A Generalized Framework for Auto-tuning Stencil Computations

Shoaib Kamil1,3, Cy Chan4, Samuel Williams1, Leonid Oliker1, John Shalf1,2, Mark Howison3, E. Wes Bethel1, Prabhat1

1Lawrence Berkeley National Laboratory (LBNL)
2National Energy Research Scientific Computing Center (NERSC)
3EECS Department, University of California, Berkeley (UCB)
4CSAIL, Massachusetts Institute of Technology (MIT)

SAKamil@lbl.gov
The Challenge: Productive Implementation of an Auto-tuner
Conventional Optimization

- Take one kernel/application
 - Perform some analysis of it
 - Research the literature for appropriate optimizations
 - Implement a couple of them by hand optimizing for one target machine.
 - Iterate a couple of times.

- Result:
 improve performance for **one** kernel on **one** computer.
Conventional Auto-tuning

- Automate the code generation and tuning process.
 - Perform some analysis of the kernel
 - Research the literature for appropriate optimizations
 - Implement a code generator and search benchmark
 - Explore optimization space
 - Report best implementation/parameters

- Result:
 - Significantly improve performance for one kernel on any computer.

- i.e. provides **performance portability**

- Downside:
 - Autotuner creation time is substantial
 - Must reinvent the wheel for every kernel
Generalized Frameworks for Auto-tuning

- Integrate some of the code transformation features of a compiler with the domain-specific optimization knowledge of an auto-tuner
 - parse high-level source
 - apply transformations allowed by the domain, but not necessarily safe based on language semantics alone
 - generate code + auto-tuning benchmark
 - explore optimization space
 - report best implementation/parameters

- Result:
 significantly improve performance for any kernel on any computer for a domain or motif.
 i.e. performance portability without sacrificing productivity
Outline

1. Stencils
2. Machines
3. Framework
4. Results
5. Conclusions
Benchmark Stencils

- Laplacian
- Divergence
- Gradient
- Bilateral Filtering
What’s a stencil?

- Nearest neighbor computations on structured grids (1D…ND array)

- Stencils from PDEs are often a weighted linear combination of neighboring values

- Cases where weights vary in space/time

- Stencil can also result in a table lookup

- Stencils can be nonlinear operators

- Caveat: We only examine implementations like Jacobi’s Method (i.e. separate read and write arrays)
Laplacian Differential Operator

- 7-point stencil on scalar grid, produces a scalar grid
- Substantial reuse (+high working set size)
- **Memory-intensive** kernel
- Elimination of capacity misses may improve performance by 66%
Divergence Differential Operator

- 6-point stencil on a vector grid, produces a scalar grid
- Low reuse per component.
- Only z-component demands a large working set
- Memory-intensive kernel
- Elimination of capacity misses may improve performance by 40%

```
read_array[ ][ ]
```

```
x dimension
```

```
write_array[ ]
```

```
xy product
```

```
i,j,k
i-1,j,k
i+1,j,k
i,j,k-1
i,j,k+1
```
Gradient Differential Operator

- 6-point stencil on a scalar grid, produces a vector grid
- High reuse (like laplacian)
- High working set size
- three write streams (+ write allocation streams) = 7 total streams
- Memory-intensive kernel
- Elimination of capacity misses may improve performance by 30%
3D Bilateral Filtering

- Extracted from a medical imaging application (MRI processing)
- Normal Gaussian stencils smooth images, but destroy sharp edges.
- This kernel performs anistropic filtering thus preserving edges.
- We may scale the size of the stencil (radius=3,5)
 - 7^3-pt or 11^3-pt stencils.
 - apply to dataset of 192 x 256x256 slices
 - originally 8-bit grayscale voxels, but processed as 32-bit floats
3D Bilateral Filtering
(pseudo code)

- Each point in the stencil mandates a **voxel-dependent indirection**, and each stencil also requires one **divide**.

```plaintext
for all points (xyz) in x,y,z{
    voxelSum = 0
    weightSum = 0
    srcVoxel = src[xyz]
    for all neighbors (ijk) within radius of xyz{
        neighborVoxel = src[ijk]
        neighborWeight = table2[ijk]*table1[neighborVoxel-srcVoxel]
        voxelSum += neighborWeight*neighborVoxel
        weightSum+=neighborWeight
    }
    dstVoxel = voxelSum/weightSum
}
```

- Large radii results in extremely **compute-intensive** kernels with large working sets.
Benchmark Machines
Multicore SMPs

- Experiments only explored parallelism within an SMP
- We use a Sun X2200 M2 as a proxy for the XT5 (e.g. Jaguar)
- We use a Nehalem machine as a proxy for possible future Cray machines.
- Barcelona/Nehalem are NUMA

