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Abstract—This paper introduces Adaptive Backpressure, a
novel scheme that improves the utilization of dynamically man-
aged router input buffers by continuously adjusting the stiffness
of the flow control feedback loop in response to observed traffic
conditions. Through a simple extension to the router’s flow
control mechanism, the proposed scheme heuristically limits the
number of credits available to individual virtual channels based
on estimated downstream congestion, aiming to minimize the
amount of buffer space that is occupied unproductively. This
leads to more efficient distribution of buffer space and improves
isolation between multiple concurrently executing workloads with
differing performance characteristics.

Experimental results for a 64-node mesh network show that
Adaptive Backpressure improves network stability, leading to an
average 2.6× increase in throughput under heavy load across
traffic patterns. In the presence of background traffic, the pro-
posed scheme reduces zero-load latency by an average of 31 %.
Finally, it mitigates the performance degradation encountered
when latency- and throughput-optimized execution cores contend
for network resources in a heterogeneous chip multi-processor;
across a set of PARSEC benchmarks, we observe an average
reduction in execution time of 34 %.

I. INTRODUCTION

Moore’s Law continues to drive forward integration lev-

els in the semiconductor industry, providing chip designers

with ever increasing transistor budgets. As improvements to

single-threaded performance have become limited by power

constraints, this has caused industry focus to shift towards

design approaches that scale performance by leveraging chip-

level parallelism. With future microprocessors expected to

integrate hundreds of execution cores on a single die, on-chip

communication will have a significant impact on chip-level

performance and power efficiency [1], [2]. Networks-on-Chip

(NoCs) are widely considered to be a promising approach for

addressing the scalability and complexity challenges inherent

in such designs [3].

Current NoC research largely utilizes input-queued routers;

in such designs, packets that arrive at a router’s input and

cannot be forwarded immediately are temporarily held in First-

In, First-Out (FIFO) buffers until they can proceed to the next

hop. Buffer space is typically allocated at the granularity of

fixed-size units called flits—one or more of which comprise a

packet—and is logically divided into multiple Virtual Channels
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(VCs) in order to avoid deadlock and to reduce Head-of-Line

(HoL) blocking [4]. Proper buffer sizing and organization are

essential to achieving optimal network performance [5]–[7].

At the same time, input buffers account for a large fraction of

the overall area and power budget of typical NoC routers [8],

[9]. Consequently, buffer resources must be utilized efficiently

in order to achieve good cost-performance trade-offs. To this

end, prior research has proposed dynamic buffer management

schemes in which a pool of buffer slots is shared between

VCs [7], [10].

In the present contribution, we first show that sharing

buffer space among VCs without further restrictions can lead

to performance pathologies when multiple types of traffic

with different performance characteristics share access to the

network. Specifically, it causes VCs which experience heavy

downstream congestion to monopolize buffer space at the

expense of other VCs. This in turn can allow an adversarial

workload to significantly degrade the performance of a con-

currently executing well-behaved workload, even when both

operate on strictly disjoint sets of VCs. In light of increasing

Quality-of-Service (QoS) requirements and continuing indus-

try trends towards workload consolidation and virtualization,

such interference effects are highly undesirable.

To address these issues, we then propose Adaptive Back-

pressure (ABP), a mechanism that heuristically limits credit

availability for each VC based on its observed performance

characteristics. In doing so, our scheme aims to assign buffer

space to those VCs that carry well-behaved traffic and to limit

the amount of buffer space that is held unproductively by

VCs experiencing congestion. ABP is readily implemented

as a simple, low-cost extension to the existing flow control

mechanism.

We present simulation results for a 64-node mesh net-

work that show that our proposed scheme improves network

stability for adversarial traffic, increasing throughput under

heavy load by an average of 2.6× across six synthetic traffic

patterns. We further demonstrate that ABP can effectively

reduce performance coupling between two workloads compet-

ing for network resources; in particular, it improves zero-load

latency in the presence of background traffic by an average

of 31 %. Lastly, we investigate performance isolation in a

heterogeneous Chip Multi-Processor (CMP) and show that

ABP reduces the performance degradation incurred by a set of

parallel application benchmarks from the PARSEC suite [11]



due to streaming background traffic by 34 %.

