
OPR: Deterministic Group Replay
for One-Sided Communication

Xuehai Qian Koushik Sen
University of California, Berkeley
{xuehaiq,ksen}@cs.berkeley.edu

Paul Hargrove Costin Iancu
Lawrence Berkeley National Laboratory
{phhargrove,cciancu}@lbl.gov

The ability to reproduce a parallel execution is desirable for
debugging and program reliability purposes. In debugging (13),
the programmer needs to manually step back in time, while for
resilience (6) this is automatically performed by the the application
upon failure. To be useful, replay has to faithfully reproduce the
original execution. For parallel programs the main challenge is
inferring and maintaining the order of conflicting operations (data
races). Deterministic record and replay (R&R) techniques have
been developed for multithreaded shared memory programs (5),
as well as distributed memory programs (14). Our main interest
is techniques for large scale scientific (3; 4) programming models.

Shared memory R&R techniques use either information about
thread scheduling (5) by tracking synchronization APIs, or log the
memory accessed within each thread. In distributed memory, R&R
techniques for MPI (14) have been developed with emphasis on
scalability. They track two-sided MPI Send/MPI Recv opera-
tions and ignore local memory accesses. None of the existing ap-
proaches can provide deterministic R&R for the new class of mod-
ern distributed programming models (MPI-3 RMA (4)) and Global
Address Space (UPC (3), Co-Array Fortran, Chapel, X10, Open-
SHMEM which advocate one-sided communication abstractions.

In this paper, we present the first general tool, OPR (One-sided
communication Partial Record and Replay) to support determinis-
tic R&R for one-sided communication. The tool allows users to se-
lect a small set of threads of interest from a large scale application.
It tracks their execution and upon demand it can deterministically
replay the selected set of threads. As all other threads are not exe-
cuted during the partial replay, the tool eases debugging experience
and relieves users from monitoring all concurrent events from po-
tentially tens of thousands of threads. OPR also makes it possible
to debug a large-scale execution on a smaller (local) machine. Fur-
thermore, partial replay is intrinsic to the scalability of resilience
techniques (6) using uncoordinated or quasi-synchronous check-
pointing and recovery.

Our OPR prototype is built for the Unified Parallel C (1) pro-
gramming language. This is a typical PGAS (Partitioned Global
Address Space) language whose memory consistency model allows
for reordering of operations and therefore nondeterministic execu-
tion. Memory can be accessed either with load/store instructions
or using one-sided communication (Put/Get). The challenge is to
build a hybrid scalable mechanism able to infer the order of these
disjoint multiple types of operations.

State-of the-art deterministic R&R for shared memory program-
ming (10; 12) handles load/store operations using value logging
(referred to as data-replay (8; 12)). Determinism is attained by
maintaining a shadow memory and comparing its contents against
the program execution. In OPR, we use a similar approach to de-
tect thread state changes due to remote direct loads/stores in record
phase and log values at certain points.

Although the data-replay based approach enables replay in iso-
lation, it does not provide sufficient insight on how communication
happened between threads. To eliminate this drawback, we employ
a hybrid R&R scheme. The data-replay which ensures correctness
is complemented with order-replay (8) to infer inter-thread commu-
nication based on value matching. In the record phase, OPR runs
a simplified and scalable vector clock algorithm only among the
monitored threads to get an approximation of event orders of ac-
cesses to global memory. In the replay phase, OPR enforces the
same event order and infers the communication by matching val-
ues of local writes and remote reads (Gets) (in the value log of
remote threads). By combining an approximate order with match-
ing the values in the logs, we provide scalability as well as allowing
for non-atomic monitoring and recording of load/store and Put/Get
operations. To the best of our knowledge, OPR is the first scheme
that uses this hybrid approach.

