algorithms for matching and
coloring,” in IPDPSW. IEEE, 2011, pp. 1971-1980.

F. Manne and R. H. Bisseling, “A parallel approximation algorithm
for the weighted maximum matching problem,” in PPAM’07. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 708-717.

M. Halappanavar, J. Feo, O. Villa, A. Tumeo, and A. Pothen, “Ap-
proximate weighted matching on emerging manycore and multithreaded
architectures,” IJHPCA, vol. 26, no. 4, pp. 413430, 2012.

F. Manne and M. Halappanavar, “New effective multithreaded matching
algorithms,” in /PDPS. 1EEE, 2014, pp. 519-528.

A. Bulug and J. R. Gilbert, “The Combinatorial BLAS: Design, imple-
mentation, and applications,” IJHPCA, vol. 25, no. 4, 2011.

A. Bulu¢ and K. Madduri, “Parallel breadth-first search on distributed
memory systems,” in SC’//. ACM, 2011, pp. 65:1-65:12.

R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” IJHPCA, vol. 19, no. 1, pp. 49—
66, 2005.

T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, p. 1, 2011.
“Graph500 benchmark,” www.graph500.org.

A. Bulug, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson,
“Parallel sparse matrix-vector and matrix-transpose-vector multiplication
using compressed sparse blocks,” in SPAA. ACM, 2009, pp. 233-244.

[7]

[8]
[9]
[10]

(11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]

(23]

[24]

[25]
[26]



