
Congestion Avoidance on Manycore High Performance
Computing Systems

Miao Luo Dhabaleswar K. Panda
Ohio State University

{luom, panda}@cse.ohio-state.edu

Khaled Z. Ibrahim Costin Iancu
Lawrence Berkeley National Laboratory

{kzibrahim,cciancu}@lbl.gov

ABSTRACT
Efficient communication is a requirement for application scal-
ability on High Performance Computing systems. In this
paper we argue for incorporating proactive congestion avoi-
dance mechanisms into the design of communication layers
on manycore systems. This is in contrast with the status quo
which employs a reactive approach, e.g. congestion control
mechanisms are activated only when resources have been ex-
hausted. We present a core stateless optimization approach
based on open loop end-point throttling, implemented for two
UPC runtimes (Cray and Berkeley UPC) and validated on
InfiniBand and the Cray Gemini networks. Microbenchmark
results indicate that throttling the number of messages in
flight per core can provide up to 4X performance improve-
ments, while throttling the number of active cores per node
can provide additional 40% and 6X performance improve-
ment for UPC and MPI respectively. We evaluate inline
(each task makes independent decisions) and proxy (server)
congestion avoidance designs. Our runtime provides both
performance and performance portability. We improve all-
to-all collective performance by up to 4X and provide better
performance than vendor provided MPI and UPC implemen-
tations. We also demonstrate performance improvements of
up to 60% in application settings. Overall, our results indi-
cate that modern systems accommodate only a surprisingly
small number of messages in flight per node. As Exascale
projections indicate that future systems are likely to contain
hundreds to thousands of cores per node, we believe that their
networks will be underprovisioned. In this situation, proac-
tive congestion avoidance might become mandatory for per-
formance improvement and portability.

Categories and Subject Descriptors
C.2.0 [Computer Systems Organization]: Computer-
Communication Networks—General ; D.4.4 [Software]: Op-
erating SystemsCommunications Management[Network Com-
munication]

Keywords
Congestion, Avoidance, Management, High Performance Com-
puting, Manycore, Multicore, InfiniBand, Cray

Copyright 2012 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
ICS’12, June 25–29, 2012, San Servolo Island, Venice, Italy.
Copyright 2012 ACM 978-1-4503-1316-2/12/06 ...$10.00.

1. INTRODUCTION
The fundamental premise of this research is that contem-

porary or future networks for large scale High Performance
Computing systems are likely to be underprovisioned with
respect to the number of cores or concurrent communica-
tion requests per node. In an underprovisioned system,
when multiple tasks per node communicate concurrently, it
is likely that software or hardware networking resources are
exhausted and congestion control mechanisms are activated:
the performance of a congested system is usually lower than
the performance of a fully utilized yet uncongested system.

In this paper we argue that, to improve performance and
portability, HPC runtime implementations need to employ
novel node level congestion avoidance mechanisms. We present
the design of a proactive congestion avoidance mechanism
using a network stateless approach: end-points limit the
number of messages in flight using only local knowledge,
without global information about the state of the intercon-
nect. The communication load is allowed to reach close to
the threshold where congestion might occur, after which it
is throttled. Our node level mechanism is orthogonal to
the traditional congestion control mechanisms [12, 2] de-
ployed for HPC, which reason in terms of the overall net-
work (switch) load rather than the Network Interface Card
load. Our work makes the following contributions:

• We are the first to present evidence that on existing
multicore systems maximal network throughput can-
not be achieved when all cores are active.

• We propose, implement and evaluate mechanisms to
handle node level congestion, ranging from completely
distributed control to coordinated control.

• We describe the end-to-end experimental methodology
to empirically derive the control algorithms for node
level congestion control.

The rest of this paper is organized as follows. In Section 2
we discuss related work and in Section 3 we present our ex-
perimental setup. In Section 4 we describe microbenchmarks
to understand the variation of network performance with the
number of messages in flight, to recognize congestion and
to derive heuristics used for message throttling. As shown,
techniques to limit the number of in-flight messages per core
can improve performance up to 4X. In addition, restricting
the number of cores concurrently active per node from 32 to
16 provides additional performance improvements of up to
40% on our InfiniBand testbed. For MPI on Cray Gemini,

restricting the number of active cores per “node” from 48 to
12 provides as much as 6X performance improvement.

We then present several designs for congestion avoidance
mechanisms implemented in two Unified Parallel C [23] run-
times on different networks: the Berkeley UPC [9] imple-
mentation on InfiniBand and the Cray UPC implementa-
tion on Cray XE6 systems with the Gemini interconnect.
In Section 5.1 we discuss the design of a message admission
control policy using rate or count based metrics. In Sec-
tion 5.2 we present inline and proxy based implementations
of the admission control policy. With inline mechanisms,
each task is responsible for managing its own communica-
tion requests using either task or node level information.
With proxy based mechanisms, any communication request
can be initiated and managed by any task: intuitively this
scheme provides communication servers that perform node-
wide communication management on behalf of client pools.

In Sections 6 and 7 we discuss the performance implica-
tions of the multiple runtime designs considered. In Sec-
tions 8 and 9 we demonstrate how our congestion avoid-
ing runtime is able to provide both performance and per-
formance portability for applications. We transparently im-
prove all-to-all collective performance by 1.7X on InfiniBand
system and 4X on Cray Gemini systems, using a single im-
plementation. In contrast, obtaining best performance on
each system requires completely different hand tuned imple-
mentations. Furthermore, our automatically optimized im-
plementation performs better than highly optimized third
party MPI and UPC all-to-all implementations. For exam-
ple, using 1,024 cores on the InfiniBand testbed, our imple-
mentation provides more than twice the bandwidth of the
best available library all-to-all implementation for 1,024 byte
messages. We also demonstrate 60% performance improve-
ments for the HPCC RandomAccess [3] benchmark. When
running the NAS Parallel Benchmarks [15, 1], our runtime
improves performance by up to 17%.

As Exascale projections indicate that future systems are
likely to contain hundreds to thousands of cores per node,
we believe that their networks are likely to be underpro-
visioned. In this situation, proactive congestion avoidance
might become mandatory for performance and performance
portability.

2. RELATED WORK
“but I always say one’s company, two’s a crowd...”

Congestion control in HPC systems has received a fair
share of attention and networking, transport or runtime
layer techniques to deal with congestion inside high speed
networks have been thoroughly explored. Congestion con-
trol mechanisms are universally provided at the network-
ing layer. For example, the IB Congestion Control mech-
anism [2] specified in the InfiniBand Architecture Specifi-
cation 1.2.1 uses a closed loop reactive system. A switch
detecting congestion sets a Forward Explicit Congestion No-
tification (FECN) bit that is preserved until message desti-
nation. The destination sends a backward ECN bit to the
message source, which will temporarily reduce the injection
rate. Dally [12] pioneered the concept of wormhole rout-
ing and his work has been since extended with congestion
free routing alternatives on a very large variety of network
topologies. For example, Zahavi et al [27] recently proposed
a fat-tree routing algorithm that provides a congestion-free
all-to-all shift pattern for the InfiniBand static routing.