The remainder of this paper is organized as follows: In

Section II, we present a brief overview of buffer management

in NoC routers and show how unrestricted buffer sharing

among VCs can lead to pathological performance. Section III

introduces the proposed ABP mechanism. Using the experi-

mental setup described in Section IV, we evaluate the efficacy

of our scheme in Section V. Section VI briefly discusses

related work, and we conclude the paper in Section VII.

II. MOTIVATION

A. Dynamic Input Buffer Management

As a result of the stringent timing constraints that the NoC

environment typically imposes, much prior work has opted to

implement low-complexity buffer management schemes which

statically divide the available buffer space among all VCs.

While such schemes minimize control logic complexity, they

are prone to buffer under-utilization when network load is not

evenly distributed across VCs. Furthermore, in order to avoid

credit stalls, each VC individually must be assigned at least

enough buffer space to be able to cover the credit round-trip

delay, causing buffer requirements to scale linearly with the

number of VCs while further reducing the average utilization

factor.

Dynamic buffer management schemes [7], [10], [12], on

the other hand, organize the buffer space available at each

router input port as a shared pool of slots which are dispensed

to individual VCs on demand. At the cost of more complex

control logic, this mitigates the adverse effects of uneven load

distribution across VCs. Additionally, by allowing VCs to use

slots from the shared pool to cover the credit round-trip delay,

the incremental cost for each VC is substantially reduced.

This enables the buffer to support more VCs than would be

feasible in a statically partitioned design, which in turn reduces

HoL blocking at high load [6], [7]. Overall, prior research has

shown that dynamic buffer management can either improve

performance by up to 25% for a given buffer size or reduce

the amount of buffer space required to achieve a desired level

of performance by 50% compared to a statically partitioned

design [7].

B. Performance Pathologies

While sharing buffer space among multiple VCs improves

utilization, it also introduces an additional degree of coupling

between VCs, as they now have to compete for both channel

bandwidth and buffer space. As we will demonstrate in the

remainder of this section, such coupling can lead to severe

performance degradation when buffer space is shared freely

among multiple types of traffic with different performance

characteristics. For clarity, we illustrate this effect using a

simplified example with two VCs; however, similar examples

are readily constructed for configurations with any number

of VCs that are divided into multiple traffic classes, e.g. for

purposes of deadlock avoidance, QoS or workload isolation.

Figure 1a shows a snapshot of the steady state of flits

from two different VCs, shaded in light gray and dark gray,
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Fig. 1. Unrestricted sharing causes congestion to spread across VCs.

arriving at router 0 from the bottom and left, traversing a

network channel, and leaving router 1 at the right and bottom,

respectively. The dotted outline highlights the credit loop that

implements flow control between the two routers: A credit is

consumed when the switch allocator at router 0 generates a

grant 1 . In subsequent cycles, the flit traverses the upstream

crossbar 2 and the channel 3 . It then arrives at router 1,

where it is buffered until it receives a grant from the switch

allocator 4 . Once a grant is generated, the credit is sent back

upstream 5 , allowing the switch allocator at router 0 to assign

the buffer slot to a different flit in the next cycle. Thus, in the

congestion-free steady state, four credits are outstanding, and

a total of at least five buffer slots is required to ensure that

the upstream router never exhausts its credit supply, enabling

it to forward a new flit in every cycle. Note that only one

of the outstanding credits actually corresponds to an occupied

downstream buffer slot, while the remainder account for in-

flight flits as well as the necessary delay for propagating

credits back upstream. Overall, in the absence of congestion,

all credits are used productively, as they directly support data

movement.

In Figure 1b, the bottom output at router 1 becomes

congested. As a result, the flit at the head of the buffer

becomes blocked—indicated by a pattern of stripes—and

remains stationary. Because there are still only four credits

outstanding, the congestion is not yet visible to the upstream



router, which thus continues to forward flits from both VCs

as they arrive. The light gray VC’s destination output remains

uncongested, and its flits therefore continue to be forwarded

from the downstream buffer immediately after arrival. As such,

any credits it consumes continue to be returned upstream after

one round-trip delay. In contrast, once flits from the dark

gray VC reach router 1, they are unable to make further

progress due to persisting congestion. This causes the flits to

accumulate in the buffer and prevents their credits from being

returned upstream.

