s-Step Krylov Methods as Bottom Solvers for Geometric Multigrid

Samuel Williams¹, Erin Carson², Nick Knight², Mike Lijewski¹, Ann Almgren¹, Brian Van Straalen¹, James Demmel²

¹Lawrence Berkeley National Laboratory
²University of California at Berkeley

SWWilliams@lbl.gov
Outline

- Introduction to AMR MG
- Bottlenecks in MG Solvers
- s-step BiCGStab (CABiCGStab) algorithm
- CABiCGStab in miniGMG
- CABiCGStab in Real Applications
- Conclusions
- Future Work
Multigrid Introduction

- Linear Solvers \((Ax=b)\) are ubiquitous in scientific computing...
 - Combustion, Climate, Astrophysics, Cosmology, etc...
- Multigrid solves elliptic PDEs using a hierarchical approach
 - \(O(N)\) computational complexity
 - Geometric Multigrid is specialization in which the linear operator \((A)\) is simply a stencil on a structured grid (i.e. matrix-free)
Multigrid in Adaptive Mesh Refinement Applications

- Start with a coarse AMR level
- Add progressively finer AMR levels as needed
- In AMR applications, one performs MG solves on different AMR levels.

Unfortunately, one can reach a point where further geometric restriction is not possible.

To solve this potentially large coarse grid (“bottom”) problem, there are a number of approaches:
 - Point Relaxation (slow)
 - Direct solver (slow)
 - Switch to Algebraic Multigrid (challenging to implement C/F BC’s)
 - **Use an iterative Krylov Solver**
 - like BiCGStab (BoxLib/Chombo)
Classical BiCGStab Performance in Geometric Multigrid
miniGMG

- **miniGMG**
 - compact 3D geometric multigrid Benchmark
 - can be used to evaluate performance bottlenecks in MG+Krylov methods and prototype new algorithms.
 - **Highly instrumented for detailed timing analysis**

- **We configured miniGMG to proxy BoxLib AMR applications…**
 - Cubical domain decomposed into **one 64^3 subdomain per processor**
 - U-cycle terminated when **subdomains are coarsened to 4^3**
 - Gauss Seidel, Red-Black ("GSRB") smoother
 - **BiCGStab bottom solver** (matrix is never explicitly formed)
BiCGStab solves $Ax=b$

- vectors x and b are cell-centered structured grids (with ghost zones) partitioned across multiple nodes.
- matrix A is a stencil
- requires a few auxiliary vectors (grids)

Observe that for each iteration, the classical BiCGStab performs...

- 2 matvecs ($\text{Isend/\text{Irecv}}$)
- 4 dot products (MPI_AllReduce)
- 2 norms (MPI_AllReduce)

Algorithm 1 Classical BiCGStab for solving $Ax=b$

1. Start with initial guess x_0
2. $p_0 := r_0 := b - Ax_0$
3. Set \tilde{r} arbitrarily so that $(\tilde{r}, r_0) \neq 0$
4. for $j := 0, 1, \ldots$ until convergence or breakdown do
5. $\alpha_j := (\tilde{r}, r_j)/(\tilde{r}, Ap_j)$
6. $x_{j+1} := x_j + \alpha_j p_j$
7. $q_j := r_j - \alpha_j Ap_j$
8. Check $\|q_j\|_2 = (q_j, q_j)^{1/2}$ for convergence
9. $\omega_j := (q_j, Aq_j)/(Aq_j, Aq_j)$
10. $x_{j+1} := x_{j+1} + \omega_j q_j$
11. $r_{j+1} := q_j - \omega_j Aq_j$
12. Check $\|r_{j+1}\|_2 = (r_{j+1}, r_{j+1})^{1/2}$ for convergence
13. $\beta_j := (\alpha_j/\omega_j)(\tilde{r}, r_{j+1})/(\tilde{r}, r_j)$
14. $p_{j+1} := r_{j+1} + \beta_j (p_j - \omega_j Ap_j)$
15. end for
Baseline Performance