A large body of research proposes algorithmic solutions,
rather than runtime approaches. Yang and Wang [25, 26]
discussed algorithms for near optimal all-to-all broadcast on
meshes and tori. Kumar and Kale [18] discussed algorithms
to optimize all-to-all multicast on fat-tree networks. Dvorak
et al [13] described techniques for topology aware scheduling
of many-to-many collective operations. Kandalla et al [16]
discussed topology aware scatter and gather for large scale
InfiniBand clusters. Thakur et al [22] discussed the scalabil-
ity of MPI collectives and described implementations that
use multiple algorithms in order to alleviate congestion in
data intensive operations such as all-to-all.

A common characteristic of all these approaches is that
they target congestion in the network core (or switches):
the low level mechanisms use reactive flow control while the
“algorithmic” approaches use static communication sched-
ules that avoid route collision. Systems with enough cores
per node to cause NIC congestion have been deployed only
very recently and we believe that our study is the first to
propose solutions to this problem.

The work closest related to ours in the HPC realm has
been performed for MPI implementations and mostly on
single core, single threaded systems. In 1994 Brewer and
Kuszmaul [7] discuss how to improve performance on the
CM-5 data network by delaying MPI message sends based
on the number of receives posted by other ranks. Chetlur
et al [10] propose an active layer extension to MPI to per-
form dynamic message aggregation on unicores. Pham [20]
also discusses MPI message aggregation heuristics on unicore
clusters and compares sender and receiver initiated schemes.
These techniques use a message aggregation threshold and
timeouts with a result equivalent to message rate limitation
within a single thread of control. In this paper we advocate
for node wide count based message limitation and empir-
ically compare it with rate limitation extended to multi-
threaded applications. Furthermore, in MPI information
about the system wide state is available to feedback loops
(closed control) mechanisms by matching Send and Receive
operations. Since in one-sided communication paradigms
this type of flow control is not readily available, our tech-
niques use open loop control with heuristics based only on
node local knowledge.

2.1 Node Level Proactive Congestion Avoidance
The basic premise of our work is that manycore paral-

lelism breeds congestion and additional techniques for con-
gestion management are required in such clusters. First, the
Network Interface Card is likely to be underprovisioned with
respect to the number of cores per node and techniques to
avoid NIC congestion are required. Second, congestion in-
side the network proper is likely to become the norm, rather
than the exception and congestion control mechanisms are
likely to become even harder to implement.

While the former reason is validated throughout this pa-
per, the latter is more subtle. With more cores per node, the
likelihood of any node sending messages to multiple nodes
at any time is higher, thus making “all-to-all” patterns the
norm. These patterns are dynamic, while the whole body
of work in algorithmic scheduling [25, 26, 18, 13, 16, 22] ad-
dresses only static patterns. Second, the low level congestion
control mechanisms [2] already require non-trivial extensions
to handle multiple concurrent flows and to deal with runtime

software artifacts such as multiplexing processes, pthreads
on multiple endpoints or “interfaces”.

In this paper we argue that proactive congestion avoi-
dance mechanisms are required in conjunction with reactive
congestion control mechanisms. In a reactive approach, con-
gestion control is activated when resources are exhausted or
performance degrades below an acceptable threshold. In
a proactive approach, traffic is policed such that, ideally,
congestion never occurs. We propose several designs incor-
porated into a software layer interposed between applica-
tions and their runtime. In order to provide scalability, we
explore only designs where congestion is managed at end-
points (nodes in the systems), using open loop control with-
out any knowledge of the state of the network core or the
system load. All of our implementations are designed to
avoid first and foremost congestion at the Network Interface
Card, rather than network core congestion. By throttling
traffic at endpoints, we also alleviate congestion in the core.

3. EXPERIMENTAL SETUP
We use two large scale HPC systems for our evaluation.

Trestles is a 324 compute nodes cluster at the San Diego
Supercomputing Center. Each compute node is quad-socket,
each with a 8-core 2.4 GHz AMD Magny-Cours processor,
for a total of 32 cores per node and 10,368 total cores for
the system. The compute nodes are connected via QDR
InfiniBand interconnect, fat tree topology, with each link
capable of 8 GB/s (bidrectional). Trestles has a theoretical
peak performance of 100 TFlop/s.

NERSC’s Cray XE6 system, Hopper, has a peak perfor-
mance of 1.28 Petaflops/sec and 153,216 cores organized
into 6,384 compute nodes made up of two twelve-core AMD
‘MagnyCours’. Hopper uses the Cray ‘Gemini’ interconnect
for inter-node communication. The network is connected in
a mesh topology with adaptive routing. Each network inter-
face handles data for the attached node and relays data for
other nodes. The “edges” of the mesh network are connected
to each other to form a “3D torus.” The Gemini message la-
tency is ≈ 1µs and two 24 core compute nodes are attached
to the same NIC, thus 48 cores share one Gemini card.

All the software described in this paper is implemented as
a thin layer interposed between applications and runtimes
for the Unified Parallel C (UPC) language. On the Infini-
Band network we use the Berkeley UPC runtime [9], version
2.12.2. BUPC is free software and it uses for communica-
tion the GASNet [6] layer which provides highly optimized
one-sided communication primitives. In particular, on In-
finiBand GASNet uses the OpenIB Verbs API. On the Cray
system, we use the Cray UPC compiler, version 5.01 within
Cray Compiling Environment (CCE) 7.4.2. The Cray UPC
runtime is built using the DMAPP1 layer. We also experi-
ment with MPICH, Cray MPI and OpenMPI.

4. NETWORK PERFORMANCE CHARAC-
TERIZATION

We explore the variation of network performance using a
suite of UPC microbenchmarks that vary: i) the number of
active cores per node; ii) the number of messages per core;
iii) the number of outstanding messages per core; and iv)
the message destination. We consider bi-directional traffic,

1Distributed Memory Application API for Gemini

i.e. all cores in all nodes perform communication operations
and we report the aggregate bandwidth. We have performed
experiments where each core randomly chooses a destination
for each message, as well as experiments where each core
has only one communication partner. Both settings provide
similar performance trends and in the rest of this paper we
present results only for the latter.

Figure 1(a) shows the aggregate node bandwidth on In-
finiBand when increasing the number of cores. Each core
uses blocking communication and we present three runtime
configurations (‘Proc’, ‘Hyb’ and ‘Pth’) that are character-
ized by increasing message injection overheads as first in-
dicated by Blagojevic et al [5]. The series labeled ‘Proc’
shows results when running one process per core, the series
labeled ‘Hyb’ shows one process per socket with pthreads

within the socket and the series ‘Pth’ shows one process

per node. In general, best communication performance [5]
is obtained when threads within a process are mapped on
the same socket, rather than spread across multiple sock-
ets. For lack of space, we only summarize the performance
trends without detailed explanations.

For all message sizes, the throughput with ‘Pth’ keeps de-
grading when adding more sockets. With ‘Hyb’, the through-
put slightly increases up to two sockets active, after which
it reaches a steady state. With ‘Proc’, which has the fastest
injection rate, the throughput increases up to two sockets,
after which it drops dramatically. In the best configuration,
‘Proc’ has 3X better throughput than ‘Hyb’ and 15X better
throughput than ‘Pth’. The performance difference between
best and steady state ‘Proc’ throughput is roughly 2X. Sim-
ilar behavior is observed across all message sizes.