Assuming that one buffer slot is reserved for each VC to pre-

vent interleaving deadlock and starvation [13], the congested

VC eventually fills up all of its available downstream buffer

space as shown in Figure 1c. By exhausting the VC’s credit

supply, this causes backpressure to reach router 0, prompting it

to exclude the VC from switch allocation and thus propagating

congestion within the VC upstream. For the uncongested VC,

on the other hand, flits continue to be forwarded immediately

after arrival at router 1. However, because only its reserved

buffer slot remains available to it, the VC can only forward a

single flit per credit round-trip interval across the channel; ad-

ditional flits that arrive at router 0 during this interval become

blocked, as shown in Figure 1c. Therefore, monopolization

effects in dynamically managed buffers also cause congestion

to spread across VCs, potentially degrading the performance

of otherwise well-behaved traffic.

In contrast to Figure 1a, the majority of the outstanding

credits in Figure 1c correspond to flits that remain stationary

in the downstream buffer; only one of the outstanding credits is

actually used to support data movement. Since the stationary

flits do not actively contribute to network performance, this

represents inefficient use of buffer resources, as it causes

overall throughput to be reduced and leaves network channels

severely under-utilized.

As demonstrated in this example, unrestricted buffer sharing

allows congestion to spread across VCs. This increases the

network’s susceptibility to tree saturation [14]; furthermore,

it allows a misbehaving workload that makes inefficient use

of network resources to significantly degrade the latency and

throughput of other workloads, even if the latter generate well-

behaved traffic themselves.

III. ADAPTIVE BACKPRESSURE

A. Overview

In order to mitigate the adverse effects described in Sec-

tion II-B without sacrificing the benefits of dynamic buffer

management under benign conditions, we introduce a mecha-

nism that regulates sharing by heuristically limiting the num-

ber of outstanding credits for each VC based on its observed

performance characteristics. The goal is to assign these credit

quotas in a way that provides individual VCs with enough

credits to sustain their observed throughput while minimizing

the amount of buffer space that is occupied unproductively as

in the example in Figure 1c.

When the number of outstanding credits for a given input

VC’s downstream destination VC reaches the current quota,

the input VC can no longer forward flits downstream until

additional credits return upstream or its quota increases. How-

ever, once occupied by a flit, a buffer slot’s corresponding

credit can only be returned upstream once the flit is forwarded

on. As a result, VCs can temporarily exceed their quota if an

update reduces it below the current number of outstanding

credits. Since quota checks are performed in addition to

the conventional checks for credit availability, this does not

interfere with the correct operation of the router; instead,

it simply causes the actual distribution of credits between

VCs to deviate from the desired distribution as determined by

the quotas. In the absence of network deadlock, any blocked

downstream VC will make progress eventually and return its

credits upstream. As these newly returned credits can only be

consumed by those VCs that have not exhausted their current

quota, such deviations from the desired credit distribution tend

to self-correct over time.

B. Quota Computation

In determining quota values for individual VCs, we aim to

make credits freely available to those VCs that utilize them

efficiently, while being more restrictive in cases that are prone

to the previously described performance pathologies. To this

end, we take advantage of the realization that the number

of credits that a given output VC can utilize productively is

effectively limited by the throughput it achieves:

Based on our earlier example in Figure 1a, we know that

if a VC achieves a steady-state throughput of one flit per

cycle, the number of outstanding credits required to support

this throughput is equal to the basic credit round-trip latency

determined by router pipeline and channel length. In the

absence of congestion, any additional credits available to the

VC beyond the required number will simply remain unused.

If congestion causes stalls at the downstream router, as

shown in Figure 2a, both the number of outstanding credits at

the upstream router and the number of occupied buffer slots

at the downstream router increase in response to each stall if

no quota is imposed. This represents inefficient use of buffer

space in the same way as in Figure 1c, as the additional flits

accumulating in the downstream router’s input buffer are not

needed to support the resulting effective throughput, and the

corresponding credits are unavailable to other VCs.

On the other hand, limiting the number of outstanding

credits to less than the amount required to cover the basic

credit round-trip latency leads to idle cycles in which the

downstream router’s input buffer is empty, as shown in Fig-

ure 2b: In the given example, once four flits are in flight—and

hence, all four allowed credits are outstanding—, the upstream

router must suspend transmission until one of the outstanding

credits returns. Thus, by imposing a quota on the number of

outstanding credits, we can effectively regulate throughput.

We can exploit this ability to regulate throughput by match-

ing the credit quota value to the level of downstream conges-

tion: Figure 2c shows the result of applying the downstream

stall pattern from Figure 2a, which causes throughput to be

reduced by 20 % at the downstream router, to Figure 2b, where
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(b) No congestion, 4-credit quota.
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(c) 20 % congestion, 4-credit quota.

