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ABSTRACT
Processors for mobile multimedia devices must be low power
while having excellent performance on media applications.
Our processor, VIRAM1, accomplishes this by combining
vector processing with embedded DRAM.

VIRAM1 includes a scalar core, 13 megabytes (104 mega-
bits) of DRAM, and four vector datapaths. It consumes 2
watts at 200 MHz and executes up to 9.6 giga-ops (16 bit)
per second.

1. INTRODUCTION
VIRAM1 is a vector IRAM (Intelligent RAM) [7] pro-

cessor designed at UC Berkeley by a small team of three
full-time and three part-time graduate students working for
approximately two years.1 It is designed as a prototype of
an architecture for mobile multimedia devices, and combines
the idea of vector processing and the technology of embed-
ded DRAM. The final design, implemented in .18 µm CMOS
with 6 layers of metal, has over 125 million transistors. The
die is approximately 325 mm2. The design was taped out
in late 2002 and we received packaged parts in late summer
2003. Testing is currently proceeding.

1.1 Mobile multimedia devices
Mobile multimedia devices are portable devices that share

a set of unique characteristics. The devices are small, light,
and operate on battery; consequently, power and small pack-
aging are primary concerns of their designers. [6]

Multimedia applications have a high degree of data par-
allelism, as they typically repeat a small set of DSP-type
operations over a large sequence of inputs. [1] While desktop

1Christos Kozyrakis has since graduated and is now a pro-
fessor at Stanford. The additional VIRAM1 designers, Dave
Martin, Iakovos Mavroidis, and Ioannis Mavroidis, have
since graduated.
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machines move to 64 bits, media applications often operate
on data widths of 8 or 16 bits.

1.2 Vector processing
A typical scalar processor executes instructions that op-

erate on a single piece of data at a time. Vector instruc-
tions, on the other hand, operate on linear arrays of num-
bers. Each vector instruction specifies source vector regis-
ters, a vector length, and the operation that is to be applied
element-wise to the vectors. Additionally, vector instruc-
tions support conditional execution by including a mask that
specifies which elements the instruction should operate on.
A vector processor typically works with a scalar processor
that performs scalar operations.

A key feature of vector processing is that it explicitly ex-
poses data parallelism. [2] Part of the semantics of a vec-
tor instruction include the guarantee that the data elements
that make up the source vectors are mutually independent,
and may therefore be executed in parallel. Because of the
independence of individual operations that make up a vector
instruction, it is quite simple to execute vector instructions
on parallel datapaths, called lanes.

The parallelism that is exposed is a wonderful match for
media applications, which by their nature contain many in-
dependent data items. Any data processing requires a set
of operations to be applied to a long series of data elements,
which can quite easily be expressed in vector format.

Vectors also have an energy benefit: instruction fetch and
decode only has to be performed once for a vector instruc-
tion that contains many operations. Furthermore, since
data parallelism is explicit in vector instructions, no power-
inefficient speculation, prediction, or re-ordering is needed
to discover that parallelism.

Another benefit to adding vector processing in VIRAM1
is that it allows the chip to attain considerable performance
while remaining relatively simple to design. Modern micro-
processors take large groups of designers many years to de-
velop; a comparatively simple vector unit that still provides
impressive performance is within the design capabilities of
a team of graduate students.

1.3 Embedded DRAM
Embedded DRAM has a number of advantages over con-

ventional, off-chip DRAM. [8] With off-chip DRAM, the
bandwidth is largely limited by the width of the memory
bus. Embedded DRAM exposes a much wider interface to
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Figure 1: The floorplan of VIRAM1.

the data, allowing greater-bandwidth access, and can be or-
ganized with more banks, allowing more overlap among ac-
cesses. The alternative approach to getting greater band-
width from off-chip DRAM, increasing the clock rate of the
bus, increases the power consumed. Furthermore, embed-
ding DRAM on the same die as logic reduces chip count for
mobile devices, which can reduce the size and weight of those
devices and simplify their board design. While available on-
chip area imposes limits on how much memory can fit on a
die, many mobile applications have a relatively low memory
requirement and are therefore a good match for embedded
DRAM.