The evaluation is conducted on Edison, a Cray XC30 super-
computer at NERSC. We evaluate OPR using eight NAS Parallel
Benchmarks (2) (BT, CG, EP, FT, IS, LU, MG, SP), two appli-
cations using work stealing from the UPC Task Library (9) (fib,
nqueens), three applications in the UPC test suite (guppie, laplace,
mcop) and Unbalanced Tree Search (UTS) (11). In addition we
evaluate a large scale production application performing Parallel
De Bruijn Graph Construction and Traversal for De Novo Genome
Assembly (Meraculous) (7). We focus on recording overhead and
ensure that the output and the orders are right. Since a small num-
ber of threads are partially replayed, the threads can be replayed
efficiently without any noticeable performance degradation. There-
fore, in our experimental evaluation we only check replay fidelity
and we do not focus on measurement of replay overhead. All appli-
cations are first executed on about 40 nodes (1,024 cores/threads)
of Edison and we monitor and replay threads that can be contained
on single node (two up to 16 cores/threads). We see that OPR in-
curs overhead from 1.3x∼ 29x among all applications and different
R Set sizes (2,4,8,16 threads), when running the original program
on 1,024 cores. Such overhead is moderate and acceptable for a
software-only R&R scheme used for debugging. As discussed in
Section ??, we believe that using static analysis to guide the load-
/store instrumentation can lower the runtime overhead to the point
that our approach is feasible for resilience techniques.

0.1 OPR: Deterministic Partial R&R
OPR involves the following steps (see Figure 1).

Record at full concurrency. The user first specifies the replay
set, R Set, a subset of threads that need to be replayed. A modi-
fied compiler is used to build a binary with recording instrumen-
tation, tracking both load/store instructions, as well as com-
munication operations (e.g. Put/Get). The instrumented binary
is then executed at full scale on a modified UPC runtime system
that records the execution. For any tasks within R Set, we track

Instrumentation

Original UPC
Program

Record
Binary

Execution on
modified UPC

runtime

...

replay group

Value Log

Distributed
Event

Order Log

1. Record with full execution 2. Offline log processing

Replay
Order Log

Write
Check

Log
wait

wake

??

T3: SN(34)
 wait: [12,0,0,0]
 wake:[1,0,0,0]
.....
T1: SN(14)
 check T0 SN(30)
 check T1 SN(28)
.....

??

??

3. Partial Replay

Figure 1: Overview of OPR.

loads/stores instructions into a value log, which contains the
inputs for loads at different points. For any task within R Set, we
track Put/Get operations to tasks within R Set into an distributed
event order log. The event order log indicates an approximation of
orders of conflicting operations accessing the global memory.

The behavior of any tasks outside R Set, or the communication
between R Set and the outside world is not tracked.

In Figure 1, the shaded region indicates the replay group. In
each thread, the white dots indicate read accesses that do not have
value log entries; the black dots indicate read accesses that generate
value log entries; the grey dots indicate write accesses. The arrows
indicate detected event orders. We can see that some orders exist
between write and read accesses, but the reads may not consume the
values produced by writes, such relationship needs to be checked in
replay phase. Also, some read accesses could get values produced
by threads outside R Set, such as the second black dot in the last
thread in R Set.

Log processing. The value log and order log are processed to
enforce the replay order. Based on the distributed event order log,
this pass generates a replay order log for each thread in R Set. The
event orders are translated into wait and wake vector clocks for the
relevant operations so that threads in R Set could collaboratively
enforce the order present in the original execution. In addition,
a write check log is generated for each thread so that it could
try to match its own written values with remote read values in
certain ranges at correct points in replay phase. We use this value
based approach to infer communications between threads in R Set
because there is no explicit matching between senders and receivers
in one-sided communication.

Replay only R Set OPR only executes the threads in R Set in
the partial replay phase. The side effects of any other tasks can
be reconstructed from the logs. Each thread reproduces the same
execution by injecting the values in its value log at correct points.
The operations from different threads are scheduled to execute in
an order according to the replay order log. In addition, after a
thread performs certain writes, it needs to check whether all the
local writes so far could contribute to some read value log entries
of remote threads. On a value match, a communication is assumed
to happen between the two threads. This process is driven by the
write check log. For each read log entry of a thread in R Set, OPR
could infer one of two possibilities: (a) the value is produced by a
thread inside R Set, if so, the specific thread is given; (b) the value
is not produced by any thread inside R Set. In Figure 1, the question
marks indicate the value matching operation.

