
On the Representation and Multiplication of Hypersparse Matrices ∗

Aydın Buluç
Department of Computer Science

University of California, Santa Barbara
aydin@cs.ucsb.edu

John R. Gilbert
Department of Computer Science

University of California, Santa Barbara
gilbert@cs.ucsb.edu

Abstract

Multicore processors are marking the beginning of a
new era of computing where massive parallelism is avail-
able and necessary. Slightly slower but easy to paral-
lelize kernels are becoming more valuable than sequentially
faster kernels that are unscalable when parallelized. In this
paper, we focus on the multiplication of sparse matrices
(SpGEMM). We first present the issues with existing sparse
matrix representations and multiplication algorithms that
make them unscalable to thousands of processors. Then,
we develop and analyze two new algorithms that overcome
these limitations. We consider our algorithms first as the
sequential kernel of a scalable parallel sparse matrix mul-
tiplication algorithm and second as part of a polyalgorithm
for SpGEMM that would execute different kernels depend-
ing on the sparsity of the input matrices. Such a sequen-
tial kernel requires a new data structure that exploits the
hypersparsity of the individual submatrices owned by a sin-
gle processor after the 2D partitioning. We experimentally
evaluate the performance and characteristics of our algo-
rithms and show that they scale significantly better than ex-
isting kernels.

1. Introduction

Development and implementation of large-scale parallel
graph algorithms poses numerous challenges [17, 27]. A
promising research direction concerns the array-based lin-
ear algebra formulations of graph algorithms [1, 18, 26]. By
exploiting the duality between matrices and graphs, array-
based algorithms aim to apply the existing knowledge on
parallel matrix algorithms to parallel graph algorithms. One
of the key primitives in array-based graph algorithms is
computing the product of two sparse matrices (SpGEMM)
over a semiring. Most interesting graphs, such as the WWW
graph, finite element meshes, planar graphs, and trees, are

∗This research was supported in part by the Department of Energy un-
der award number DE-FG02-04ER25632.

sparse. In this work, we consider a graph to be sparse if
nnz = O(n), where nnz is the number of edges and n is
the number of vertices. Using a dense matrix multiplication
algorithm for SpGEMM is overkill since the current fastest
matrix multiplication algorithm has complexity O(n2.38)
[6, 24]. Furthermore, fast dense matrix multiplication algo-
rithms operate on a ring instead of a semiring, which makes
them unsuitable for most of the graph algorithms. Shortest-
path computations [30], matching algorithms [22], cycle de-
tection [28], and parsing context-free languages [21] are ex-
ample application areas of a fast SpGEMM over a semiring.

There has been relatively little research on sparse ma-
trix multiplication in the three decades since Gustavson’s
1978 paper [12]. This inactivity was partly because of the
diverging goals of the fields of numerical analysis and dis-
crete algorithms. From a numerical analysis viewpoint,
SpGEMM was not considered as important as the sparse
matrix times dense vector (SpMV) operation, which serves
as the building block of iterative linear solvers. Opera-
tions on two sparse matrices were completely left out of the
Sparse BLAS [8], mainly because they were found too com-
plicated to be supported by a low-level kernel like Sparse
BLAS even though the authors acknowledge the fact that
operations on two sparse matrices are required for some ap-
plications. From an algorithms viewpoint, using the adja-
cency matrix representation of a graph was generally con-
sidered overkill due to the absence of underlying primitives
for sparse matrices. The adjacency list representation of
graphs, therefore, was more popular among algorithm de-
signers. Currently, the role of sparse matrices in graph
algorithms is receiving increasing attention due to the im-
plementation and performance challenges posed by parallel
graph algorithms. The goal of this new research focus is to
utilize the existing infrastructure for parallel matrix compu-
tations instead of redesigning and reimplementing the algo-
rithms in parallel.

Flops (flops(AB) or flops in short) is defined as the
number of nonzero arithmetic operations required to com-
pute the output matrix C. The computation complexity of
a sparse matrix algorithm should ideally depend only on

flops. This is called ”the time is proportional to flops” rule
in Matlab [11]. Matlab’s original design allows the com-
plexity to be dependent on nnz, the number of nonzero el-
ements in the matrix, and even the matrix dimensions m or
n. However, we claim that the dependency on the matrix
dimensions m or n is too much in some cases, as explained
in Section 2.1, and should be avoided.

The SpGEMM problem was recently reconsidered by
Yuster and Zwick [29] over a ring, where the authors
use a fast dense matrix multiplication such as arithmetic
progression [6] as a subroutine. Their algorithm uses
O(nnz0.7n1.2 + n2+o(1)) arithmetic operations , which is
theoretically close to optimal only if we assume that the
number of nonzeros in the resulting matrix C, nnz(C), is
Θ(n2). This assumption rarely holds in reality, and instead
we use the optimality criteria of a sparse matrix multipli-
cation in terms of flops, following Gustavson’s convention.
This makes our algorithms work/output sensitive and leads
to work/output sensitive algorithms for other problems that
can be reduced to sparse matrix multiplication, for example
colored intersection searching [14].

Some practical algorithms for SpGEMM have been
proposed by various researchers over the years [20, 25].
Although they achieve reasonable performance on some
classes of matrices, their computational complexity is rather
high compared with an industrial-strength general purpose
algorithm as the one used in Matlab [11]. The algorithm
proposed by Sulatycke and Ghose [25] examines all pos-
sible (i, j) positions of the input matrix A in the outer-
most loop and tests whether they are nonzero. Therefore,
their algorithm has O(flops + n2) complexity, performing
unnecessary operations when flops < n2. On the other
hand, the current algorithm used in Matlab, which we will
call the M-Algorithm from now on, has time complexity
O(flops+nnz(B)+n+m). Davis recently implemented a
row-by-row dialect of the M-Algorithm in his CSparse soft-
ware [7], which achieves slightly different running times
but has the same performance characteristics as the M-
Algorithm.