- Run miniGMG benchmark on Hopper (Cray XE6 at NERSC)
- synthetic problem:
 - variable coefficient helmholtz
 - periodic boundary conditions
 - rhs = sum of triangle waves in 3D each with one period across the entire domain
- **Weak scale to 24K cores**…
 - one 64^3 box per 6-thread process
Run miniGMG benchmark on Hopper (Cray XE6 at NERSC)

- synthetic problem:
 - variable coefficient helmholtz
 - periodic boundary conditions
 - $\text{rhs} = \text{sum of triangle waves in } 3D \text{ each with one period across the entire domain}$

- Weak scale to 24K cores…
 - one 64^3 box per 6-thread process

- Although multigrid’s $O(N)$ complexity should yield constant time-to-solution when scaling, it is clear time-to-solution is far from constant.
Baseline Performance

- using miniGMG’s fine-grained timing instrumentation…
- time outside the bottom solver (traditional multigrid) is constant (perfect scaling)
Baseline Performance

- using miniGMG’s fine-grained timing instrumentation…
- time outside the bottom solver (traditional multigrid) is constant (perfect scaling)
- However, the time in the bottom solver scales very poorly
Bottom Solver Performance

- using miniGMG’s fine-grained timing instrumentation…
- time outside the bottom solver (traditional multigrid) is constant (perfect scaling)
- However, the time in the bottom solver scales very poorly
- Total time in MPI_AllReduce (used for norm’s and dot’s) increases rapidly with scale.
Bottom Solver Performance

- We observe that both…
 - total number of BiCGStab iterations increases with problem size
 - time per MPI_AllReduce() increases with scale
- Combined, these have a multiplicative effect…

 ever more ever slower iterations
- Four options:
 - Accelerate Collectives
 - Hide Time in Collectives
 - Amortize Collectives
 - Eliminate Collectives altogether
s-step BiCGStab
(CABiCGStab)
Classical BiCGStab to s-Step BiCGStab (CABiCGStab)

FUTURE TECHNOLOGIES GROUP

Algorithm 1 Classical BiCGStab for solving $Ax = b$

1: Start with initial guess x_0
2: $p_0 := r_0 := b - Ax_0$
3: Set \tilde{r} arbitrarily so that $(\tilde{r}, r_0) \neq 0$
4: for $j := 0, 1, \ldots$ until convergence or breakdown do
5: \hspace{1em} $\alpha_j := (\tilde{r}, r_j)/(\tilde{r}, Ap_j)$
6: \hspace{1em} $x_{j+1} := x_j + \alpha_j p_j$
7: \hspace{1em} $q_j := r_j - \alpha_j Ap_j$
8: \hspace{1em} Check $||q_j||_2 = (q_j, q_j)^{1/2}$ for convergence
9: \hspace{1em} $\omega_j := (q_j, Aq_j)/(Aq_j, Aq_j)$
10: \hspace{1em} $x_{j+1} := x_{j+1} + \omega_j q_j$
11: \hspace{1em} $r_{j+1} := q_j - \omega_j Aq_j$
12: \hspace{1em} Check $||r_{j+1}||_2 = (r_{j+1}, r_{j+1})^{1/2}$ for convergence
13: \hspace{1em} $\beta_j := (\alpha_j/\omega_j)(\tilde{r}, r_{j+1})/(\tilde{r}, r_j)$
14: \hspace{1em} $p_{j+1} := r_{j+1} + \beta_j (p_j - \omega_j Ap_j)$
15: end for

- Erin Carson, Nick Knight, and Jim Demmel derived s-step variants of BiCG and BiCGStab [5]…

- Blocking BiCGStab’s iteration space into blocks of s-steps

- Constructing a Krylov subspace $[P,R]$ which spans powers of A applied to p_m and r_m

- length-N vectors of BiCGStab can be expressed in terms of the product of $[P,R]$ and length-(4s+1) vectors a,c,d,e.