Fig. 2. Matching quotas to congestion levels avoids unproductive use of downstream buffer space.

the credit quota leads to a 20 % reduction in throughput at the

upstream router. The resulting effective throughput is the same

as in Figure 2a; however, in contrast to the latter, there is no

unproductive accumulation of flits in the downstream router’s

input buffer. As a result, the congested VC uses fewer credits,

leaving more available to other VCs.

In the general case, we can avoid inefficient use of credits

and buffer resources in this way by setting a VC’s quota value

to the product of its effective throughput and the basic credit

round-trip latency Tcrt,base. However, in practice, the upstream

router cannot easily measure throughput directly. Instead, we

compute quota values based on the observed round-trip time

Tcrt,obs for individual credits:

If Tcrt,obs for a given credit is equal to Tcrt,base, we

know that the corresponding flit must have been forwarded

immediately at the downstream router, suggesting that the VC

it was assigned to is able to achieve unimpeded throughput;

consequently, we set its quota value to Tcrt,base credits.

On the other hand, Tcrt,obs for a credit may exceed Tcrt,base

if the corresponding flit experienced one or more stall cycles

at the downstream router directly, or if it incurred queueing

delay as an indirect result of previous stalls as shown by

the highlighted transition in Figure 2a. Each cycle by which

Tcrt,obs exceeds Tcrt,base requires a subsequent idle cycle in

order to avoid unproductive increases in buffer occupancy.

By subtracting the difference from the quota value for the

congestion-free case, we can ensure that the appropriate num-

ber of idle cycles will be generated over the course of the next

credit round-trip interval.

Noting that we must allow each VC to use at least one

credit in order to guarantee that quota values can continue to

be updated, we derive the overall equation for quota updates

based on the observed credit round-trip time:

Q = max(Tcrt,base − (Tcrt,obs − Tcrt,base), 1)

= max(2 × Tcrt,base − Tcrt,obs, 1) (1)

Quotas for all VCs are updated independently, and no

explicit effort is made to ensure that the sum of all quotas does

not exceed the total buffer capacity. However, as explained

in Section III-A, quota values merely represent a desired

distribution of buffer space among VCs and thus are not

required to be conservative in order to ensure correct operation.

C. Implementation

From an implementation perspective, ABP comprises two

main components: A facility that measures credit round-

trip times and updates quota values in response, as well as

a mechanism for preventing flits from being forwarded to

downstream VCs that have exhausted their quota.

To minimize overhead, we measure credit round-trip delay

for at most one outstanding credit per VC at a time. This

allows us to conduct the measurements using a timer and a

countdown register per VC as follows: A given VC’s timer is

started whenever a flit is forwarded to that VC and the timer is

not already running. At the same time, the countdown register

is initialized to the number of credits that are already out-

standing for this VC; this register is subsequently decremented

whenever a credit is received. When the first credit arrives after

the countdown register has reached zero, the timer is stopped



TABLE I
STORAGE OVERHEAD FOR ABP.

Description Cost

Quota registers V ×⌈log2(Tcrt,base)⌉ = 12 bits

Round-trip timers V ×⌈log2(2×Tcrt,base)⌉ = 16 bits

Countdown registers V ×⌈log2(B)⌉ = 16 bits

Total storage overhead per port 44 bits

and its value is used to update the VC’s quota. The width of the

timer must be chosen such that it can accommodate twice the

minimum credit round-trip time; in case of overflow, the quota

is simply set to its minimum value of one as per Equation 1.

Since measurements and quota updates can be performed off

the critical path, they do not affect the router’s cycle time.

With credit-based flow control, routers must track the num-

ber of outstanding credits for each output VC and block any

switch allocator request whose destination VC has no credits

available. We can implement quota enforcement for ABP as a

simple extension to this mechanism, with no further changes

to the router pipeline required.

D. Overhead

When using a dynamically managed input buffer with a

capacity of B = 16 flits per input buffer, V = 4 VCs and a

basic credit round-trip latency of Tcrt,base = 8 cycles, we can

compute the total number of registers required for implement-

ing ABP using Table I. Assuming a flit width of 64 bits, the

resulting 44 registers represent an overhead of 4.2 % relative

to the cost of the flit buffer and its associated management

logic.