1.4 Motivation for VIRAM1
VIRAM1 combines a number of unique ideas. While we

executed a number of simulations to show that the ideas
were with merit, those simulations can not show all of the
issues and problems that can arise through the process of
designing and implementing a physical chip. Therefore, we
decided to fabricate and test a real processor. By undergoing
the complete design process, we would have ample opportu-
nities to explore and deal with any architectural and design
issues that would not otherwise be apparent.

Another reason to implement hardware is to motivate
software development. Software simulations can facilitate
design verification, but they are many times slower than ac-
tual hardware. Executing small kernels to show performance
is possible in software simulations, but simulation can’t be
used in a truly functional way: real hardware provides a
platform for actually running interesting software. By plan-
ning to produce real hardware, development of significant,

more complicated software can be encouraged.
Real hardware gives the best measurements of power and

performance. Although both can be estimated in simula-
tion, simulation necessarily simplifies the actual hardware
and therefore provides less accurate results. Even the best
simulation results can be questioned and doubted; real hard-
ware shows real results.

Finally, going through the process of building the hard-
ware shows that with the design style that is used in VI-
RAM1, it really is possible to design a high performance,
low power media processor with a small team of dedicated
graduate students.

2. VIRAM1 SPECIFICATIONS
Figure 1 shows the floorplan of VIRAM1. The key compo-

nents are the scalar core, the vector control unit, the vector
lanes, and the embedded DRAM.

The scalar core is a MIPS M5Kc core, which is a 64-bit,
single issue, in-order scalar core with 8 KByte instruction
and data caches. A single-precision scalar floating point
unit and the vector control unit both interface to the scalar
core through the coprocessor interface.

There are 8 embedded DRAM macros from IBM, each of
which is 13 Mbit. The macros are organized as independent
banks, which allows for overlapping transfers. Each macro
has separate 256-bit interfaces for input and output data
bits.

Figure 2 shows a single vector lane. Each lane has one
fourth of an 8 Kbyte vector register file. The full vector reg-
ister file can store 32 64-bit, 64 32-bit, or 128 16-bit elements



Register

File

3.0mm

3
.3

m
m

Arith 0

Floating

Point

Arith 0

Multiply

Arith 0

Misc

Arith 1

Misc

Flag

Unit

Mem

Port

B
u

ff
e

rs
, R

o
u

ti
n

g

Figure 2: VIRAM1’s vector lane.
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in each of its 32 vector registers.
The vector lane contains two arithmetic units, one of

which is able to execute single-precision floating point and
integer multiplication operations. To support media appli-
cations, the arithmetic units operate on fixed-point data and
support common media operations. Figure 3 shows a fixed-
point multiply-add instruction in VIRAM1, that includes
shifting and rounding to scale the result into the appropri-
ate fixed-point format, and has the ability to saturate. The
arithmetic datapaths are partitionable: they can perform a
single 64-bit, two 32-bit, or four 16-bit integer operations at
a time, and can perform two single-precision floating point
operations at a time.

In addition to the two arithmetic units, each lane contains
a load and store unit as well as a flag processing unit. The
flag processing unit operates on 16 vector flag registers, each
of which has a single bit for every element in a regular vector
register. The flag registers are used as masks for vector
instructions, which enables conditional execution: the flag
register can be set from a comparison, so that further vector
operations only affect the appropriate elements of the vector.

VIRAM1’s architecture is described more fully in [3] and
[5].

Table 1 summarizes the peak performance of VIRAM1
while executing at 200 MHz. The total area of the chip is
about 325 mm2, and simulations show the power consump-

Table 1: Peak performance of VIRAM1.

Data Type Data Width Peak Performance

Integer 16b 6.4 GOps / sec
32b 3.2 GOps / sec
64b 1.6 GOps / sec

Floating point 32b 1.6 GFlops / sec
Fixed point 16b 9.6 GOps / sec

32b 4.8 GOps / sec
64b 2.4 GOps / sec

tion to be approximately 2 watts.
Table 2 shows a comparison of VIRAM1 and a represen-

tative variety of embedded processors. [4] The benchmarks
used are part of the EEMBC (Embedded Microprocessor
Benchmark Consortium) suite. The Telecom and Consumer
application areas were used because they represent the clos-
est match with VIRAM1’s design goals.

