The Potential of the Cell Processor for Scientific Computing
Sam Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry Husbands, Katherine Yelick
{SWWilliams, JShalf, LOLiker, SAKamil, PJRHusbands, KAYelick}@lbl.gov
Computational Research Division – Lawrence Berkeley National Laboratory

Introduction

Cell
- 8 SIMD cores (SPEs) @ 3.2GHz
- Independent, explicitly controlled 256KB local store memory (not a cache)
- Decoupled DMAs improve bus utilization
- 1 SP SIMD instruction every cycle
- But science requires double precision
- 1 DP SIMD instruction every 7 cycles

Experimentation
- Performance modeling coupled with benchmarks on actual hardware
 - Compared against actual hardware:
 - 1.13 GHz X1E MSP
 - 2.2 GHz Opteron
 - 1.3 GHz Itanium2

Programming Model
- Explicit software controlled one-sided communication (DMAs) for SPEs
- SPEs are programmed as if they were a distributed memory machine (SPMD)
- The SPEs (and PPU) must synchronize between program phases
- Programmed in C with intrinsics in the critical sections.
- Double buffered whenever possible and appropriate

Performance Modeling

Standard Cell Model
- Performance estimator written for each kernel to examine strategies before C with intrinsics implementation
- Overlaps communication and computation
- Handles irregular problems (like SpMV)

Cell+ Model
- Lengthen forwarding network to avoid stalling double precision instructions
- Modest modification; up to 3.5x benefit
- Cell+ makes DP instructions half-pumped (one SIMD every other cycle)
- How much does 6 stall cycles per double-precision instruction hurt performance?

1D & 2D Fast Fourier Transforms

Introduction
- Naïve radix 2 performance modeling
- Small explicit on-chip transpose for 1D (inter-local store)
- Large explicit transposes in DRAM for 2D
- Ensures long DMAs from global store and butterflies within local store

Performance Estimation

Future Work
- Alternatives to explicit transposes
- Overlap of communication and computation for the 1D FFT

Dense Matrix-Matrix Multiplication

Introduction
- Straightforward performance modeling
- Matrix stored in column major order
- DMAs pack stanzas together into Local store
- 64^2 cache blocks are sufficiently large to ensure Cell is computationally bound
- Parallelize by assigning each SPE a unique cache block in the destination matrix.

Performance Estimation

Future Work
- Cannon’s Algorithm
Introduction
• 7 point stencil (Heat Equation, with unweighted neighbors) on a regular grid
• Double
• and Single precision implementations on actual hardware

Implementation
• Cache blocked
• Double buffered planes
• SIMDized with C intrinsics

Temporal Blocking using Time Skewing
• Time skewing performs multiple time steps per memory access, and allows the machine to attain near peak algorithmic performance
• One queue exists for each time step ~ 3(TimeSteps + 1) planes
• Planes are read from DRAM once, shuffled from one queue to the next, and written to DRAM once.
• Only used on single precision version but applicable to Cell+

Performance

Future Work
• Complex PDE solvers
• Cell+ double precision time skewed
• Non cubical domains

Double Precision Performance

Future Work
• Better load balancing
• Explicitly parallel storage formats
• Segment scan to amortize branch misprediction and loop overhead
• BCSR to improve SIMDization

http://www.cs.berkeley.edu/~samw/
http://crd.lbl.gov/~oliker/