These trends are a direct result of congestion in the net-
working layers. When running pthreads, runtimes such as
BUPC or MPI use locks to serialize access to the networking
hardware: the larger the number of threads, the higher the
contention and the higher the message injection overhead.
The UPC ‘Proc’ configuration running with one process per
core2 on InfiniBand, does not use any locks to mitigate the
network accesses and the drop in throughput is caused by
either low level software (NIC driver) or hardware. Since
one process per core provides the best default performance
for UPC and it is the default for MPI, the results presented
in the rest of this paper are for this particular configuration.

Figure 1(a) indicates that there is a temporal aspect to
congestion and throughput drops when too many endpoints
inject traffic concurrently. We refer to this as Concurrency
Congestion (CC) and informally define its threshold measure
as the number of concurrent transfers from distinct end-
points (with only one transfer per endpoint) that maximize
node bandwidth. For example, any ‘Proc’ or ‘Pth’ run with
more than 20, respectively four, cores active at the same
time is said to exhibit Concurrency Congestion. On Cray
Gemini, congestion is less pronounced and it occurs when
more than 40 of the 48 cores per NIC are active. We believe
that ours is the first study to report this phenomenon.

Avoiding CC requires throttling the number of active end-
points and Figure 1(b) shows the performance expectations
of a simple optimization approach. Assuming N cores per
node, there are N messages to be sent and we plot the speed-
up when using only subsets of C cores to perform the com-
munication. There are N

C
rounds of communication and we

2One thread per process, rather.

plot
T (N)−T (C)∗N

C
T (N)

. Positive values on the z axis indicate

performance improvements. For example, on InfiniBand us-
ing 16 cores to send two stages of 16 messages each is up to
37% faster than allowing each core to send its own message.

Optimized applications use non-blocking communication
primitives to hide latency with communication-communication
and communication-computation overlap. Figure 2 shows
results for a two node experiment where we assume each core
has to send a large number of messages. The figure plots the
relative differences between communication strategies: N
outstanding messages compared with N

D
rounds of commu-

nication, each with D outstanding messages:
T (D)∗N

D
−T (N)

T (N)
.

In the first setting each core initiates N non-blocking com-
munication requests then waits for completion, while in the
second it waits after initiating only D requests.

Intuitively, congestion occurs whenever performing multi-
ple rounds of communication is faster than a schedule that
initiates all the messages at the same time. On the Infini-
Band system this occurs whenever there is more than one
message outstanding per core and best throughput is ob-
tained using blocking communication. Increasing the num-
ber of outstanding messages per core decreases throughput,
e.g. two outstanding messages per core deliver half the
throughput of blocking communication. Asymptotically, the
throughput difference is as high as 4X. The Cray Gemini net-
work can accommodate a larger number of messages in flight
and there is little difference between one and two outstand-
ing messages per core; with more than two messages per
core throughput decreases by as much as 2X. These results
indicate that when all cores within the node are active, best
throughput is obtained when using blocking communication.

On both systems, reducing the number of active cores de-
termines an increase in the number of outstanding messages
per core that provides best throughput, e.g. on InfiniBand
with one core active, best throughput is observed with 40
outstanding messages.

Intuitively, the behavior with non-blocking communica-
tion illustrates the spatial component of congestion, i.e. there
are limited resources in the system and throughput drops
when space is exhausted in these resources. For the pur-
poses of this study, we refer to this Rate Congestion. As
with CC, we define the threshold for Rate Congestion as the
number of outstanding messages per node that maximize
throughput. Note than while CC distinguishes between the
traffic participants, RC does not impose any restrictions.

The behavior reported for the UPC microbenchmarks is
not particular to one-sided communication or caused solely
by implementation artifacts of GASNet or DMAPP. Similar
behavior is shown in Figure 3 for MPI on both systems.
Note the very high speedup (250% on InfiniBand and 700%
on Gemini) of MPI throughput when restricting the num-
ber of cores: Overall, it appears that MPI implementations
exhibit worse congestion than the UPC implementations.

Increasing the number of nodes participating in traffic and
varying the message destinations does not change the trends
observed using a two node experiment. For lack of space we
do not include detailed experimental results but note that on
both systems, best throughput when using a large number
of nodes is obtained for workloads that have a similar or
lower number of outstanding messages per node than the
best number required for two nodes. Workloads with small
messages tend to be impacted less at scale than workloads

containing large messages. In summary, congestion happens
first in the Network Interface Card, with secondary effects
inside the network when using large messages.

5. CORE STATELESS CONGESTION AVOI-
DANCE

As illustrated by our empirical evaluation, network through-
put drops when tasks initiate too many communication oper-
ations. We interpose a proactive congestion avoidance layer
between applications and the networking layer that allows
traffic to be injected into the network only up to the thresh-
old of congestion.

Our implementation redefines the UPC level communica-
tion calls and it is transparently deployed for the BUPC and
the Cray runtimes. While the UPC language specification
allows only for blocking communication, e.g. upc_memget(),
all existing implementations provide non-blocking commu-
nication extensions. Avoiding Concurrency Congestion re-
quires instrumenting the blocking calls, while avoiding Rate
Congestion requires instrumenting the non-blocking calls.

The first component is an admission control policy that
determines whether a communication request can be in-
jected into the network. In order to provide scalability, we
explore core stateless policies: communication throttling de-
cisions are made using open-loop control3 with only task
or node knowledge and without any information about the
state of the outside network. In contrast, previous work [7,
10, 20] tries to correlate MPI Send and Receive events. We
derive the congestion thresholds and heuristics to drive the
admission control policy from the results reported by the
microbenchmark described in Section 4.

For each communication call, e.g. upc_memget, our imple-
mentation consults the admission control policy. To address
both Rate and Concurrency Congestion we present a count
based policy that uses node level information for message
access. Mostly for comparison with delay based techniques
(and for the few scenarios where node level network state
information is not available to endpoints), we design a rate
based policy that allows each endpoint to inject traffic based
only on knowledge about its own history. While providing
the most scalable runtime design, rate based admission is
expected to be able to avoid only Rate Congestion.

We have implemented the admission control policy using
multiple designs. In the inline design, each task is directly
responsible for managing its own communication operations,
e.g. the task that initiates a upc_memget is also the only one
capable of deciding it has completed. Note that this is the
functionality implicitly assumed and supported by virtually
all contemporary communication layers and runtimes. In
the proxy based design, a set of communication “servers”
manage client requests. We provide a highly optimized im-
plementation that uses shared memory between tasks (even
processes) and allows any task to initiate and retire any com-
munication operation on behalf of any other task. To our
knowledge, we are the first to present results using this soft-
ware architecture within a HPC runtime. The approach is
facilitated by GASNet, which provides a communication li-
brary for Partitioned Global Address Space Languages. We
wish to thank the GASNet developers for providing the mod-
ifications required to enable any task to control any commu-
nication request.

3No monitoring or feedback loop.

0	

5	

10	

15	

20	

25	

30	

35	

4	 8	 12	 16	 20	 24	 28	 32	

Ba
nd

w
id
th
	 (M

Bs
)	

Cores	 Ac4ve	

InfiniBand	 -‐	 8	 byte	 Msg	 Throughput	

Proc	 Hyb	 Pth	

(a) Variation of node throughput with the number of ac-
tive cores

8	

128	

2048	
32768	
524288	

-‐20%	

-‐10%	

0%	

10%	

20%	

30%	

40%	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	

Si
ze
	 (B

)	

Ac2ve	 Cores	

(b) Throughput Improvement when Restricting Active
Cores: InfiniBand

Figure 1: Concurrency Congestion: node throughput drops when multiple cores are active at the same time. We assume
each core has one message to send and we plot the speedup of using cores/x rounds of communication over all cores active.