In this paper, we present two novel algorithms for sparse
matrix multiplication. The first one is based on the outer-
product formulation with time complexity O(nzc(A) +
nzr(B) + flops lg ni), where nzc(A) is the number of
columns of A that contain at least one nonzero, nzr(B) is
the number of rows of B that contain at least one nonzero,
and ni is the number of indices i for which A(:, i) �= ∅ and
B(i, :) �= ∅. We adopt the Matlab notation for sparse matrix
indexing (subsref), where A(:, i) denotes the ith column,
A(i, :) denotes the ith row, and A(i, j) denotes the element
at the (i, j)th position of matrix A. The overall space com-
plexity of our algorithm is only O(nnz(A) + nnz(B) +
nnz(C)). Note that the time complexity of our algorithm
does not depend on n, and the space complexity does not

depend on flops. The second algorithm is an ordered vari-
ant of the column-by-column formulation, and has better
expected time complexity for random matrices, but worse
worst-case time complexity in general. We give an exper-
imental evaluation of our algorithms using matrices from
Erdős-Rényi random graphs [19], synthetically generated
real-world graphs [16], and 3D geometric graphs [10]. Our
experiments are sequential simulations where we decouple
the cost of submatrix multiplications from other costs such
as updates (submatrix additions) and parallelization over-
heads because the main contributions of our work are the
sequential hypersparse matrix multiplication algorithms.

2 Problem Definition

The sparse matrix multiplication problem is to compute
C = AB, where the input matrices A and B, having di-
mensions m × k and k × n respectively, are both sparse.
The input matrices are represented in some space efficient
format and the output matrix C should also be in the same
format as A and B. The data structure for storing sparse
matrices in most sparse matrix packages, including Matlab,
is CSC, which is explained in Section 3 in more detail.

The M-Algorithm has time complexity O(flops +
nnz(B)+n+m) and uses an auxiliary data structure called
the sparse accumulator (SPA) in order to allow fast random
access to the current active column. SPA is composed of
three components: a dense vector that holds the real values
for the active column of C, another dense boolean vector
that holds the ”occupied” flags, and a sparse list that holds
the indices of nonzero elements of the current active column
so far. The SPA itself uses space O(m) and its initializa-
tion consequently takes O(m) time, contributing to the m
term in the complexity of the M-Algorithm. As the method
of multiplication in the M-Algorithm is column-by-column,
there is an n term in the complexity as well.

One goal is to come up with an algorithm (and a new
data structure to hold the matrices if necessary) that uses
O(nnz(A)+nnz(B)+nnz(C)) space and takes O(flops)
time. However, a worst-case O(flops) algorithm is impossi-
ble to obtain in general, since for certain pairs of matrices A
and B, the product C may be composed of all zeros, which
means that flops = 0. A more realistic goal is to include
the size of the input parts that are used nontrivially during
the computation, which in our case means an algorithm that
runs in time O(nnz(A) + nnz(B) + flops).

2.1 Need for Hypersparse Algorithms

The M-Algorithm is asymptotically suboptimal when the
matrices are what we call hypersparse. A matrix is hyper-
sparse if nnz < n. Such matrices are fairly rare in nu-
merical linear algebra (indeed, a nonsingular square matrix

nnz(j) = c√
p

nnz(i) = c
√

p blocks

√
p blocks

Figure 1. 2D Sparse Matrix Decomposition

must have nnz ≥ n), but they occur frequently in computa-
tions on graphs, particularly in parallel graph computations.
For example, the WWW graph [5] contains many rows and
columns that are completely zero.

Our motivation for considering hypersparse matrices
comes from parallel processing, since hypersparse matri-
ces arise after the 2-dimensional block data decomposition
of matrices for parallel processing, as in the SUMMA al-
gorithm [9]. Assume, on the average, there are c nonzero
elements in each column of the matrix. After the 2D decom-
position, each processor has a submatrix of size (n/

√
p) ×

(n/
√

p). Storing each of those submatrices in CSC for-
mat has O(n

√
p+nnz) space complexity, while storing the

whole matrix in CSC format would only take O(n + nnz)
space on a single processor. This method clearly does not
provide storage scalability with increasing number of pro-
cessors.

A different view of the storage problem is depicted in
Figure 1. The number of nonzeros in a single column of the
submatrices, nnz(j), goes to zero as p increases. This inef-
ficiency of CSC leads to a more fundamental problem: any
algorithm that utilizes CSC and scans over all the columns
becomes unscalable when matrices become hypersparse.
Even without any communication at all, such an algorithm
will be unscalable for n

√
p ≥ max{flops, nnz}, i.e. it will

eventually hit a wall as p increases. To see why, consider
the parallel efficiency of the M-algorithm assuming no par-
allel overheads (zero communication cost, no idle time due
to synchronization, etc.) :

E =
n + nnz + flops

p(n√
p + nnz

p + flops
p)

=
n + nnz + flops

n
√

p + nnz + flops

Note that after the point n
√

p ≥ max{flops, nnz}, no mat-
ter how much we increase our problem size we can never
keep efficiency constant as the number of processors in-
crease.

In conclusion, the M-algorithm is optimal only if flops is
both Ω(nnz(B)) and Ω(n).

∣∣∣∣∣∣∣∣∣∣

JC = 0 2 2 2 2 2 2 3 4 4
↓ ↓ ↓

IR = 5 7 3 1
NUM = 0.1 0.2 0.3 0.4

∣∣∣∣∣∣∣∣∣∣

Figure 2. Matrix A in CSC format

JC(old) =
D =

CP =

AUX =

∣∣∣∣∣∣∣∣∣∣∣∣

0 2 2 2
2 0 0 0
0
↑
0

∣∣∣∣∣∣∣∣∣∣∣∣

2 2 2 3
0 0 1 1

2 3
↑
1

∣∣∣∣∣∣∣∣∣∣∣∣

4 4
0

4
↑ ↑
3 3

∣∣∣∣∣∣∣∣∣∣∣∣

Figure 3. DCSC construction from CSC

3 DCSC Data Structure

The compressed sparse column (CSC) format is a com-
mon general storage format for sparse matrices. It is com-
posed of three arrays, which we call JC, IR and NUM. They
correspond to column pointers, row indices and numerical
values respectively. The total space complexity of CSC is
O(n + nnz), where nnz is the number of nonzeros in the
whole matrix. This is because the JC array is of size n + 1
while the IR and NUM arrays are of size nnz. For an exam-
ple, think about an 9-by-9 matrix A with 4 non-zeros which
has the following representation in triplets format:

A = {(5, 0, 0.1), (7, 0, 0.2)(3, 6, 0.3), (1, 7, 0.4)}
Note that the indices start from zero. The CSC storage of
matrix A is shown in Figure 2.