IV. EXPERIMENTAL SETUP

We evaluate the efficacy of ABP using a customized ver-

sion of the BookSim 2.0 interconnection network simulator.

Simulations are performed on an 8×8 2D mesh network.

All network channels are 64 bits wide and have a delay of

one cycle. Packets are routed using Dimension-Order Routing

(DOR).

We model input-queued routers with credit-based flow con-

trol and two pipeline stages. The first stage performs com-

bined VC and switch allocation [15] and generates updated

lookahead routing information for the next hop [16], while

the second pipeline stage is reserved for crossbar traversal.

We use a separable input-first switch allocator design with

round-robin arbiters. After arriving at a router, credits incur a

processing and signal propagation delay of two cycles before

the corresponding downstream buffer slot becomes available

for allocation.

Each input buffer has a total capacity of 16 flits which is

shared among 4 VCs. One buffer slot is reserved for each VC

in order to avoid interleaving deadlock and starvation [13].

The baseline configuration does not otherwise restrict sharing,

while the adaptive configuration implements ABP as described

in Section III. For experiments with two traffic classes, two

VCs are statically assigned to each class.

Network terminals maintain a separate, unbounded injection

queue for each traffic class. Each terminal can can inject a

single flit into the network in any given cycle. Unless otherwise

noted, all reported latencies include source queueing delay.

We first present simulation results for synthetic traffic.

Packet arrival times are generated by a Bernoulli process.

Destination addresses are either chosen randomly or selected

according to one of five permutation patterns. Packet lengths

follow a bimodal distribution, with half the packets comprising

two and six flits, respectively.

To evaluate traffic isolation for realistic application work-

loads running on a heterogeneous CMP, we further simulate a

network where each node injects two different types of traffic

in separate classes:

We leverage Netrace [17] to generate traffic representa-

tive of latency-optimized CPU cores using PARSEC bench-

marks [11]. By tracking and enforcing dependencies between

packets in a trace, Netrace enables us to perform closed-

loop simulations without incurring the overhead of using a

full-system simulator. The target system for the PARSEC

traces models in-order RISC cores that run at four times the

network’s clock frequency and have private L1 instruction

and data caches of 32 kB each. The L1 caches are 4-way

associative, have a 3-cycle access time and implement MESI

coherence. 16 MB of L2 cache are organized as a 64-bank

fully shared S-NUCA cache with 8-way associativity and an 8-

cycle bank access time. Access times in both cases are reported

relative to the core clock. Cache lines are 64 bytes wide across

the hierarchy; with 64-bit wide network channels, this leads

to a bimodal packet length distribution where long packets

comprise a head flit, one flit carrying a 64-bit memory address

and eight payload flits, while short packets only include

the first two. There are a total of eight memory controllers

distributed along the four edges of the chip. Memory accesses

incur a latency of 150 core clock cycles.

In addition to application traffic, each node generates a

second class of traffic in which data is streamed to the memory

controllers at the maximum admissible rate (12.5 % per node).

This is intended to model an array of throughput-optimized

stream processing cores with a large aggregate number of

outstanding memory transactions that is co-located with each

latency-optimized core. Data is streamed at cache line gran-

ularity with the same bimodal packet length distribution as

application traffic. Destination addresses are interleaved such

that load is spread uniformly over all memory controllers.

V. EVALUATION

A. Network Stability

Figure 3a shows the effective throughput—i.e., the minimum

throughput observed across all source-destination pairs—for

the tornado traffic pattern as a function of the injection rate.

In this adversarial traffic pattern, once the saturation point is

reached, throughput for the baseline configuration decreases as

offered load continues to increase. This instability is a result

of starvation effects in the network that start to manifest as

contention increases.
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(b) Buffer occupancy.

Fig. 3. Network stability measurements for tornado traffic.
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Fig. 4. Effective throughput at 30 % load. Outlines show saturation rate.

By promoting efficient use of buffer resources, ABP sig-

nificantly reduces throughput degradation past the saturation

point: At 50 % injection rate, throughput is 7.76× higher than

that of the baseline configuration. We can explain this per-

formance increase by studying the average buffer occupancy

for the two configurations as shown in Figure 3b. Once the

injection rate passes the saturation point, buffer occupancy for

the baseline configuration quickly grows to a value that is on

the same order as the credit round-trip time. This is indicative

of the monopolization behavior shown in Figure 1c and causes

saturation to quickly spread throughout the network. With

ABP, on the other hand, buffer occupancy remains low even

once the network reaches saturation, leaving more credits

available and thus reducing network congestion.