-‐20%	

30%	

80%	

130%	

180%	

230%	

280%	

8	 128	 2048	 32768	

Sp
ee
du

p	
ov
er
	 T
(1
02
4)
	

Size	 (B)	

1	 2	 4	

8	 16	

(a) Throughput Variation with Msg/Core - InfiniBand

-‐100%	

0%	

100%	

200%	

300%	

400%	

500%	

600%	

8	 128	 2048	 32768	 524288	

Sp
ee
du

p	
ov
er
	 T
(1
28
)	

Size	 (B)	

1	 2	

4	 8	

16	 32	

(b) Throughput Variation with Msg/Core - Gemini

Figure 2: Rate Congestion: node throughput drops when cores have multiple outstanding messages. We assume each core
has to send 1,024 messages and we plot the speedup of using 1,024/x rounds of communication with x = (1,2,4..) messages
over sending 1,024 messages at the same time.

8	
512	
32768	 -‐100%	

0%	
100%	
200%	
300%	
400%	
500%	
600%	
700%	

800%	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	 33	 35	 37	 39	 41	 43	 45	 47	

Si
ze
	 (B

)	

Ac6ve	 Cores	

(a) Throughput Improvement when Restricting Active
Cores: MPI on Gemini

-‐50%	

0%	

50%	

100%	

150%	

200%	

250%	

300%	

350%	

400%	

450%	

8	 128	 2048	 32768	 524288	

Sp
ee
du

p	
ov
er
	 T
(1
28
)	

Size	 (B)	

1	 2	 4	 8	

16	 32	 64	

(b) Throughput Variation with Msg/Core - InfiniBand
MPI Isend/Irecv with 1,2, 4 ... outstanding messages at a
time compared with 128 outstanding messages

Figure 3: Concurrency and Rate Congestion in MPI. Note that MPI (two-sided) exhibits even larger performance degrada-
tion, up to 600%, than UPC (one-sided).

5.1 Admission Control Policies
Count Limiting: In the count based approach, each node
has a predetermined set of tokens. Any task has to acquire
enough tokens before being allowed to call into the low level
communication API. The number of tokens can either be
fixed, i.e. one token per request, or can be dynamically
specified based on the message size; larger messages are as-
sociated with more tokens. Completion of a request involves
relinquishing the tokens consumed at posting. Given that we
provide a single token pool per node, unfairness is certainly
a concern as it reduces the performance of SPMD programs
by increasing the synchronization time. To reduce the likeli-
hood of such behavior, we use a ticket-based token allocation
that guarantees a first-come first-serve policy. Specifically,
threads that are denied network access are given a numbered
ticket with the tokens requested. Completion of requests is
associated with activation of the next ticket in-line.

We have explored both one token per message and “size
proportional” allocations. Achieving optimal performance
requires to use for each message a number of tokens propor-
tional to its size. We have implemented a benchmark that
performs a guided sweep of different token allocation strate-
gies and synthesizes a total number of tokens per node as
well as the number of tokens required by any size. As we
explore a multidimensional space [nodes, cores per node,
msgs per core,msg size], this is a very labor intensive pro-
cess which we plan to automate in future work. The pa-
rameters determined by the offline search are then used to
specialize the control avoidance code.

Rate Limiting: In the rate limiting approach, tasks are
not allowed to call into the low level API for certain periods
of time in an attempt to throttle the message injection rate.
If the time difference between the last injection time-stamp
and the current time is less than a specified threshold, the
thread waits spending its time trying to retire previously
initiated messages. To determine the best self-throttling in-
jection rates we implemented a benchmark that for each
message size sweeps over different values of injection delay
using a fine-grained step of 0.5 µs. For each message size we
select the delay that maximizes node throughput.

5.2 Admission Control Implementations
Inline Admission Control: We implement two variants
of inline enforcement of the admission control policy. The
first variant, which is referred to in the rest of this paper
as inline rate throttling (IRT) uses rate control heuristics
based on task local knowledge with synchronous behavior
with respect to message injection. IRT is provided mostly
for comparison with the related optimization [7, 10, 20] ap-
proaches. The second variant, referred to as inline token
throttling (ITT) uses count limiting heuristics based on node-
wide information and it has synchronous behavior with re-
spect to message injection. We did not implement IRT with
node knowledge due to the lack of synchronized node clocks.

Proxy Based Admission Control: We implement a proxy
based admission control that provides non-synchronous be-
havior with respect to message injection at the application
level. The design is presented in Figure 4. We group tasks
in pools and associate a communication server with each
task pool. Besides being a client, each application level task
can act as a server. Each task has an associated request

...

...

Server

Server

NIC
APC

Per Task Queue

Clients ...

Pool Queue
Server
Token

Pool Level Node Level

Figure 4: Software architecture of the Proxy implementa-
tion. An admission control policy layer can be easily added
behind the servers.

queue and whenever it wants to perform a communication
operation, it will place a descriptor in its “Per Task Queue”.
Afterwards, the task tries to grab the “Server Token” asso-
ciated with its pool. If the token is granted, the task starts
acting as a server, polls all the queues in the pool and ini-
tiates and retires communication operations. When a task
masquerades as a server, it serve queues in a round-robin
manner, starting with its own. This approximates the de-
fault best-effort access to the NIC provided by the underly-
ing software layers. If a token is denied, control is returned
to the application and the request is postponed.

Another possibility we have still to experiment with is to
have a server issue all the messages within a queue before
proceeding to the next queue. This strategy has the effect of
minimizing the number of active routes when a task has only
one communication partner within a “scheduling” window,

Such a software architecture is able to avoid both types of
congestion. In addition, having the requests from multiple
tasks aggregated into a single pool increases the opportu-
nity of more aggressive communication optimizations such as
message coalescing or reordering. Concurrency Congestion
is clearly avoided by controlling the number of communica-
tion servers. The question remains whether the overhead
and throttling introduced by the proxy indirection layer is
able to prevent Rate Congestion by itself or supplemen-
tary avoidance mechanisms are required behind the server
layer. Rate Congestion avoidance might require controlling
the number of requests in flight per server.

In the experimental evaluation section, this implementa-
tion is referred to as Proxy.

6. MICROBENCHMARK EVALUATION
Figure 5 shows the performance when running the mi-

crobenchmark described in Section 4 on top of our conges-
tion avoiding runtime on InfiniBand. We plot the speedup
of congestion avoidance over the default runtime behavior.
The parameters controlling the behavior of congestion avoi-
dance are obtained using sweeps as described in Sections 5.1
and 5.2.

Figure 5(a) shows the impact of IRT for microbenchmark
settings with an increasing number of operations per task,
i.e. for the series “2” each task issues two non-blocking op-
erations at a time. As expected, IRT it is not able to avoid
Concurrency Congestion (series “1”). When tasks issue a
larger number of transfers IRT provides a maximum of 2X
performance improvements. The largest improvements are
observed for messages shorter than 2KB.