The CSC data structure allows fast access to columns of
a matrix but it is extremely slow for accessing rows. Simul-
taneously storing the compressed row format (CSR) along
with the CSC is a theoretical remedy to this problem, but it
is rarely used in practice since it doubles the storage. We
notice that the JC array contains unnecessary repetitions
for hypersparse matrices. Looking at the difference matrix
D(i) = JC(i + 1) − JC(i), shown in Figure 3, we see that
it is mostly composed of zeros.

The information theoretical solution is to compress the
JC array. We define nzc (nzr) as the number of columns
(rows) containing at least one nonzero element. If we com-
press JC at a rate of cf = (n+1)/nzc, we get a compressed
array of size nzc. Thus, by removing all the repetitions in
JC (columns that are completely zero), we can get rid of the
n term in the storage complexity.

Removing the zero columns introduces an indexing
problem, since we can no longer access the first element

NUM = 0.1 0.2 0.3 0.4

IR = 5 7 3 1

CP = 0 2 3 4

JC = 0 6 7

AUX = 0 1 3 3

Figure 4. Matrix A in DCSC format

in a column in constant time. To remedy this problem, we
introduce an AUX array of size (n + 1)/�cf	 ≈ nzc that
contains pointers to nonzero columns (columns that con-
tain at least one nonzero element). That practically means
chopping the JC array into different chunks, each having
size �cf	. Therefore, AUX contains exactly one element
per chunk that is pointing to the first nonzero column in that
chunk, and an extra element at the very end to serve as the
null pointer, as shown in Figure 3. Note that, on the average,
there will be only one nonzero column in each chunk, al-
though in practice the distribution may be skewed and there
may be up to �cf	 nonzero columns in a single chunk.

In order to allow for efficient searching of columns
within a chunk, we will store the column indices in the JC
array and the pointers to the IR array will be held in a new
array called CP (column pointers). We call this new format
DCSC (doubly compressed sparse column). Matrix A is il-
lustrated in Figure 4 in DCSC format. The storage require-
ment of DCSC is clearly O(nnz) since |NUM| = |IR| =
nnz, |JC| = nzc, |CP| = nzc + 1, and |AUX| ≈ nzc.

4 Indexing in DCSC

Suppose that we need to access the element at the (i, j)th

position of matrix A. Our indexing scheme should return
the element A(i, j) if it exists or zero if it does not. Assume
that the size of each chunk, chunk = �cf	, is available
to the program. The full scheme is given in Algorithm 4.1.
Since both the AUX array and the row indices within a given
column are sorted, both searches can be performed as binary
searches.

As an example, assume that we need to access A(3, 7).
That belongs to the second chunk since �7/4� = 1 (remem-
ber that chunk indices also start from zero) and that chunk
has two non-empty columns. The algorithm then searches
for 7 inside the subarray JC[1..2]. Since there is indeed an

element with column index 7, the search is successful and
returns an index to the CP array, namely it returns p = 2.
Finally, the algorithm searches for the row index 3 inside
the subarray IR[CP[2]..CP[3] − 1] = IR[3..3] and returns
zero since the only nonzero element in the 7th column has
a row index of 1.

start← AUX[�j/chunk�] ;1

end← AUX[�j/chunk�+ 1] ;2

pos← Search (j, JC[start... (end-1)]) ;3

if pos = null then4

return 0 ;5

else6

startc← CP[pos] ;7

endc← CP[pos + 1] ;8

posc← Search (i, IR[startc... (endc-1)]) ;9

if posc = null then10

return 0 ;11

else12

return NUM[posc] ;13

end14

end15

Algorithm 4.1: Indexing for A(i, j)

Similarly, one can perform the column-wise indexing
A(:, j) by stopping the procedure at line 8 and returning the
submatrix with row indices IR[startc...endc − 1], column
indices all j’s, and numerical values NUM[startc...endc−
1].

The expected cost of column-wise indexing is constant
assuming that nonzero columns (columns that contain at
least one nonzero) are distributed evenly. Worst case perfor-
mance of column-wise indexing is lg �cf	 since we can use
binary search when the distribution of nonzero columns be-
comes skewed. Binary search can also be used for element-
wise indexing, giving an expected cost of lg nnz(A(:, j))
and worst case cost of lg �cf	+ lg nnz(A(:, j)).

5 Multiplication Algorithms

5.1 Algorithm I

Algorithm I is based on outer product multiplication. It
assumes that each input matrix is represented in DCSC and
also in DCSR (doubly compressed sparse row), which dou-
bles the storage but does not change the asymptotic space
complexity. DCSR is the row-based dialect of DCSC where
the columns and rows are interchanged. For a matrix A,
A.dcsc and A.dcsr represent A in DCSC format and A in
DCSR format. Our goal is to compute C = AB, where A
and B are represented in both DCSC-DCSR formats; thus,
the output C will also be represented in both formats.

Index SizeA SizeB StartA StartB
0 2 2 0 0
6 1 3 2 3

Table 1. Intersection Table (Isect)

The first observation about DCSC is that the JC array is
already sorted. Therefore, A.dcsc.JC is the sorted indices
of the columns that contain at least one nonzero and simi-
larly B.dcsr.IR is the sorted indices of the rows that contain
at least one nonzero. The idea behind the algorithm is to use
the outer product formulation of matrix multiplication effi-
ciently. In this formulation, the ith column of A and the ith

row of B are multiplied to form a rank-1 matrix. The naive
algorithm does the same procedure for all values of i and
gets n different rank-1 matrices. Finally it adds them to get
the resulting matrix C. Our algorithm has a preprocessing
step where the intersection Isect = A.dcsc.JC∩B.dcsr.IR
is found, which gives us the exact set of indices that we need
to do the outer product.