While practical systems with finite injection queues are

inherently self-throttled, and therefore cannot operate in the

post-saturation region in steady state, it is possible for the

injection rate in such systems to exceed the saturation rate

temporarily, e.g. as a result of bursty traffic or the formation

of a transient hotspot. In such cases, maintaining high post-

saturation throughput enables the network to recover and

return to steady-state operation more quickly.

Figure 4 shows the effective throughput at 30 % injection

rate for different synthetic traffic patterns, as well as the

harmonic mean across patterns. With the exception of uniform

random, this places the network in saturation; consequently,

ABP is able to outperform the baseline implementation by

2.6×. This improvement comes at the cost of an average of

3 % reduction in saturation rate, shown as outlines in Figure 4.
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(a) Uniform background.
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(b) Hotspot background.

Fig. 5. Perceived foreground zero-load latency with background traffic.

For uniform random traffic, the saturation rate decreases by

10 %; this is because correlation between packets is reduced

due to their randomly selected destinations, and consequently

quota values are less likely to be applicable to successive

packets in a given VC. However, it should be noted that

this disadvantage only applies for uniform random traffic at

injection rates exceeding 33 %. With other traffic patterns, on

the other hand, ABP provides better performance starting at

significantly lower rates.

B. Traffic Isolation

Performance in many CMPs workloads is primarily limited

by latency rather than throughput [2]. In evaluating traffic

isolation, we thus focus our investigation on how packet

latency for a given foreground traffic is affected by a secondary

background traffic.

Figure 5 demonstrates how the perceived zero-load latency

observed by a foreground workload that consists of uniform

random traffic varies with different background injection rates.

We consider uniform random background traffic in Figure 5a

and background traffic comprising a hotspot at the center of the

network in Figure 5b. In both cases, latency initially increases

up to the point where the background workload becomes

saturated. Beyond this point, buffer occupancy in the baseline

network continues to increase, resulting in fewer credits being

available to the foreground traffic and thus a marked increase

in latency. With ABP, on the other hand, average buffer

occupancy stops increasing once the background load reaches

saturation, enabling the foreground traffic’s packets to traverse

the network with less delay.

Figure 6 illustrates the resulting latency-throughput charac-

teristics for uniform foreground traffic when uniform back-

ground traffic is injected at a rate of 50 %. ABP significantly

improves both the latency perceived by the foreground traffic

and its effective saturation throughput.

We similarly measure the perceived foreground zero-load

latency for the remaining traffic patterns; the results are shown

in Figure 7. The white segment at the bottom of each bar

corresponds to the true zero-load latency measured in the

absence of background traffic. As in Figures 5 and 6, when

going from 30 % to 50 % background injection rate, latency



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

50

100

150

offered load (flits/cycle/node)

la
te

n
c
y
 (

c
y
c
le

s
)

 

 

baseline adaptive

Fig. 6. Average foreground packet latency with 50 % background traffic.
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Fig. 7. Foreground zero-load latency increase with 50 % background traffic.

increases for the baseline configuration, but remains virtually

unchanged for the configuration using ABP.

The correspond simulation results with hotspot background

traffic are largely in line with those from Figure 5b, with about

35 % latency degradation for the baseline configuration and

virtually no change in latency when using ABP; we omit the

corresponding graphs for brevity.

C. Application Performance

Figure 8 shows the execution time increase observed for

individual PARSEC benchmarks that run on the general-

purpose cores in the presence of streaming background traffic

as described in Section IV, as well as the geometric mean

across all benchmarks. For each PARSEC application, we

measure the time it takes to deliver the first one million

packets from the benchmark’s Region of Interest (ROI) across

the network. All results are normalized to the execution time
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Fig. 8. Application slowdown for latency-optimized cores.

measured for the base configuration when no background

traffic is injected into the network.

The white segment at the bottom of each bar in Figure 8

corresponds to the execution time without background traffic

for a particular combination of configuration and benchmark.

As in our earlier experiments with synthetic traffic, we see

that using ABP does not adversely affect the performance in

the benign case.

Once streaming background traffic is injected, all three

configurations experience significant performance degradation.

This slowdown is primarily a result of increased packet la-

tency: As the simple in-order cores modeled in our experiment

support only a single outstanding memory transaction, any

additional network delay incurred by memory traffic directly

results in stall cycles.