-‐5%	

45%	

95%	

145%	

195%	

8	 128	 2048	 32768	

Sp
ee
du

p	

Size	 (B)	

1	 2	 4	 8	 16	

(a) Inline Rate Throttling on InfiniBand

-‐20%	

30%	

80%	

130%	

180%	

230%	

280%	

8	 128	 2048	 32768	

Sp
ee
du

p	

Size	 (B)	

1	 2	 4	 8	 16	

(b) Inline Token Throttling on InfiniBand

-‐80%	

-‐60%	

-‐40%	

-‐20%	

0%	

20%	

40%	

60%	

8	 128	 2048	 32768	 524288	

Sp
ee
du

p	

Size	 (B)	

2	 servers	 4	 servers	

8	 servers	 16	 servers	

(c) Proxy on InfiniBand(1 op per Core)

-‐20%	

0%	

20%	

40%	

60%	

80%	

100%	

120%	

140%	

8	 128	 2048	 32768	 524288	
Sp
ee
du

p	
Size	 (B)	

2	 servers	

8	 servers	

16	 servers	

8	 servers	 +	 ITT	

(d) Proxy on InfiniBand(256 op per Core)

Figure 5: Performance impact of Rate (IRT), Token (ITT) and Proxy congestion avoidance on InfiniBand. We plot the
speedup of applying our congestion avoidance while increasing the number of outstanding messages per core (1, 2, 4, 8, 16).

-‐20%	

80%	

180%	

280%	

380%	

480%	

8	 128	 2048	 32768	

Sp
ee
du

p	

Size	 (B)	

1	 2	

4	 8	

16	 32	

64	

(a) Inline Token Throttling on Gemini

-‐100%	

-‐50%	

0%	

50%	

100%	

150%	

200%	

250%	

300%	

350%	

8	 128	 2048	 32768	

Sp
ee
du

p	

Size	 (B)	

2	 servers	

3	 servers	

6	 servers	

12	 servers	

(b) Proxy on Gemini(64 op per Core)

Figure 6: Performance impact of Token (ITT) and Proxy congestion avoidance on Gemini. We allow an increasing number
of outstanding messages per core and plot the speedup of applying our congestion avoidance mechanisms.

-‐40%	

-‐20%	

0%	

20%	

40%	

60%	

80%	

100%	

1	 64	 1	 64	 1	 64	 1	 64	

1	 12	 24	 48	

Sp
ee
du

p	

Cores	 Ac5ve	 and	 Msgs	 Per	 Core	

(a) UNOPTIMIZED ITT on Gemini

-‐60%	

-‐40%	

-‐20%	

0%	

20%	

40%	

60%	

80%	

100%	

1	 64	 1	 64	 1	 64	 1	 64	

1	 8	 16	 32	

Sp
ee
du

p	

Cores	 Ac6ve	 and	 Msgs	 Per	 Core	

(b) UNOPTIMIZED Proxy on InfiniBand

-‐20%	

0%	

20%	

40%	

60%	

80%	

100%	

120%	

140%	

1	 64	 1	 64	 1	 64	 1	 64	

1	 8	 16	 32	

Sp
ee
du

p	

Cores	 Ac6ve	 and	 Msgs	 Per	 Core	

(c) Optimized Predictor on InfiniBand

Figure 7: Overhead of Congestion Avoidance with Active Cores. We plot the speedup for an increasing number of active
cores, number of messages per core and message sizes. We vary the message size from 8B to 512KB in increasing powers of
2 and there is one data point per 8, 16, ..., 512KB.

Figure 5(b) shows that ITT avoids both types of conges-
tion and we observe as much as 3X speedups. Note the 50%
speedup obtained when throttling blocking communication.

Figures 5(c) and (d) show the impact of the Proxy im-
plementation for settings where we allow one and 256 out-
standing operations per core. We plot the speedup obtained
when using two, four, eight and 16 servers per node and
observe speedups as high as 1.6X. When the degree of com-
munication concurrency per core is low, e.g. blocking com-
munication, Proxy performs best when the number of active
servers (16) is close to the concurrency congestion thresh-
old. When the communication concurrency per core is high
(256 outstanding messages), Proxy by itself cannot prevent
Rate Congestion and best performance is obtained with two
servers. The series “8 serves + ITT” shows that implement-
ing an additional admission control layer behind the servers
enables the Proxy design to handle both Rate and Concur-
rency Congestion.

Figure 6 shows the performance on Gemini. ITT is able
to improve performance whenever tasks issue more than two
outstanding messages and by as much as 5X when issuing 64
outstanding messages. The Proxy implementation improves
performance for workloads with at least four outstanding
messages per core.

Our approach delays message injection and it might de-
crease throughput when the communication load is below
the congestion thresholds. Figure 7(a) and Figure 7(b) show
the impact of unoptimized ITT on Gemini and unopti-
mized Proxy on InfiniBand throughput when increasing
the number of active sockets per node and the number of
messages per core. In this case we are using a predictor in-
dependent of the message size, i.e. one token per message.
For short messages, ITT on Gemini decreases throughput
by at most 10% independent of core concurrency. The data
indicates that, although it introduces only a low overhead,
it is be beneficial to disable our congestion avoidance mech-
anism for certain message sizes when only a subset of cores
is active.

7. BUILDING A CONGESTION AVOIDANCE
POLICER

The microbenchmarks presented throughout the paper in-
dicate that congestion avoidance should be driven by the fol-
lowing control parameters: i) concurrency congestion thresh-
old (CCT [size]) measured as the number of cores that when
active decrease throughput of blocking communication; ii)
node congestion threshold (NRCT [size]) measured as the
total number of outstanding messages per node that “maxi-
mizes” throughput; iii) core congestion threshold
(CRCT [active cores][size]) measured as the number of non-
blocking operations per core that “maximize” throughput
at a given core concurrency. Intuitively, these parameters
capture the minimal amount of communication parallelism
required to saturate the network interface card.

Algorithm 1 shows the pseudo code for the control de-
cisions in our mechanism. We give priority to dealing with
Concurrency Congestion and then we try to avoid Rate Con-
gestion. The “procedures” avoid * use internally a count
based predictor for both ITT and the Proxy implementation.
For Proxy we add an admission control layer behind the
servers. All parameters, including the tokens per node, are
determined by iteratively executing the microbenchmarks

Algorithm 1 Pseudo code for congestion avoidance.

1: procedure msg init(size : In, dest : In)
2: if active cores < CCT [size] then
3: . no concurrency congestion
4: if active node msgs < NRCT [size] AND

active msg < CRCT [active cores][size] then
5: inject(size, dest) . no congestion
6: else
7: avoid RC(size,dest)
8: . rate congestion detected
9: end if

10: else
11: avoid CC RC(size,dest)
12: . concurrency and rate congestion detected
13: end if
14:
15: end procedure

using manual guidance. At this point, the predictor we syn-
thesize in practice contains thresholds that are independent
of the message size, i.e. one token per message. For Proxy,
we also search for the best server configuration. Our re-
sults on the InfiniBand cluster indicate that eight servers
per node produce good results in practice, while on Gemini,
24 servers per node are required. This amounts to a ratio of
four, respectively two tasks per server.