For an example, assume

A = {(5, 0, 0.1), (7, 0, 0.2), (3, 6, 0.3), (1, 7, 0.4)},

B = {(0, 2, 1.1), (0, 8, 1.2), (3, 4, 1.3), (6, 2, 1.4),

(6, 4, 1.5), (6, 5, 1.6), (8, 8, 1.7)},
where A is the same as in Section 2.1. The output of the
intersection (Isect) is shown in Table 1. Here, index col-
umn shows the indices that occur in both A.dcsc.JC and
B.dcsr.IR. SizeA and SizeB stand for the number of el-
ements with that particular row/column index in the cor-
responding matrix. StartA and StartB are initial pointers
to the CP arrays. It is easy to see that the preprocess-
ing takes O(nzc(A) + nzr(B)) time due to intersection.
From now on, we will focus mainly on constructing C.dcsr
from A.dcsc and B.dcsr. Constructing C.dcsc will be al-
most identical except columns being replaced by rows and
vice-versa. Note that we never need A.dcsr and B.dcsc
for constructing the resulting matrix C. Therefore, in our
pseudocode, we omit the middle identifiers for clarity (e.g.,
A.CP stands for A.dcsc.CP).

The crucial observation that helps us develop phase 1 of
our algorithm is that we can think of each row in Table 1 as a
fictitious list of size nnz(A(:, i))nnz(B(i, :)). Combining
this with the fact that all the elements within a given col-
umn/row i are sorted according to their row/column indices
(i.e. IR[JC[i]]...IR[JC[i] + 1] is a sorted range), we con-
clude that the problem is similar to multiway merging [15].
The only difference is that we will never explicitly construct
the lists; we will compute their elements one-by-one on de-
mand. Figure 5 shows a graphical representation of phase

5 7 3 1

2 8 4 82 4

A.dcsc.IR

0th row 3rd row 8th row6th row

0th col 6th col 7th col

5B.dcsr.JC

Figure 5. Graphical Illustration of Phase-1

(5,2)

(5,8)

0.11

0.12

(7,2)

(7,8)

0.22

0.24

(3,2)

(3,4)

0.42

0.45

(3,5) 0.45

Key Value

Key Value

LIST 1 LIST 2

Figure 6. Multiway Merging Analogy

1. Here, the algorithm does not touch the shaded elements,
since they do not contribute to the output.

The merging algorithm uses a heap (priority queue) of
size ni = |Isect|, where the value of a heap entry is its
NUM value and the key of a heap entry is (i, j) with lex-
icographical (row major) order. The idea is to repeatedly
extract-min from the heap and insert another element from
the list that the currently extracted element originally be-
longed to. If there are multiple elements in the lists with the
same key, then their values are summed on the fly. If we
were to explicitly create ni lists instead of doing the com-
putation on the fly, we would get the lists shown in Figure 6,
which are sorted from bottom to top. Note that this exam-
ple is specifically for constructing C.dcsr. For constructing
C.dcsc part, all we need to do is to create the heap keys in
column major order instead of row major (note that the or-
der in the fictitious lists will be different then). For further
details of multiway merging, consult Knuth [15].

The time complexity of phase 1 is then O(flops lg ni)
where the space complexity is O(nnz(C) + ni). The out-
put of phase 1 is two stacks of NUM values ordered lexico-
graphically (row major for constructing C.dcsr and column
major for constructing C.dcsc). Note that nnz(C) term in
the space complexity comes from the output and flops term

in time complexity comes from the observation that

∑
i∈Isect

nnz(A(:, i))nnz(B(i, :)) = flops.

Phase 2 of the algorithm constructs the DCSC and DCSR
structures from these lexicographically ordered stacks. This
can be done in O(nnz(C)) time and space as long as the
final data structure is O(nnz(C)) as in the case of DCSC
and DCSR.

The overall time complexity of our algorithm is
O(nzc(A)+nzr(B)+flops lg ni). Note that nnz(C) does
not appear in this formula since nnz(C) ≤ flops. Overall
space complexity is O(nnz(A)+nnz(B)+nnz(C)) only.
The time complexity does not depend on n, and space com-
plexity does not depend on flops.

The full pseudocode for the whole algorithm is given be-
low. It uses two subprocedures: MultInsI generates the
next element from the tith fictitious list and inserts it to the
heap PQ, IncrementList increments the pointers of the
tith fictitious list or deletes the list from the intersection ta-
ble if it is depleted.

Procedure IncrementList(Isect, ti)

if Isect[ti].curb < Isect[ti].sizeb then1

Isect[ti].curb← Isect[ti].curb + 1 ;2

else3

Isect[ti].curb← Isect[ti].startb ;4

if Isect[ti].cura < Isect[ti].sizea then5

Isect[ti].cura← Isect[ti].cura + 1 ;6

else7

Isect.Delete (ti) ;8

end9

end10

Procedure MultInsI(A, B, PQ, Isect, ti)

ptra← A.CP[Isect[ti].cura] ;1

ptrb← B.CP[Isect[ti].curb] ;2

product← A.NUM[ptra] ∗B.NUM[ptrb] ;3

key← Pair (A.IR[ptra], B.JC[ptrb]) ;4

value← Pair (product, ti) ;5

PQ. Insert (key,value) ;6

A final note is for the curious about the constants in the
algorithm and the data structure. The core of the algorithm
is actually computed twice: once to construct DCSR and
once again to construct DCSC, therefore doubling the work.
Apart from that, the requirement that matrices should be
represented in both DCSR and DCSC increases the storage
to 4 nnz+6 nzc, which may be unacceptable for some prac-
tical applications. We propose a variant of Algorithm I to
remedy those problems. In this variant, the input matrices
are represented only in DCSC format. Before the multipli-
cation C = AB is performed, B is transposed so that we