AMD Budapest (XT4)
- HyperTransport
- 2x64b controllers
- Opteron
- 512K
- 2MB victim
- SRI / xbar
- 800MHz DDR2 DIMMs
- 12.8 GB/s

AMD Barcelona (X2200 M2)
- HyperTransport
- 2x64b controllers
- Opteron
- 512K
- 2MB victim
- SRI / xbar
- 667MHz DDR2 DIMMs
- 10.66GB/s

Intel Nehalem (X5550)
- QuickPath
- 3x64b controllers
- MT Core
- 256K
- 8MB shared L3
- 6 x 1066MHz DDR3 DIMMs
- 25.6 GB/s

AMD Barcelona (X2200 M2)
- QuickPath
- 3x64b controllers
- MT Core
- 256K
- 8MB shared L3
- 6 x 1066MHz DDR3 DIMMs
- 25.6 GB/s
Generalized Framework for Auto-tuning Stencils

Copy and Paste auto-tuning
Overview

Given a F95 implementation of an application:

1. Programmer annotates target stencil loop nests
2. Auto-tuning System:
 - converts FORTRAN implementation into internal representation (AST)
 - builds a test harness
 - Strategy Engine iterates on:
 - apply optimization to internal representation
 - backend generation of optimized C code
 - compile C code
 - benchmark C code
 - using best implementation, automatically produces a library for that kernel/machine combination
3. Programmer then updates application to call optimized library routine
The strategy engines can auto-parallelize cache blocks among hardware thread contexts.

We use a single-program, multiple-data (SPMD) model implemented with POSIX Threads (Pthreads).

All threads are created at the beginning of the application.

We also produce an initialization routine that exploits the first touch policy to ensure proper NUMA-aware allocation.
Strategy Engine: Auto-tuning Optimizations

- **Strategy Engine** explores a number of auto-tuning optimizations:
 - loop unrolling/register blocking
 - cache blocking
 - constant propagation / common subexpression elimination

- **Future Work:**
 - cache bypass (e.g. movntpd)
 - software prefetching
 - SIMD intrinsics
 - data structure transformations
Experimental Results

NOTE: threads are ordered to exploit:
multiple threads within a core (Nehalem only),
then multicore,
then multiple sockets (Barcelona/Nehalem)
Laplacian Performance

- On the memory-bound architecture (Barcelona), auto-parallelization doesn’t make a difference.
- Auto-tuning enables scalability.
- Barcelona is bandwidth-proportionally faster than the XT4.
- Nehalem is ~2.5x faster than Barcelona, and 4x faster than the XT4.
- Auto-parallelization plus tuning significantly outperforms OpenMP.
Divergence Performance

- No changes to the framework were required (just drop in F95 code)
- As there was less reuse in the Divergence than in Laplacian, there are fewer capacity misses.
- So auto-tuning has less to improve upon
- Nehalem is ~2.5x faster than Barcelona
Gradient Performance

- No changes to the framework were required (just drop in F95 code)
- Gradient has moderate reuse, but a large number of output streams.
- Performance gains from auto-tuning are moderate (25-35%)
- Parallelization is only valuable in conjunction with auto-tuning
3D Bilateral Filter Performance
(radius=3)

- No changes to the framework were required (just drop in F95 code)
- Essentially a 7x7x7 (343-pt) stencil
- Performance is much more closely tied to GHz instead of GB/s.
- Auto-parallelization yielded near perfect parallel efficiency wrt cores on Barcelona/Nehalem (Nehalem has HyperThreading)
- Auto-tuning significantly outperformed OpenMP (75% on Nehalem)
3D Bilateral Filter Performance
(radius=5)

- basically the same story as radius=3
- XT4/Nehalem delivered approximately same performance as they did with radius=3
- Barcelona delivered somewhat better performance.
Summary
Summary: Framework for auto-tuning stencils

- **Dramatic step forward in auto-tuning technology**

- Although the framework required substantial up front work, it provides performance portability across the breadth of architectures **AND** stencil kernels.

- Delivers very good performance, and well in excess of OpenMP.

- Future work will examine relevant optimizations
 - e.g. cache bypass would significantly improve gradient performance.
Barcelona delivers bandwidth-proportionally better performance on the memory-intensive differential operators.

Surprisingly, Barcelona delivers ~2.5x better performance on the compute intensive bilateral filter.

Nehalem clearly sustains dramatically better performance than either Opteron.

Despite having a 15% faster clock, nehalem realizes a much better bilateral filter performance.
Acknowledgements

- Research supported by DOE Office of Science under contract number DE-AC02-05CH11231
- Microsoft (Award #024263)
- Intel (Award #024894)
- U.C. Discovery Matching Funds (Award #DIG07-10227)
- All XT4 simulations were performed on the XT4 (Franklin) at the National Energy Research Scientific Computing Center (NERSC)
Questions?