The behavior on InfiniBand using the tuned predictors is
shown in Figures 7(c). When varying the number of ac-
tive cores, messages per core and size of the message, our
implementation improves performance in most of the cases.
In very few cases it introduces a small overhead, at most
4%. We are still investigating the behavior of ITT when
using eight cores with blocking communication. Similar
trends are observed on Gemini. When comparing with Fig-
ure 7(a) and 7(b) which show unoptimized ITT and Proxy
performance, tuning reduces drastically the number of con-
figurations where performance is lost. For the configura-
tions where our implementation actually slows down the
microbenchmark execution, the predictor causes an average
slowdown of 2% across varying core concurrencies, message
sizes and messages per core.

As we have only partially processed a large volume of ex-
perimental data, we believe that we can further tune the
predictors and improve the performance of our mechanisms.

8. ALL-TO-ALL PERFORMANCE
All-to-all communication is widely used in applications

such as CPMD [11], NAMD [21], LU factorization and FFT.
MPI [22, 17] and parallel programming languages such as
UPC [19] provide optimized implementations of all-to-all
collective operations. Most if not all of the existing im-
plementations use multiple algorithms selected by message
size. Bruck’s algorithm [8] is used for latency hiding for small
messages and it completes in log(P) steps, where P is the
number of participating tasks. For medium message sizes
an implementation overlapping [22] all the communication
operations is used. In this implementation, tasks use non-
blocking communication and initiate P − 1 messages. For
large message sizes, a pairwise exchange [22] algorithm is
used where pairs of processors “exchange” data using block-
ing communication.

To demonstrate the benefits of our congestion avoidance
runtime, we compare the performance of a single algorithm
all-to-all against the performance of library implementations.

-‐40%	

-‐20%	

0%	

20%	

40%	

60%	

80%	

100%	

8	 128	 2048	 32768	

Sp
ee
du

p	

Size	 (B)	

MPI	 ITT	

Proxy	 exchange-‐pw	

Tuned	 Proxy	

(a) 2 Nodes All-to-All on InfiniBand

-‐80.00%	

-‐30.00%	

20.00%	

70.00%	

120.00%	

170.00%	

8	 128	 2048	 32768	

Sp
ee
du

p	

Size	 (B)	

MPI	
ITT	
Proxy	
exhange-‐pw	
Tuned	 Proxy	

(b) 1,024 Cores All-to-All on InfiniBand

-‐100%	

0%	

100%	

200%	

300%	

400%	

500%	

8	 128	 2048	 32768	

Sp
ee
du

p	

Size	 (B)	

MPI	

ITT	

Proxy	

Tuned	 Proxy	

(c) 2 Nodes All-to-All on Gemini

-‐100%	

0%	

100%	

200%	

300%	

400%	

8	 128	 2048	 32768	

Sp
ee
du

p	
Size	 (B)	

MPI	

ITT	

Proxy	

Tuned	 Proxy	

(d) 768 Cores All-to-All on Gemini

Figure 8: Impact of IRT, ITT and Proxy congestion avoidance on all-to-all performance. We plot the speedup of MPI
and that of single implementation running on top of congestion avoidance (IRT, ITT,Proxy). The performance baseline is a
overlapped implementation in UPC.

Our baseline implementation is the overlapping “algorithm”
with each processor starting to communicate with
MY THREAD+1. In Figure 8 we plot the speedup of mul-
tiple implementations over the baseline implementation run-
ning on the native UPC runtime layers. For reference, the se-
ries labeled MPI presents the performance of the MPI Alltoall
on the respective system. The performance of the UPC li-
brary all-to-all is similar to MPI and not shown. On both
systems the library calls implement Bruck’s algorithm for
small messages. The series labeled “exchange-pw” presents
the performance of a handwritten pairwise exchange imple-
mentation in UPC. We have also implemented pairwise ex-
changes in MPI, the results are similar to exchange-pw and
omitted for brevity. The series labeled “ITT” and “Proxy”
show the performance of the overlapping algorithm with a
runtime that implements ITT and Proxy congestion avoi-
dance respectively. These implementations are not tuned
and use a simple count based predictor enabled for all core
concurrencies and message sizes. The series labeled “Tuned
Proxy” shows the behavior of a tuned implementation of
Proxy and it illustrates the additional benefits after a sig-
nificant effort to mine the experimental data.

On the InfiniBand network, “Tuned Proxy” provides best
performance and we observe speedups as high as 90% and
170% for 512 byte messages on two nodes and 1024 cores re-
spectively. Furthermore, our implementation is faster than
any all-to-all deployed on the system for medium to large
messages. For example, “Tuned Proxy” is roughly 5X faster
than the MPI library at 1KB messages. We omit any rate
throttling results (IRT) since IRT provides only modest per-
formance improvements.

On Gemini, our congestion avoiding runtime provides again
the best performance. The MPI library is not as well tuned
on Gemini and our implementation is as much as 6X faster
than MPI for medium sized messages. ITT provides better
performance than Proxy and IRT provides the least improve-
ments. Except for small messages where MPI uses Bruck’s
algorithm, ITT is faster than any communication library de-
ployed on the Cray, by as much as 25% for 2KB messages
when using 768 cores.

These results indicate that our congestion avoiding run-
time is able to improve performance and provide perfor-
mance portability. We have obtained best performance on
two systems using one implementation when compared against
multi-algorithm library implementations.

9. APPLICATION BENCHMARKS
We evaluate the impact of our congestion avoiding run-

time on several application benchmarks written by outside
researchers. The HPCC RandomAccess benchmark [3] uses
fine grained communication, while the NAS Parallel Bench-
marks [1] are optimized to use large messages. Fine-grained
communication is usually present in larger applications dur-
ing data structure initializations, dynamic load balancing,
or remote event signaling.

The current UPC language specification does not pro-
vide non-blocking communication primitives and all pub-
licly available benchmarks use blocking communication. On
the other hand, both BUPC and Cray provide nonblocking
extensions. We have modified each benchmark implementa-
tion to exploit as much communication overlap as possible.
All the performance models and heuristics described in this

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

4096	 8192	 16384	 32768	

Sp
ee
du

p	

index_array	 size	

Performance	 of	 RandomAccess	 on	 1024	 cores	 InfiniBand	

IRT-‐block	

ITT-‐block	

Proxy-‐block	

nb	

IRT-‐nb	

ITT-‐nb	

Proxy-‐nb	

Figure 9: RandomAccess on 1,024 cores InfiniBand.
We plot the speedup relative to a baseline implementation
using blocking communication.

-‐15%	

-‐10%	

-‐5%	

0%	

5%	

10%	

15%	

20%	

bt.C.256	 cg.C.256	 /.C.512	 is.C.256	 mg.C.512	 sp.C.256	 lu.C.512	

ITT	

IRT	

Proxy	

Figure 10: The NAS Parallel Benchmarks on Infini-
Band. We plot the speedup relative to a baseline imple-
mentation using blocking communication.

paper have been implemented in a thin layer between the
application and the runtimes for Berkeley UPC and Cray
UPC, which is transparent to the application developer.