/* Preprocessing */
Isect← Intersection (A.JC, B.IR) ;1

/* Phase 1 */
forall ti ∈ Isect do2

MultInsI (A,B,PQ, Isect, ti) ;3

IncrementList (Isect, ti) ;4

end5

while Isect.IsNotFinished do6

(key,value)← PQ.ExtractMin ;7

(product, ti)← Unpair (value) ;8

if key �= Q.Top then9

Q.Insert (key, product) ;10

else11

Q.UpdateTop (key, product) ;12

end13

if Isect[ti].IsNotEmpty then14

MultInsI (A,B,PQ, Isect, ti) ;15

IncrementList (Isect, ti) ;16

end17

end18

/* Phase 2 */
ConstructDcsr (Q) ;19

Pseudocode for Algorithm I

get the DCSR representation of B. Transposition in this
case is the lexicographical sorting with nnz(B) lg nnz(B)
cost. Consequently, we halve the constant in flops lg ni
term and we reduce the size of the data structure to 2 nnz +
3 nzc, at the price of increasing the overall complexity to
O(nzc(A)+nnz(B) lg nnz(B)+flops lg ni). We experi-
mentally evaluate the performance of this DCSC-only vari-
ant in Section 6.

5.2 Algorithm II

Our second algorithm is based on the column-by-column
formulation of the multiplication as the M-algorithm. For
Algorithm II, it is sufficient for matrices to be represented
in only one format, either DCSC or DCSR. We assume that
the inputs as well as the outputs are represented in DCSC.
Similar to the M-algorithm, we will be computing a whole
column of C in one step by examining the same column
of B. In other words, C(:, j) will be a linear combination
of the columns A(:, i) for which B(i, j) �= 0. Algorithm
II’s complexity, however, is independent of n and m since
it neither scans all the columns of matrix B, nor it uses an
SPA.

For the construction of C(:, j), we use a heap of size
nnz(B(:, j)) to help the merging process. As in the case of
Algorithm I, we require the row indices within a given col-
umn to be sorted. Luckily, this requirement is already sat-

isfied by DCSC. The idea of merging columns using a heap
has been employed before, within the Ordered-SPA [13]
data structure. However, it was never used to suppress the
m factor in the algorithm because Ordered-SPA is still an
Θ(m) data structure. Furthermore, the Ordered-SPA uses a
heap of size nnz(C(:, j)), which can be much bigger than
nnz(B(:, j)).

Let us illustrate the execution of the algorithm through
the example inputs A and B given below:

A =

0 0 1 0

0 3 0 4

6 0 0 0

0 5 5 5

, B =

7 0 2 0

3 3 0 0

0 0 4 0

0 2 0 1

By looking at the first column of B, B(:, 0) =[
7 3 0 0

]T
, we know the set of column indices of

A that will be required during the construction of C(:, 0)
(in this case they are the 1st and 2nd columns of A). We can
now do a multiway merge, with a heap of size B(:, 0) = 2
as follows: Initially, we insert (key, value) = (2, 7 ∗ 6)
and (key, value) = (1, 3 ∗ 3). Then we start a pop/push
sequence. After each pop operation, we will insert another
element from the column that the popped elements origi-
nally belonged to. In our example we first pop (1, 3 ∗ 3)
and then insert (3, 3 ∗ 5). Finally when the columns are de-
pleted, we pop all the remaining elements from the heap.
The row index alone is sufficient as the key because Algo-
rithm II constructs one column at a time and all the elements
in that column has the same column index. The high level
pseudocode for the algorithm is given below, which utilizes
a slightly different MultInsII subroutine.

Procedure MultInsII(PQ, Lists, i, bval)
product← Lists[i].val ∗ bval ;1

value← Pair (product, i) ;2

key← Lists[i].ind ;3

PQ.Insert (key, value) ;4

Advance (Lists[i]) ;5

The complexity of the algorithm depends on the distribu-
tion of nonzeros in matrix B. From Section 4, we know we
can access a given column of matrix B in expected constant
time assuming that nonzero columns of B (columns that
contain at least one nonzero) are distributed evenly. When
this is the case, Algorithm II has an expected cost of

nzc(B)∑
j=0

flops(C(:, j)) lg nnz(B(:, j)).

Here, flops(C(:, j)) is the number of nonzero multipli-
cations required to generate the jth column of C. When

for j ← 0 to nzc(B) do1

foreach B(i, j) ∈ B(:, j) do2

Lists[i]← SparseList (A(:, i)) ;3

MultInsII (PQ, Lists, i, B(i, j)) ;4

end5

while Lists.IsNotFinished do6

(key,value)← PQ.ExtractMin ;7

(product, i)← Unpair (value) ;8

if key �= Q.Top then9

Q.Insert (key, product) ;10

else11

Q.UpdateTop (key, product) ;12

end13

if Lists[i].IsNotEmpty then14

MultInsII (PQ, Lists, i, B(i, j)) ;15

else Lists.Delete (i) ;16

end17

C(:, j)← Output (Q) ;18

Reset (Q) ;19

end20

Pseudocode for Algorithm II

the inputs are random matrices, matrices representing struc-
tured graphs (such as 3D geometric graphs) or permutation
matrices, lg nnz(B(:, j)) is constant (in expected sense for
random matrices, and in exact sense for others). Further-
more, nonzero columns are distributed evenly for those ma-
trices. Let the number of nonzeros in any column of B be
c. Then, for those families of matrices, the expected cost of
Algorithm II is

lg c

nzc(B)∑
j=0

flops(C(:, j)) = O(flops lg c + nzc(B)).

It is worth mentioning that C(:, j) could have been con-
structed using the SPA [11] data structure instead of a
heap. This decision is reminiscent to choosing buckets or
heaps/looser trees for merging sorted lists. An SPA-like
data structure makes sense when it is not advantageous to
use our hypersparse algorithms, i.e. when the matrices
are not sparse enough. This gives us another subalgorithm
based on DCSC data structure that we can incorporate into
the polyalgorithm. Due to the time spent in the initialization
of SPA, such an algorithm has expected time complexity of
O(n + flops) for all inputs.