Now let us consider how does OPR work for the UTS exam-
ple in (Listing ??). Assume R Set is {T0, T2} and in a period of
execution, T0 steals from T2 and T3. In the record phase, in both
steals, OPR will log the values of s->stolen work addr and
s->stolen work amt at the correct time. In the replay phase,
these values will be fed into T0 at the same execution points. This
ensures that T0 is replayed correctly in isolation. In addition, based
on the logs generated by the offline processing step the write op-
erations in T2 are executed before the read operations in T0 that
caused the exit of the while-loop. Furthermore, after writes in T2

are performed, T2 will check whether its writes performed so far
could match a read value log in T0. In our case, since T0 indeed
steals work from T2, there will be matches for both values of
s->stolen work addr and s->stolen work amt. Based
on the matched values, OPR infers that the communication hap-
pened from T2 to T0.

In OPR, we use the principle of data-replay to ensure the correct
replay of each thread in R Set based on value log. We use order-
replay and value matching to infer the communications between
threads in R Set. This design principle is critical since purely re-
lying on order-replay requires replaying all threads (not satisfying
requirement of partial replay). More importantly, due to non-atomic
instrumentation, it is very challenging to generate precise event or-
ders. The current approach could tolerate such imprecision because
replay correctness does not depend on the event order. The impre-
cise event order only leads to false positives or negatives in com-
munication inference but does not affect replay correctness.

References
[1] Berkeley UPC. http://upc.lbl.gov.
[2] The NAS Parallel Benchmarks. Available at

http://www.nas.nasa.gov/Software/NPB.
[3] UPC Home Page. http://upc-lang.org.
[4] MPI: A Message-Passing Interface Standard. Version 3.0. Message

Passing Interface Forum, 2012.
[5] J.-D. Choi and H. Srinivasan. Deterministic Replay of Java Multi-

threaded Applications. In Proceedings of the SIGMETRICS Sympo-
sium on Parallel and Distributed Tools, SPDT ’98, 1998.

[6] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A
Survey of Rollback-recovery Protocols in Message-passing Systems.
ACM Computing Surveys, 34(3):375–408, September 2002.

[7] E. Georganas, A. Buluç, J. Chapman, L. Oliker, D. Rokhsar, and
K. Yelick. Parallel De Bruijn Graph Construction and Traversal for
De Novo Genome Assembly. In Proceedings of the 26th ACM/IEEE
International Conference on High Performance Computing, Network-
ing, Storage and Analysis (SC), November 2014.

[8] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging Parallel
Programs with Instant Replay. IEEE Transactions on Computers,
36(4):471–482, April 1987.

[9] S.-J. Min, C. Iancu, and K. Yelick. Hierarchical Work Stealing on
Manycore Clusters. In Proceedings of the Fifth Conference on Par-
titioned Global Address Space Programming Models (PGAS), Oct
2011.

[10] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and B. Calder. Au-
tomatic Logging of Operating System Effects to Guide Application-
level Architecture Simulation. In Proceedings of the Joint Interna-
tional Conference on Measurement and Modeling of Computer Sys-
tems, SIGMETRICS ’06/Performance ’06, 2006.

[11] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, and C.-W.
Tseng. UTS: An Unbalanced Tree Search Benchmark. In Proceedings
of the 19th International Conference on Languages and Compilers for
Parallel Computing, LCPC’06, 2007.

[12] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie. PinPlay:
A Framework for Deterministic Replay and Reproducible Analysis of
Parallel Programs. In Proceedings of the 8th Annual IEEE/ACM In-
ternational Symposium on Code Generation and Optimization, CGO
’10, 2010.

[13] J. Sloan, R. Kumar, and G. Bronevetsky. Large Scale Debugging of
Parallel Tasks with AutomaDeD. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage
and Analysis, SC ’11, 2011.

[14] R. Xue, X. Liu, M. Wu, Z. Guo, W. Chen, W. Zheng, and G. Voelker.
MPIWiz: Subgroup Reproducible Replay of MPI Applications. In
Proceedings of the 14th ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 251–260. ACM, February
2009.