RandomAccess: The RandomAccess benchmark is mo-
tivated by a growing gap in performance between processor
operations and random memory accesses. This benchmark
intends to measure the peak capacity of the memory subsys-
tem while performing random updates to the system mem-
ory. The benchmark performs random read/modify/write
accesses to a large distributed array, a common operation
in parallel hash table construction or distributed in-memory
databases. The amount of work is static and evenly dis-
tributed among threads at execution time. Figure 9 presents
the results on InfiniBand when using 1,024 cores. We plot
the speedup relative to a baseline implementation that uses
only blocking communication primitives. The x-axis plots
the number of indirect references per thread. The message
size for every single operation is 16 byte. The first three bars
(IRT-block, ITT-block, Proxy-block) plot the speedup ob-
served when running the baseline implementation with con-
gestion avoidance and illustrate the capability of our runtime
to avoid Concurrency Congestion. Proxy is able to provide
speedup as high as 57%. The series labeled “nb” plots the
performance of a hand optimized implementation in which
the inner loops are unrolled and communication is pipelined
and overlapped with computation and other communication.
This is the de facto communication optimization strategy
that is able to improve performance by as much as 40%. The
series IRT-nb, ITT-nb and Proxy-nb show the additional
performance improvements of congestion avoidance for Rate
Congestion and Proxy-nb is able to provide as much as 60%
speedup. As indicated by Figure 2, the small messages in
RandomAccess do not generate congestion on Gemini and
our runtime does not affect its performance.

The behavior of RandomAccess illustrates an interest-
ing performance inversion phenomenon: an implementation
with blocking communication and congestion avoidance is
able to attain better performance than an implementation
hand optimized for communication overlap. Best perfor-
mance is obtained by the implementation optimized for over-
lap and using congestion avoidance.

NAS Benchmarks: All implementations are based on
the official UPC [1, 15] releases of the NAS benchmarks,
which we use as a performance baseline. For brevity we
do not provide more details about the NAS Parallel Bench-
marks, for a detailed description please see [4, 14]. The

benchmarks exhibit different characteristics. FT and IS
perform all-to-all communication. SP and BT use scatter-
gather communication patterns. SP issues requests (Put)
to transfer a variable number of mid-size contiguous re-
gions. The requests in BT (Put and Get) vary from small
to medium sizes. In MG, the communication granularity
varies dynamically at each call site. CG uses point to point
communication with constant message sizes. For all bench-
marks, the count and granularity of messages varies with
problem class and system size. Vetter and Mueller [24] in-
dicate that large scientific applications show a significant
amount of small to mid-size transfers and all the benchmark
instances considered in this paper exhibit this characteristic.

Figure 10 presents the results on InfiniBand. As discussed,
the implementations that use upc_memput show no perfor-
mance improvement. Best performance improvements are
observed for the communication intensive benchmarks (CG,
FT, IS) and we observe as much as 17% speedup for IS.

10. DISCUSSION
Most of the previous work [2, 12, 27, 25, 26, 18, 13, 16]

addresses congestion in the core (switches) of HPC net-
works. As our experimental evaluation shows, the advent
of multicore processors introduces congestion at the edge
of these networks and mechanisms to handle Concurrency
Congestion are required for best performance on contempo-
rary hardware. Our count based heuristic can handle both
Rate and Concurrency Congestion and it has been easily in-
corporated into software architectures using either task level
(ITT) or node level (Proxy) mechanisms. While ITT is sim-
ple to implement and provides good performance, we favor
in the long run the Proxy with ITT design which allows for
further optimizations such as coalescing and reordering of
communication operations. We also believe that the admis-
sion control policy heuristics can be further improved.

All the experimental results illustrate the challenges of
writing performance portable code in a multi-system, hybrid-
programming model environment and we have shown that
our congestion avoiding runtime provides both performance
and performance portability. The current optimization dogma
advocates for exposing a large concurrency and hiding la-
tency (with multi-threading or other optimizations) by over-
lapping communication with other work. Our experiments
indicate that each system supports only a very limited amount
of communication concurrency without significant perfor-
mance degradation. Our techniques allow developers to ex-

pose the maximum “logical” concurrency at the application
level and throttle it at runtime for optimal performance.
Also, note that without congestion avoidance, our evalua-
tion indicates that overlap is becoming harder to achieve
with portability on manycore systems.

Examining the design tradeoffs of congestion avoidance
mechanisms, and in general application optimization trade-
offs, we see two main design criteria: 1) optimizing for over-
lap; and 2) optimizing for throughput. As overlap requires
fast message injection and throughput requires throttling
and delays, these two have contradictory requirements. The
status-quo in runtime and optimizations design favors over-
lap and fast injection. For the systems examined in this
paper we observe a performance inversion between injec-
tion speed and throughput: the networking layers allow-
ing the fastest injection rate observe the highest throughput
degradation. We have re-implemented all of our microbench-
marks using the vendor APIs OpenIB Verbs and DMAPP.
While calling the native API provides the fastest injection
rate, those benchmarks achieve lower throughput than either
GASNet, UPC or MPI. The detailed results are omitted for
brevity. We believe that increasing the number of cores per
node will require a shift towards optimizations for through-
put using new approaches and performance metrics. Our
congestion avoiding runtime samples points in the space of
throughput oriented designs and we believe the Proxy design
can provide both fast injection/overlap and throughput.

The microbenchmark results in Section 4 indicate that
congestion is observable independently of the implementa-
tion, i.e. GASNet, MPI or native APIs, or the communi-
cation paradigm, i.e. one-sided in GASNet and two-sided
in MPI. On the InfiniBand system we have experimented
with multiple NIC resource knobs controlled by software:
the settings used in this study provide the best default per-
formance. The MPI implementations (Cray MPI, MPICH,
OpenMPI) seem to be affected even more than the one-sided
runtimes (GASNet and Cray UPC). Thus, deploying simi-
lar mechanisms into MPI implementations is certainly worth
pursuing. The implicit flow control provided by MPI Send
and Receive operations allows for extensions using closed
loop control techniques.

Our congestion avoidance mechanisms implement a core
stateless approach where decisions are made at the edge of
the network (nodes), without global state information about
actual congestion in the network core (switches). The results
indicate that we can provide good performance at scale, but
the question remains how close to optimal we can get and
whether mechanisms using global state can do better. While
we do not have conclusive evidence, our conjecture is that
addressing congestion at the edge of the network is likely
to provide similar or better performance than global state
mechanisms at scale. Another question is that of fairness
when not all the nodes in the system use congestion avoid-
ing runtimes. Our experiments were run on capacity sys-
tems and the benchmarks were competing directly against
applications using unmodified runtimes. This indicates that
a congestion avoiding runtime competes well with greedy
traffic participants.

This work also raises the question whether the runtime can
displace the algorithm. Previous work proposes application
algorithmic changes that affect the communication schedule
to reduce the chance of route collision. Our implementa-
tion throttles communication operations and implicitly re-

duces the chance of collisions. Furthermore, Proxy can be
extended with node-wide message reordering and coalescing
optimizations and mechanisms to avoid route collision can
be provided at that level. Understanding the tradeoffs be-
tween these alternatives is certainly important and is the
subject of future work.

Finally, we believe that our open loop runtime congestion
avoidance mechanisms are orthogonal to the vendor pro-
vided closed loop congestion control mechanisms. In all of
our experiments the vendor congestion control mechanisms
(e.g. IB CCA) were enabled. However, the question re-
mains if there are any undesired interactions between the
two mechanisms.

11. CONCLUSION
Efficient communication is required for application scala-

bility on contemporary High Performance Computing sys-
tems. One of the most commonly employed and advocated
optimization techniques is to hide latency by overlapping
communication with computation or other communication
operations. This requires exposing a large degree of com-
munication concurrency within applications.