The reasons for the latency increase are two-fold: On the

one hand, additional contention delay is incurred as a result of

failed allocation attempts as both types of traffic compete for

channel bandwidth. On the other hand, dynamically managed

input buffers can allow the streaming background load to

monopolize buffer space as described in Section II, effectively

limiting the application traffic’s credit supply. In contrast to

contention-induced delay, the effects of this indirect throttling

cannot be mitigated by prioritizing latency-sensitive traffic

during allocation.

In limiting buffer occupancy for adversarial traffic, ABP

reduces packet latency and improves throughput for the PAR-

SEC traffic generated by the general-purpose cores, result-

ing in a 34 % reduction in execution time compared to the

baseline configuration. The benefit of employing ABP is least

pronounced (15 %) for the vips benchmark; this is because

vips uses coarse-grain parallelism with comparatively little

sharing and data exchange between different nodes, making

this benchmark less sensitive to network performance. In

contrast, the canneal benchmark generates significantly higher

network load and is thus much more sensitive to network

performance, resulting in improvements of 39 %.

VI. RELATED WORK

The ViChaR scheme [7] regulates the number of active

VCs at each router input based on network load; however, it

does not impose limits on the amount of buffer space that

individual VCs can occupy. While the use of atomic VC

allocation and a fixed, short packet length prevent individual

VCs from monopolizing buffer space in this scheme, groups

of VCs with similar performance characteristics—e.g. those

assigned to a particular traffic class—can in aggregate still

significantly degrade performance for other VCs.

Banerjee and Moore [18] show that resource utilization in

NoCs can be improved by performing allocation for flows

rather than for individual packets. Shim et al. [19] propose

a similar approach that statically binds flows to specific VCs

at design time. Both approaches prevent blocked flows from

acquiring more than a single VC at each input buffer, but

neither limits the amount of buffer space occupied by that VC.

As such, they are complementary to our proposed mechanism.



Lai et al. [20] propose a scheme in which each router

predicts congestion levels at neighboring routers’ output ports

and prioritizes those packets during switch allocation that will

be forwarded to uncongested outputs. Similarly to ABP, this

causes fewer flits to be sent to VCs which are subject to

downstream congestion; however, because congestion levels

are estimated at port granularity, this approach cannot prevent

interference between multiple flows of packets destined for the

same output.

Network-level congestion control schemes based on source

throttling [21], [22] inherently mitigate buffer monopolization

effects by reducing the incidence of congestion in the net-

work. However, because such schemes only perform coarse-

grained traffic regulation at the network boundary, they tend

to be pessimistic and slow to react to localized changes in

network behavior. Furthermore, they typically only consider

the aggregate behavior across all VCs and thus do not address

interference between concurrent workloads.

Finally, prior research has explored various schemes for

providing QoS guarantees and isolation between workloads

in NoCs [23]–[25]. These mechanisms generally assume that

buffer space is statically partitioned and include no provisions

to avoid interference effects caused by buffer sharing; con-

sequently, such approaches are complementary to the ABP

scheme introduced in the present contribution.

VII. CONCLUSIONS

In this paper, we have introduced ABP, a novel scheme

for regulating buffer space usage in dynamically managed

router input buffers. By heuristically limiting each VC’s credit

supply based on its observed performance characteristics, the

proposed scheme aims to minimize unproductive use of buffer

space and to prevent VCs that experience downstream conges-

tion from monopolizing shared buffer space at the expense of

other VCs’ performance. These benefits are achieved while

maintaining the key utilization and performance benefits that

buffer sharing provides under benign load conditions. ABP

can be implemented as a simple, low-overhead extension to

the existing flow control logic.

We evaluate our proposed scheme on a 64-node mesh

network and show that it improves network stability and

increases throughput under heavy load by 2.6× on average for

a set of synthetic traffic patterns. Furthermore, we demonstrate

that it is effective at reducing performance coupling in the

presence of background traffic, yielding an average improve-

ment in zero-load latency of 31 % compared to a state-of-

the-art implementation with unrestricted sharing. Finally, we

present simulation results for PARSEC benchmarks running

on a heterogeneous CMP and show that ABP can reduce

the performance impact of sharing the network with arrays

of stream processing cores by an average of 34 % across

benchmarks.

Overall, ABP enables networks to satisfy more stringent

quality-of-service requirements while preserving the benefits

of unrestricted buffer sharing under benign load conditions.
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