The results in table 2 show that VIRAM1 is able to sig-
nificantly outperform all of the listed processors on these
benchmarks. The performance advantage relative to power
consumed is greater still. It is interesting to note that among
the processors compared, VIRAM1 has the second-slowest
clock rate and is the only single-issue processor.

3. PLANNING AND DESIGN
The initial discussions that led to the design of VIRAM1

involved looking at embedded DRAM with vector process-
ing. The bandwidth available from embedded DRAM works
well with vector processing for a number of applications, in-
cluding scientific, high-performance computing. After con-
sidering designing a high-speed processor, we decided to
build a low-power media-oriented processor for a few rea-
sons: first, we felt that low-power and media computing were
(and are) interesting targets that deserve more research, and
secondly, the design of a low-power processor was more rea-
sonably within the design capabilities of a small team of
graduate students.

Once the target was established, a number of decisions
presented themselves. The vector ISA, the amount of em-
bedded DRAM, and the number of vector processing re-
sources (what arithmetic operations should be supported,
and how many arithmetic units should be included) were all
examined.

We added a number of features to improve performance
on media applications. VIRAM1 contains hardware to exe-
cute fixed-point DSP-type operations, including saturation
and multiply-adds that include shift and rounding in hard-
ware. We also included support for memory operations that
load sequential, every other, or every third memory element;
those patterns are common in applications that use complex
number or RGB pixel values. Additionally, we added sup-
port for reductions, whereby a full vector register is com-
pressed (e.g., by adding all elements together), to increase
the speed of fast Fourier transforms and dot products, which
are commonly used in video and image processing.

We looked at a number of different configurations for vec-
tor lanes and memory banks, some of which are shown in
figure 4. An interesting result of our design style is that
we could scale VIRAM1 to produce each of those configu-
rations without significant changes in the control logic, and
programs could execute on any of them without being re-



Table 2: Performance comparison of a variety of high-performance embedded processors. Higher score

indicates higher performance.

Processor Clock Frequency Power ConsumerMark TeleMark
VIRAM1 200 MHz 2 W 201.4 61.7

Motorola PowerPC MPC7455 1000 MHz 21.3 W 122.6 27.2
AMD K6-III+ 550 MHz 21.6 W 34.2 8.7

TI C6203 300 MHz 1.7 W n/a 44.6
NEC MIPS VR5000 250 MHz 12.1 W 14.5 2.0
Trimedia TM1300 166 MHz 2.7 W 110.0 n/a
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Figure 4: Different configurations of vector lanes

and memory banks.

compiled. In fact, we ended up relying on that flexibility:
during the planning stages, we didn’t know precisely how
large the vector lanes would be. Instead of fixing the de-
sign on a conservative, small-capacity DRAM macro size, we
were able to choose the largest capacity macro that would
fit (which ended up being 13 Mbits for each of the 8 macros)
after the final size of the vector lanes was determined.

After the specifications were set, we focused on clocking
and power strategies. We wanted to run with the slowest
clock that would allow us to achieve the performance we
needed for our applications: a slower clock would allow us
to reduce the power supply voltage. Since power is pro-
portional to clock frequency and to the square of voltage,
reducing the clock speed with a corresponding reduction
in power supply voltage is extremely useful in conserving
power. We ran a number of simulations that showed that
we could achieve the performance we wanted with a clock
speed of 200 MHz, and that we could attain that speed with
a power supply voltage of 1.65 V. To further help conserve
power, we decided to use gated clocks that would allow us
to turn off blocks that weren’t in use.

The top layer of metal, M6, was dedicated to power and
ground wires. On that layer, wires were as large and densely
placed as possible. For synthesized blocks, we performed
HSPICE simulations to determine what power grid struc-
ture we needed to keep the power supply drop low enough.
The power grid was extended down to M2 before standard
cells were placed and routed, to ensure that power would be

supplied to all logic.

4. IMPLEMENTATION
VIRAM1 contains a large variety of design elements from

different sources: we combine macro blocks, soft cores, our
own synthesized logic, and custom layout. Each type has
its own challenges, and combining such a variety presented
a number of different issues.

4.1 IP and Cores
We were fortunately able to use a significant amount of

intellectual property (IP) from other sources. That allowed
us to focus on the vector blocks of the design and overall
integration, and is a large part of the reason we were able
to complete such an ambitious project.