In this paper, we show that contemporary networks or
runtime layers are not very well equipped to deal with a large
number of operations in flight and suffer from congestion.
We distinguish two types of congestion: Rate Congestion
happens when tasks inject too many concurrent messages,
while Concurrency Congestion happens when too many cores
are active at the same time. We propose a runtime design
using proactive congestion avoidance techniques: a thin soft-
ware layer is interposed between the application and the
runtime to limit the number of concurrent operations. This
approach allows the communication load to increase to the
point where native congestion control mechanisms might
have been triggered, without actually triggering them.

We implement a congestion avoiding runtime for one-sided
communication on top of two UPC runtimes for two net-
works: InfiniBand and Cray Gemini. We discuss heuristics
to limit the number of messages in flight and present im-
plementations using either task inline or server based mech-
anisms. Our runtime is able to provide performance and
performance portability for all-to-all collectives (2x improve-
ments), fine grained application benchmarks (60% improve-
ments), as well as implementations of the NAS Parallel Bench-
marks (up to 17% improvements).

As Exascale projections indicate that future systems are
likely to contain hundreds to thousands of cores per node,
we believe that their networks are likely to be underprovi-
sioned and applications are likely to suffer from both Rate
Congestion and Concurrency Congestion. In this situation,
proactive congestion avoidance might become mandatory for
performance and performance portability.

12. REFERENCES
[1] The GWU NAS Benchmarks.

http://threads.hpcl.gwu.edu/sites/npb-upc.

[2] The InfiniBand Specification. Available at
http://www.infinibandta.org.

[3] V. Aggarwal, Y. Sabharwal, R. Garg, and
P. Heidelberger. HPCC Randomaccess Benchmark For
Next Generation Supercomputers. In Proceedings of
the 2009 IEEE International Symposium on
Parallel&Distributed Processing, pages 1–11,
Washington, DC, USA, 2009. IEEE Computer Society.

[4] D. H. Bailey, E. Barszcz, J. T. Barton, D. S.
Browning, R. L. Carter, D. Dagum, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. K.
Weeratunga. The NAS Parallel Benchmarks. The
International Journal of Supercomputer Applications,
5(3):63–73, Fall 1991.

[5] F. Blagojević, P. Hargrove, C. Iancu, and K. Yelick.
Hybrid PGAS Runtime Support for Multicore Nodes.
In Proceedings of the Fourth Conference on
Partitioned Global Address Space Programming Model,
PGAS ’10, 2010.

[6] D. Bonachea. GASNet Specification, v1.1. Technical
Report CSD-02-1207, University of California at
Berkeley, October 2002.

[7] E. A. Brewer and B. C. Kuszmaul. How to Get Good
Performance from the CM-5 Data Network. In
IPPS’94, pages 858–867, 1994.

[8] J. Bruck, S. Member, C. tien Ho, S. Kipnis, E. Upfal,
S. Member, and D. Weathersby. Efficient algorithms
for all-to-all communications in multi-port
message-passing systems. In IEEE Transactions on
Parallel and Distributed Systems, pages 298–309, 1997.

[9] Berkeley UPC. Available at http://upc.lbl.gov/.

[10] M. Chetlur, G. D. Sharma, N. B. Abu-Ghazaleh,
U. K. V. Rajasekaran, and P. A. Wilsey. An Active
Layer Extension to MPI. In PVM/MPI, 1998.

[11] Available at http://www.cpmd.org/.

[12] W. J. Dally and C. L. Seitz. The Torus Routing Chip.
Distributed Computing, pages 187–196, 1986.

[13] V. Dvorak, J. Jaros, and M. Ohlidal. Optimum
Topology-Aware Scheduling of Many-to-Many
Collective Communications. International Conference
on Networking, 0:61, 2007.

[14] A. Faraj and X. Yuan. Communication Characteristics
in the NAS Parallel Benchmarks. In 14th IASTED
International Conference on Parallel and Distributed
Computing and Systems (PDCS 2002), November
2002.

[15] H. Jin, R. Hood, and P. Mehrotra. A Practical Study
of UPC with the NAS Parallel Benchmarks. The 3rd
Conference on Partitioned Global Address Space
(PGAS) Programming Models, 2009.

[16] K. C. Kandalla, H. Subramoni, A. Vishnu, and D. K.
Panda. Designing Topology-Aware Collective
Communication Algorithms for Large Scale InfiniBand
Clusters: Case studies with Scatter and Gather. In
IPDPS Workshops’10, pages 1–8, 2010.

[17] R. Kumar, A. Mamidala, and D. K. Panda. Scaling
alltoall Collective on Multi-Core Systems. 2008 IEEE
International Symposium on Parallel and Distributed
Processing, pages 1–8, 2008.

[18] S. Kumar and L. V. KalÃl’. Scaling All-to-All
Multicast on Fat-tree Networks. In ICPADS’04, pages
205–214, 2004.

[19] R. Nishtala, Y. Zheng, P. Hargrove, and K. A. Yelick.
Tuning Collective Communication for Partitioned
Global Address Space Programming Models. Parallel
Computing, 37(9):576–591, 2011.

[20] C. D. Pham. Comparison of Message Aggregation
Strategies for Parallel Simulations on a High
Performance Cluster. In In Proceedings Of The 8th
International Symposium On Modeling, Analysis And
Simulation Of Computer And Telecommunication
Systems, August-September, 2000.

[21] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé.
NAMD: Biomolecular Simulation on Thousands of
Processors. In Proceedings of SC 2002, Baltimore,
MD, September 2002.

[22] R. Thakur, R. Rabenseifner, and W. Gropp.
Optimization of Collective Communication Operations
in MPICH. IJHPCA, pages 49–66, 2005.

[23] UPC Language Specification, Version 1.0. Available at
http://upc.gwu.edu.

[24] J. Vetter and F. Mueller. Communication
Characteristics of Large-Scale Scientific Applications
for Contemporary Cluster Architectures. Proceedings
of the 2002 International Parallel and Distributed
Processing Symposium (IPDPS), 2002.

[25] Y. Yang and J. Wang. Efficient All-to-All Broadcast in
All-Port Mesh and Torus Networks. In Proceedings of
the 5th International Symposium on High Performance
Computer Architecture, HPCA ’99, pages 290–,
Washington, DC, USA, 1999. IEEE Computer Society.

[26] Y. Yang and J. Wang. Near-Optimal All-to-All
Broadcast in Multidimensional All-Port Meshes and
Tori. IEEE Trans. Parallel Distrib. Syst., 13:128–141,
February 2002.

[27] E. Zahavi, G. Johnson, D. J. Kerbyson, and M. L.

0003. Optimized InfiniBandTM Fat-Tree Routing For
Shift All-To-All Communication Patterns.
Concurrency and Computation: Practice and
Experience, 22(2):217–231, 2010.

http://threads.hpcl.gwu.edu/sites/npb-upc

	1 Introduction
	2 Related Work
	2.1 Node Level Proactive Congestion Avoidance

	3 Experimental Setup
	4 Network Performance Characterization
	5 Core Stateless Congestion Avoidance
	5.1 Admission Control Policies
	5.2 Admission Control Implementations

	6 Microbenchmark Evaluation
	7 Building a Congestion Avoidance Policer
	8 All-To-All Performance
	9 Application Benchmarks
	10 Discussion
	11 Conclusion
	12 References