6 Implementation and Experimentation

We have implemented our data structures and multipli-
cation algorithms in C++. The code is compiled using
the GNU Compiler Collection (GCC) Version 4.1, with the

A =

A11 ... A1
√

p

...
A√

p1 ... A√
p
√

p

Figure 7. Square Grid Decomposition

flags -06. We compare the performance of our implemen-
tation with Matlab R2007A (64-bit version). Our self con-
tained library is generic in two ways. First, each entry in
the NUM array is templated; it may be composed of reals,
integers, and particularly submatrices. Second, multiplica-
tion and addition operators are passed as function objects,
allowing sparse matrix multiplication to be performed on
arbitrary semirings. Throughout the experiments, however,
we have chosen the NUM array to be composed of doubles
and multiplication/addition operators to be regular multipli-
cation/addition operators on the field of real numbers, to
allow a fair comparison with Matlab.

Sparse matrix multiplication is a built-in function in Mat-
lab, so there are no interpretation overheads associated with
it. We are simply comparing our C++ code with the un-
derlying precompiled C code used in Matlab. We have in-
corporated Peter Sander’s Sequence Heaps [23] for all the
priority queues used by our algorithms.

All of our experiments are performed on a single core of
Opteron 2.2 Ghz with 64 GB main memory, where we sim-
ulate the execution of a parallel SpGEMM. The simulation
is done by dividing the input matrices of size n × n into p
submatrices of size (n/

√
p) × (n/

√
p) using the 2D block

decomposition. In a real parallel SpGEMM, executing on p
processors that forms a

√
p × √p grid, the (i, j)th proces-

sor would be denoted by Pij , and submatrices Aij and Bij

would be assigned to Pij . Such a decomposition of matrix
A is depicted in Figure 7.

We performed sequential simulations instead of experi-
menting with a parallel implementation because the main
contributions of our work are the sequential hypersparse
matrix multiplication algorithms. This way, we were able to
decouple the cost of submatrix multiplications from other
costs such as updates and parallelization overheads. This
choice was also motivated by the fact that there are few par-
allel implementations of SpGEMM to compare our work
with. Our parallel code is being tuned and we will report on
it elsewhere.

Expressing the matrix multiplication as algebraic oper-
ations on submatrices instead of individual elements, we
see that each submatrix of the product is computed using

Cij =
∑√

p

k=1 Aik Bkj . Since we are primarily concerned
with the sequential sparse matrix multiplication kernel, we
will exclude the cost of submatrix additions and other par-

allel overheads. That is to say, we will only time the sub-
matrix multiplications, exactly plotting

time(p, A, B) =

√
p∑

i=1

√
p∑

j=1

√
p∑

k=1

time(Aik Bkj),

which is equal to the amount of work done by a parallel
matrix multiplication algorithm such as SUMMA [9].

Increasing p in this case does not mean we use more
processors to compute the product. Instead, it means we
use smaller and smaller blocks while computing the prod-
uct on a single processor. Therefore, a perfectly scalable
algorithm would yield flat timing curves as p increases. We
expect our algorithms to outperform the M-Algorithm as p
increases due to reasons explained in Section 2.1. We label
the original Algorithm I Alg 1A and the DCSC-only variant
Alg 1B. Algorithm II is labeled Alg 2, and the M-Algorithm
is denoted by Matlab. In Alg 1B, each submatrix Aij is
transposed only once instead of

√
p times, because this is

what would happen in a smart parallel implementation.
We originally included Matlab Tensor Toolbox [2] in

our tests, which supports sparse tensors and sparse ten-
sor multiplication. However, it was consistently 4-5 times
slower than any of the other algorithms, probably because
it was optimized for tensors with higher dimensions than
two. Therefore, we excluded the results from Tensor Tool-
box from our plots.

In all experiments, the input matrices have dimensions
223 × 223, i.e. the input graphs have around 8 million ver-
tices. Our test matrices comes from several graph families
that are described in detail in the following subsections.

6.1 Models of Real-World Graphs

Our first set of experiments are conducted on matrices
that represent the adjacency structure of Kronecker graphs,
scale-free graphs that are generated using repeated Kno-
necker products (KronMat). KronMat models the behavior
of several real-world graphs such as the WWW graph, small
world graphs, and citation graphs [16]. We have used an im-
plementation based on Kepner’s vectorized code [3], which
generates directed graphs with an average of degree of 8,
meaning that there will be approximately 8 n nonzeros in
the adjacency matrix. Thus, KronMat graphs we have used
in our experiments have a total of 226 edges each. We ran
two main sets of multiplication experiments with real world
graphs, one where both input matrices are KronMat, and
one where A is a KronMat matrix and B is a permutation
matrix. The results are shown in Figures 8 and 9.

In the case of KronMat × KronMat, the M-Algorithm
is initially faster than both variants of Algorithm I and has
about the same speed as Algorithm II. Up to p = 16, the
ranking stays roughly the same, but the column-by-column

1400

1000

600

200

1024256641641

T
im

e
(s

ec
s)

Processors

Alg 1A
Alg 1B

Alg 2
Matlab

Figure 8. Scalability of SpGEMM kernels
for multiplying two matrices from real-world
graphs (KronMat × KronMat)

algorithms (Matlab and Alg 2) show slight increases in
overall execution times. For p > 64, however, the M-
Algorithm starts performing poorly because submatrices
start getting hypersparse. To see why, consider the ratio
of nnz to n for each submatrix:

nnz(Aij)
n/
√

p
=

8 n/p

n/
√

p
=

8√
p

This ratio is smaller than 1 for p > 64, making submatrices
hypersparse.

While all of our algorithms are more scalable than the
M-Algorithm, the variants of Algorithm I that are based on
outer product formulation scale particularly well, showing
almost flat curves. For p = 1024, Alg 1B performs more
than 5 times faster than the M-Algorithm. Also, a polyal-
gorithm using the DCSC data structure should choose Alg
2 for p < 16 and Alg 1B for p ≥ 16.