- $[Aq_j, Ap_j] = [P,R]T'[d_j,a_j]$, where T' is a small locally-replicated matrix

- With a little manipulation, BiCGStab’s dot products can be expressed in terms of a Gram-like matrix and one arrives at the s-step algorithm…

Algorithm 2 CABiCGStab for solving $Ax = b$

1: Start with initial guess x_0
2: $p_0 := r_0 := b - Ax_0$
3: Set \bar{r} arbitrarily so that $(\bar{r}, r_0) \neq 0$
4: Construct $(4s + 1)$-by-$(4s + 1)$ matrix T'
5: for $m := 0, s, 2s, \ldots$ until convergence or breakdown do
6: Compute P, a basis for $K_{2s+1}(A, p_m)$
7: Compute R, a basis for $K_{2s}(A, r_m)$
8: $[G, g] := [P, R]^T [P, R, \bar{r}]$
9: Initialize length-$(4s + 1)$ vectors a_0, c_0, d_0, e_0
10: for $j := 0$ to $s - 1$ (or convergence/breakdown) do
11: $\alpha_{m+j} := (g, c_j)/(g, T'a_j)$
12: $e_{j+1} := e_j + \alpha_{m+j}a_j$
13: $d_j := c_j - \alpha_{m+j}T'a_j$
14: Check $\|q_{m+j}\|_2 = (d_j, Gd_j)^{1/2}$ for convergence
15: $\omega_{m+j} := (d_j, GT'd_j)/(T'd_j, GT'd_j)$
16: $e_{j+1} := e_{j+1} + \omega_{m+j}d_j$
17: $c_{j+1} := d_j - \omega_{m+j}T'd_j$
18: Check $\|r_{m+j+1}\|_2 = (c_{j+1}, Gc_{j+1})^{1/2}$ for convergence
19: $\beta_{m+j} := (\alpha_{m+j}/\omega_{m+j})(g, c_{j+1})/(g, c_j)$
20: $a_{j+1} := c_{j+1} - \beta_{m+j}(a_j - \omega_{m+j}T'a_j)$
21: end for
22: $p_{m+s} := [P, R]a_s$
23: $r_{m+s} := [P, R]c_s$
24: $x_{m+s} := [P, R]e_s + x_m$
25: end for

- In exact arithmetic, the s-step algorithm exactly reproduces the classical BiCGStab algorithm.
- Computation of $[P, R]$ can be done sequentially, in pairs, or in a communication-avoiding (minimize DRAM or #messages) manner.
- Construction of $[G, g]$ is essentially an odd-shaped matrix multiplication, but can be performed with only one AllReduce.
- There is no communication in the inner s-steps of the algorithm.
 - operations are on the small locally-replicated vectors a, c, d, e
 - Convergence checks may be performed without additional communication.
- Updating the iterates (BiCGStab vectors) requires no communication.
We can decompose CABiCGStab’s run time into three major components:

- Construction of Krylov Subspace:
 \[[P,R] = [p,Ap,\ldots,A^{2s}p, r,Ar,\ldots,A^{2s-1}r] \]

- Gram-like Matrix:

In multigrid’s coarse grid solve, local matvecs are free, and MPI collectives dominate run time.

We implemented CABiCGStab in miniGMG…
- Construct \([P,R]\) sequentially (not performance critical)
- Optimized construction of \([G,g]\) to use only 1 collective.
Other users of BiCGStab (those not using MG) might see the matvecs dominate the run time.

Construction of Krylov Subspace:
\[[P,R] = [p,Ap,\ldots,A^{2s}p, r,Ar,\ldots,A^{2s-1}r]\]

Gram-like Matrix:
\[[G,g] = [P,R]^T[P,R,rt]\]

They should optimize the implementation of the s-step BiCGStab algorithm differently…

- minimize vertical (DRAM) data movement
- calculate \([Ap,A^2p,Ar,A^2r]\) by reading \(A\) only once
CABiCGStab in miniGMG
- miniGMG with CAbiCGStab (s=4) has the same convergence rate as using BiCGStab
- Note, CAbiCGStab uses the L2 norm for convergence
CABiCGStab replaces 6s scalar reductions with one matrix reduction.

CABiCGStab requires twice the peer-to-peer MPI communication per s steps as the classical algorithm.

We observe reduction in collective time outweighed increase in P2P time.
Benefits to miniGMG from CABiCGStab

- Replaced BiCGStab bottom solver in miniGMG with CABiCGStab and ran scaling experiments...
- At 4K processes, CABiCGStab more than quadrupled the bottom solver performance.
 Benefits to miniGMG from CABiCGStab

- Replaced BiCGStab bottom solver in miniGMG with CABiCGStab and ran scaling experiments…
- At 4K processes, CABiCGStab more than quadrupled the bottom solver performance.
- Moreover, it provided MG with a 2.5x overall speedup.
- Thus, it dramatically improved parallel efficiency.