We used IBM’s SA27E technology with their 7SF (.18 µm
CMOS, 6-layer copper) process. SA27E technology includes
a variety of embedded DRAM macros. We also used a PLL,
a standard cell library, and a few SRAMs from IBM.

We used the M5Kc scalar core from MIPS. The scalar core
came in the form of synthesizable Verilog.

Finally, we obtained a Verilog description of a floating
point datapath from the MIT RAW project. After heavy
modifications to meet our specific requirements, the datap-
aths were used in the vector lanes.

4.2 Synthesis
We used Synopsys Design Compiler to synthesize the Ver-

ilog blocks and verified the results with Formality. During
synthesis, we noted a few difficulties with the cell library.
In the end, we designed a set of replacement flip-flops and
buffers to work with the standard cells. We had to charac-
terize their timing and power consumption, and add that to
the timing information for the other cells, but it allowed us
to synthesize the blocks with the tools we had.

We designed the vector control logic and much of the vec-
tor lanes in Verilog. Design logic verification was a priority.
The scalar core, fortunately, came with a complete testbench
that greatly simplified its functional verification. Our logic,
however, was more complicated to test. To facilitate verifi-
cation, we wrote a test suite and ISA simulator.

The test suite works with the ISA simulator, the Synopsys
VCS Verilog compiler, and a short test file. The test file de-
scribes the initial machine state, a section of code to execute,
and a test section that is used to determine if the test passes.
The test suite simplifies testing different machine configura-
tions: for example, a test file with a single code section can
be run with different endianness, user mode, TLB config-
uration, and hardware resources based on options given to
the test suite.

The test suite allowed us to run tests on the Berkeley



Millennium cluster of 300 x86/Linux machines and a local
cluster of a dozen Sun Ultrasparc and x86/Linux machines.
A simple interface found and distributed tests across open
machines automatically.

We used the test suite to verify the scalar FPU, the vec-
tor unit and lanes, the DMA engine, and the coprocessor
interface. We wrote 2500 tests, which include 500K lines of
code in the test files. That code expands into over 5M lines
for each of the hundreds of possible test modes.

4.3 Custom Layout
Custom layout was performed on two main blocks: the

vector register file, and the crossbar that connects the scalar
core, DRAM, and vector lanes. We decided to perform cus-
tom layout on these blocks because they are time-critical,
large blocks with a high degree of repetition, and would
therefore derive a significant benefit from hand layout over
synthesis. Hand layout was also performed on a few small
circuits that were added to the standard cell library as de-
scribed above.

Layout was performed using Virtuoso from Cadence. The
design rules were coded into a Diva runset, which was used
to perform DRC checks on small cells within Virtuoso; all
blocks were verified using Hercules with the official DRC
runset.

After blocks were laid out, they were extracted to an
HSPICE netlist using StarEX from Avant!. The HSPICE
netlist was translated to a Verilog netlist and simulated
with NanoSim from Synopsys to perform functional checks
of large circuits. Small circuits and critical sections of larger
circuits were simulated by using Avant!’s StarRC to extract
parasitic resistances and capacitances, which were then run
through HSPICE.

We wrote a C library of tools that could parse GDS design
files, which was used to create a number of helper utilities.
One example is a utility that was used to stitch together
small blocks into a larger design. That program was used
extensively in the crossbar, which was large but had a high
degree of repetition. The GDS library was also used to trans-
late GDS layers between tools; it was more flexible than the
translation features built into the tools, and proved to be a
valuable asset.

4.4 Place and Route
Once Verilog blocks were synthesized and custom layout

was finished, we used Avant!’s Apollo place and route tool
with Saturn in-place optimization.

We experienced a number of difficulties in getting the
place and route tools working in the way we needed. We
had the standard cell library in GDS format with timing in-
formation exported from the Synopsys tools. After much ex-
perimentation, we were able to import the standard cells and
translate the timing information. Additionally, we needed
to create abstracted views of large blocks that already had
associated layout: macros, DRAMs, SRAMs, and custom
layout. The built-in tools had difficulty extracting the ap-
propriate information for some blocks; in those cases, we
had to create an abstract view by hand and replace the
block with actual layout when exporting.