In the case of multiplying a KronMat matrix with a per-
mutation matrix (KronMat × Perm), M-Algorithm’s poor
scalability is more apparent. All of our algorithms outper-
form the M-Algorithm for p ≥ 64 with Alg 1B starting to
outperform for as low as p > 4. The break-even point after
which our algorithms dominate the M-algorithm is lower
in this case because permutation matrices are more sparse
with only 1 nonzero per column/row. This time, Alg 1B is
faster than Alg 2 for almost all values of p, making it the
algorithm of choice in a future polyalgorithm that executes
on matrices represented only in DCSC format.

6.2 Erdős-Rényi Random Graphs

In the Erdős-Rényi random graph model, each possible
edge in the graph exists with fixed probability p. In this set

1000

800

600

400

200

1024256641641

T
im

e
(s

ec
s)

Processors

Alg 1A
Alg 1B

Alg 2
Matlab

Figure 9. Scalability of SpGEMM kernels for
multiplying a real-world graph matrix with a
permutation matrix (KronMat × Perm)

of experiments, we have generated matrices with approxi-
mately 7 n nonzeros, using the sprand function of Mat-
lab. We have conducted a single set of experiments where
we multiply two matrices representing Erdős-Rényi random
graphs.

Looking at the timings shown in Figure 10, we see that
the M-Algorithm is dominated by our new algorithms for
most values of p. Up to 16 processors, Alg 2 is the fastest;
while for p > 64, Alg 1B turns out to be the fastest. More
importantly, when we reach thousands of processors, our
algorithms show their scalability for this type of inputs also.
In particular, Alg 1B is more than 4 times faster than the M-
Algorithm for 1024 processors when multiplying random
matrices.

6.3 Regular 3D Grids

For our last set of experiments, we have used matrices
arising from graphs representing the 3D 7-point finite differ-
ence mesh (grid3d). These input matrices, which are gen-
erated using the Matlab Mesh Partitioning and Graph Sepa-
rator Toolbox [10], are highly structured block diagonal ma-
trices. Such band matrices are unsuitable for 2D block de-
composition since the off-diagonal processors sit idle with-
out storing any nonzeros and performing any computation.
To remedy this problem, we perform random permutations
of vertices on both inputs before performing the multipli-
cation. In other words, instead of computing C = AB,
we will compute C′ = A′B′ = (PAPT)(PBPT) =
PAIBPT = PCPT where I is the identity matrix.

Even after applying random symmetric permutations,
imbalances remain. Submatrices in the diagonal are ex-

1500

1250

1000

750

500

250

1024256641641

T
im

e
(s

ec
s)

Processors

Alg 1A
Alg 1B

Alg 2
Matlab

Figure 10. Scalability of SpGEMM kernels for
multiplying two matrices from Erdős-Rényi
graphs (Rand × Rand)

pected to have more nonzeros than others. This is be-
cause symmetric permutations essentially relabel the ver-
tices of the underlying graph, so they are unable to scatter
the nonzeros in the diagonal. Multiplications among diago-
nal blocks favor Matlab because diagonal blocks can never
become hypersparse no matter how much p increases. Mul-
tiplication among off-diagonal blocks are more suitable for
our hypersparse algorithms. More technically, our observa-
tion means

flops(Aii Bii) > flops(Aii Bij) > flops(Aik Bkj).

Therefore, the variances in timings of submatrix multiplica-
tions are large compared with other sets of test matrices.

Asymptotic behavior of the algorithms is also slightly
different in this case as it can be seen in Figure 11. Yet,
Alg 1B is around 4 times faster than the M-Algorithm for
p = 1024 and Alg 2 is competitive with M-Algorithm for
almost all values of p.

7 Conclusions and Future Work

We considered the problem of sparse matrix multiplica-
tion (SpGEMM). We introduced the notion of hyperspar-
sity for matrices that arise after the 2D data decomposi-
tion of matrices for parallel processing. We presented two
new algorithms to be used as sequential SpGEMM ker-
nels, and we experimentally demonstrated that our algo-
rithms are faster than existing algorithms when hyperspar-
sity is present. Variants of the algorithms presented here
work on the same DCSC data structure, which allows them
to be used in a polyalgorithm for SpGEMM that executes
different kernels depending on the sparsity of the input

1250

1000

750

500

250

1024256641641

T
im

e
(s

ec
s)

Processors

Alg 1A
Alg 1B

Alg 2
Matlab

Figure 11. Scalability of SpGEMM kernels
for multiplying two matrices from geometric
graphs (Grid3D × Grid3D)

matrices. This is a crucial feature since switching data
structures on the fly is rarely practical. For the polyalgo-
rithm, we guarantee a time complexity of O(min{nzc(A)+
nnz(B) lg nnz(B) + flops lg ni, flops + n})

A limitation of our work is the absence of a lower bound
for SpGEMM. Therefore, we do not know whether our
algorithms are optimal. Achieving optimality in the out-
put/work sensitive setting is harder than the general setting.
In the general setting, one can come up with pathological
inputs which inherently requires as much work as the al-
gorithm does in the worst case, providing a lower bound for
the problem and hence making the algorithm optimal. How-
ever, an output/work sensitive algorithm should perform op-
timally well for all pairs of inputs to be considered optimal.
Whether or not such an optimal algorithm for SpGEMM ex-
ists in the output/work sensitive setting is an open question.

We have not considered the cache efficiency of our al-
gorithms in this paper. As the memory hierarchies became
dominant in computer architectures, the cache complexity
of a given algorithm became as important as its RAM com-
plexity. We intend to perform future work on the devel-
opment of cache-aware and cache-oblivious algorithms for
SpGEMM. In the cache-aware and cache-oblivious settings,
optimal algorithms exists for the problem of SpMV [4],
but we have not encountered any theoretically optimal al-
gorithms for SpGEMM although there has been some em-
pirical work on the subject [25].

Since parallelism is the main motivation of our work, we
are also experimenting with parallel algorithms based on the
sequential kernels we have introduced in this paper. Further
research is required for finding the best way to perform up-
dates on the sparse matrices in the case of parallelism. We

intend to publish our results with parallel SpGEMM in a
future paper.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1974.