![Graph showing MG Solve Time on Hopper (Weak Scaling)](image)
Can CABiCGStab help Real Applications?
BoxLib MG Solvers

- BoxLib is an AMR MG framework developed at LBL.
 - uses BiCGStab as a coarse-grid solver
 - includes both C++ and Fortran versions of BiCGStab.

- We implemented both C++ and Fortran versions of CABiCGStab…
 - allows drop in replacement for BiCGStab
 - exploits all existing infrastructure for applyOp, BCs, ghost zones, etc…
 - allows for rapid evaluation on real applications
 - We exploited BoxLib capabilities to construct \([P,R]\) in pairs.
 - *this keeps the number of messages equal to the classical version.*
 - We implemented a **Telescoping CABiCGStab algorithm** in which we steadily increase \(s\).
LMC Combustion Application

- Low Mach Number Adaptive Mesh Refinement Code (LMC)
 - Navier-Stokes
 - reactive chemistry
 - AMR
- MG Diffusion Solve
 - \((a\alpha - b\nabla\beta\nabla)u = f\)
 - require relatively few bottom solver iterations to converge
 - CABiCGStab not applicable
- AMR MG Level Solve
 - \(b\nabla\beta\nabla u = f\)
 - require lots of bottom solve iterations to convergence
- Conducted scaling experiments to 32K cores on Hopper (XE6 at NERSC)
- Benefit of CABiCGStab in 3D:
 - up to 2.5x for the bottom solve
 - up to 1.5x overall for the MG level solve
Nyx Cosmology Application

- Cosmological dark matter simulation code (SciDAC)
 - Code is a mix of:
 - hydrodynamics for gas
 - cloud-in-cell particles for dark matter
 - Poisson solve for gravitational potential...
 - multi-level AMR MG
 - constant coefficient
 - $b \nabla^2 u = f$
- Conducted scaling experiments to 32K cores on Hopper
- Benefit of CABiCGStab
 - up to 2x win in bottom solve
 - Unfortunately, bottom solver was only 26-41% of the solve time.
 - less than 15% speedup overall

![Nyx - 3D Gravity Solve](chart.png)
Conclusions
Conclusions

- Geometric multigrid solvers can be bottlenecked by the performance and scalability of their coarse-grid (bottom) solvers...
 - Degraded MPI collective performance
 - Super linear computational complexity of Krylov methods

- Communication-Avoiding s-step methods:
 - Provide a drop in-replacement for BiCGStab
 - Asymptotically reduce the number of collective operations
 - Are ultimately bounded by P2P MPI communication.
 - Yield significant speedups on both synthetic and real-world AMR MG solves

- CA Krylov methods provide an interesting axis for co-design research:
 - Trade latency (collectives/P2P) performance for bandwidth
 - Trade O(s) fine-grained operations for one coarse-grained operation
 - Trade streaming kernels for 2.5D kernels (good for locality)
Future Work

- Improve the performance of s-step bottom solvers…
 - We don’t exploit the fact that the matrix G is symmetric.
 - Thus, we send twice the data we need to.
 - Potential performance impediment for large s as G has \(O(s^2)\) elements.

- Explore using s-step methods for DRAM communication avoiding…
 - Large matrices/vectors don’t fit in cache
 - matvec’s can dominate the run time
 - Optimize CABiCGStab (stencil powers or matrix powers) for DRAM data movement as previous efforts optimized CAGMRES

- Explore true distributed v-cycles in AMR MG solves…
 - Eliminates collectives altogether
 - Geometric approach requires integrating the complex BC’s endemic to AMR into the restriction operations
 - Algebraic approach must express the BC’s inside an explicit matrix.
 - As AMG is memory hungry, it probably should only be applied to mac_project.
Acknowledgements

- All authors from Lawrence Berkeley National Laboratory were supported by the DOE Office of Advanced Scientific Computing Research under contract number DE-AC02-05CH11231.
- This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Questions?
Backup Slides