After the blocks were placed and routed, we used Saturn
to optimize the design and perform static timing checks. Af-
ter the design passed timing goals, we used Apollo’s built-
in tools to perform a basic Design Rules Check to verify

that that routes were placed legally, and a Layout Versus
Schematic check to verify that the routes were correct. Fi-
nally, we exported the blocks and used PrimeTime from
Synopsys to run another static timing check and Hercules
to perform a final Design Rules Check.

5. TESTING STRATEGY
Testing the completed chip was a concern from the begin-

ning. We wanted to ensure that we had a plan that would let
us methodically test the different components of the design,
and isolate any issues that might arise.

Each block was designed with fault isolation in mind. We
used a variety of means to ensure that an error in one part
of the design wouldn’t prevent us from testing or using the
rest of the design. We included bypass options for both
the PLL and the instruction and data cache on the scalar
core. We can map addresses to on-chip memory in such a
way that we can avoid using any DRAM macro or macros
that have fabrication errors. The vector lanes are designed
so that either arithmetic unit can be disabled and execution
can proceed using the other unit. Finally, many functions of
the vector control logic (for example, the ability to forward
results instead of writing everything back to the register file)
can be disabled in the event that there is a design error that
the design verification did not discover.

The design was organized so that separate blocks were
able to be tested separately. Once initial electrical tests pass,
the scalar core is the first block to test. It does not depend
on functional operation of any of the other large blocks, so it
can be tested effectively in isolation. After that, we can test
the scalar floating point unit and crossbar, since they both
only depend on the proper operation of the scalar core. Once
the proper operation of the crossbar is established, we can
test the DRAM and vector lanes. The DRAM storage array
is tested and repaired by the foundry during fabrication,
leaving only the interface for us to test. The vector lanes
can be tested one component at a time: first, values can be
transferred from the scalar core to the vector register file;
from there, the memory, flag, and arithmetic units can be
tested individually.

Testing the scalar core and vector control blocks will be
assisted by the addition of scan flip-flops. All of the flip-
flops in the scalar core and the vector control unit are scan
flip-flops; we also have scan flip-flops along the boundaries
of large blocks in the lanes.

Once we have packaged parts and we’ve tested them for
power-ground shorts, we can use our test system. The scalar
core in VIRAM1 is a MIPS M5Kc core designed to work
with the MIPS Malta development board. The develop-
ment board has a number of useful debugging features, in-
cluding a built-in monitor system with a flash ROM. The
monitor loads from the ROM and lets us interface to the
CPU-independent circuitry, including standard PC inter-
faces, DIP switches for CPU settings, an LED display, and
logic analyzer interfaces. All of the CPU-related circuitry,
including the actual CPU, memory, and system controller,
is hosted on a daughter card. The daughter card comes with
a standard core and lets us set up and test the board.

Once the Malta board is set up, we can replace the daugh-
ter card with a VIRAM1 daughter card. The VIRAM1
daughter card, designed by the Information Sciences Insti-
tute of the University of Southern California, replicates the
functions of the standard daughter card, but includes an



external clock interface, DC voltage regulators, and a num-
ber of test points and logic analyzer interfaces that let us
measure voltages and examine buses. Individual VIRAM1
chips will be mounted on test cards that will connect to our
daughter card.

For each chip that passes power-ground short tests, we can
mount that chip’s test card on our daughter card. Then we
can use the flash monitor to see if the chip boots the scalar
core at speed, or where it stops. Once the scalar core is
functional, we can load programs through the Malta board’s
built-in interfaces to test additional blocks as outlined above.
For any individual chip, we can vary the voltage or clock
speed on the core card to see what combinations make the
chip succeed or fail.

6. CURRENT STATUS
VIRAM1 design began in the summer of 2000 and com-

pleted in the fall of 2002. VIRAM1 was taped out at the
end of October 2002; we ended up going back and forth with
different Design Rules Check decks until we and the foundry
agreed that our design met all checks.

Figure 5: Die microphotograph of VIRAM1.

Our final design has a total of over 125 million transistors.
The die size is 17.6 by 18.9 mm. Figure 5 shows a picture
of the die.

We received the final wafers in June of this year. The
wafers included a total of 200 good dice. Wafers were sent
out for dicing and packaging, and were received at the end
of July. We have recently received the completed replace-
ment daughter card for the Malta test board, and testing is
currently proceeding.
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