[2] B. W. Bader and T. G. Kolda. Efficient Matlab computations
with sparse and factored tensors. SIAM Journal on Scientific
Computing, 30(1):205–231, 2007.

[3] D. Bader, J. Feo, J. Gilbert, J. Kepner, D. Koester, E. Loh,
K. Madduri, B. Mann, and T. Meuse. HPCS scalable syn-
thetic compact applications #2. version 1.1.

[4] M. A. Bender, G. S. Brodal, R. Fagerberg, R. Jacob, and
E. Vicari. Optimal sparse matrix dense vector multiplica-
tion in the I/O-model. In SPAA ’07: Proceedings of the
nineteenth annual ACM symposium on parallel algorithms
and architectures, pages 61–70, New York, NY, USA, 2007.
ACM Press.

[5] T. Bennouas and F. de Montgolfier. Random web crawls. In
WWW ’07: Proceedings of the 16th international conference
on World Wide Web, pages 451–460, New York, NY, USA,
2007. ACM Press.

[6] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions. In STOC ’87: Proceedings of the
nineteenth annual ACM conference on theory of computing,
pages 1–6, New York, NY, USA, 1987. ACM Press.

[7] T. A. Davis. Direct Methods for Sparse Linear Systems. So-
ciety for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2006.

[8] I. S. Duff, M. A. Heroux, and R. Pozo. An overview of the
sparse basic linear algebra subprograms: The new standard
from the blas technical forum. ACM Transactions on Math-
ematical Software, 28(2):239–267, 2002.

[9] R. A. V. D. Geijn and J. Watts. SUMMA: Scalable universal
matrix multiplication algorithm. Concurrency: Practice and
Experience, 9(4):255–274, 1997.

[10] J. R. Gilbert, G. L. Miller, and S.-H. Teng. Geometric mesh
partitioning: Implementation and experiments. SIAM Jour-
nal on Scientific Computing, 19(6):2091–2110, 1998.

[11] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices
in Matlab: Design and implementation. SIAM Journal of
Matrix Analysis and Applications, 13(1):333–356, 1992.

[12] F. G. Gustavson. Two fast algorithms for sparse matrices:
Multiplication and permuted transposition. ACM Transac-
tions on Mathematical Software, 4(3):250–269, 1978.

[13] J. Irwin, J.-M. Loingtier, J. R. Gilbert, G. Kiczales, J. Lamp-
ing, A. Mendhekar, and T. Shpeisman. Aspect-oriented pro-
gramming of sparse matrix code. In ISCOPE ’97: Proceed-
ings of the Scientific Computing in Object-Oriented Par-
allel Environments, pages 249–256, London, UK, 1997.
Springer-Verlag.

[14] H. Kaplan, M. Sharir, and E. Verbin. Colored intersection
searching via sparse rectangular matrix multiplication. In
SCG ’06: Proceedings of the twenty-second annual sympo-
sium on computational geometry, pages 52–60, New York,
NY, USA, 2006. ACM Press.

[15] D. E. Knuth. The art of computer programming, volume 1
(3rd ed.): Fundamental algorithms. Addison Wesley Long-
man Publishing Co., Inc., Redwood City, CA, USA, 1997.

[16] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, and C. Falout-
sos. Realistic, mathematically tractable graph generation
and evolution, using kronecker multiplication. In PKDD,
pages 133–145, 2005.

[17] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry.
Challenges in parallel graph processing. Parallel Process-
ing Letters, 17(1):5–20, 2007 2007.

[18] B. M. Maggs and S. A. Poltkin. Minimum-cost spanning
tree as a path-finding problem. Information Processing Let-
ters, 26(6):291–293, 1988.

[19] P. os and A. Rényi. On random graphs. Publicationes Math-
ematicae, 6(1):290–297, 1959.

[20] S. C. Park, J. P. Draayer, and S.-Q. Zheng. Fast sparse
matrix multiplication. Computer Physics Communications,
70:557–568, July 1992.

[21] G. Penn. Efficient transitive closure of sparse matrices
over closed semirings. Theoretical Computer Science,
354(1):72–81, 2006.

[22] M. O. Rabin and V. V. Vazirani. Maximum matchings in
general graphs through randomization. Journal of Algo-
rithms, 10(4):557–567, 1989.

[23] P. Sanders. Fast priority queues for cached memory. Journal
of Experimental Algorithmics, 5:7, 2000.

[24] R. Seidel. On the all-pairs-shortest-path problem in un-
weighted undirected graphs. Journal of Computer and Sys-
tem Sciences, 51(3):400–403, 1995.

[25] P. Sulatycke and K. Ghose. Caching-efficient multithreaded
fast multiplication of sparse matrices. In IPPS ’98: Pro-
ceedings of the 12th. International Parallel Processing Sym-
posium, page 117, Washington, DC, USA, 1998. IEEE Com-
puter Society.

[26] R. E. Tarjan. A unified approach to path problems. Journal
of the ACM, 28(3):577–593, 1981.

[27] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hen-
drickson, and U. Catalyurek. A scalable distributed par-
allel breadth-first search algorithm on bluegene/L. In SC
’05: Proceedings of the 2005 ACM/IEEE conference on Su-
percomputing, page 25, Washington, DC, USA, 2005. IEEE
Computer Society.

[28] R. Yuster and U. Zwick. Detecting short directed cycles us-
ing rectangular matrix multiplication and dynamic program-
ming. In SODA ’04: Proceedings of the fifteenth annual
ACM-SIAM symposium on discrete algorithms, pages 254–
260, Philadelphia, PA, USA, 2004. Society for Industrial and
Applied Mathematics.

[29] R. Yuster and U. Zwick. Fast sparse matrix multiplication.
ACM Trans. Algorithms, 1(1):2–13, 2005.

[30] U. Zwick. All pairs shortest paths using bridging sets and
rectangular matrix multiplication. Journal of the ACM,
49(3):289–317, 2002.

