
E Progress Report
In the first phase of the project we have demonstrated novel approaches in several areas:

i. Low overhead automated and precise detection of concurrency bugs at scale.
ii. Using low overhead bug detection tools to guide speculative program transformations for

performance.
iii. Techniques to reduce the concurrency required to reproduce a bug using partial program

restart/replay.
iv. Techniques to provide reproducible execution of floating point programs.
v. Techniques for tuning the floating point precision used in codes.

E.1 Detecting Concurrency Bugs
Our research in this area has resulted in the UPC-Thrille tool released with the Berkeley UPC
compiler, available at http://upc.lbl.gov.

E�cient Data Race Detection for Distributed Memory Parallel Programs Chang-
Seo Park, Koushik Sen, Paul Hargrove, Costin Iancu. SC 2012. In this paper we present a precise
data race detection technique for distributed memory parallel programs. Our technique, which we call Active
Testing, builds on our previous work on race detection for shared memory Java and C programs and it handles
programs written using shared memory approaches as well as bulk communication. Active testing works in
two phases: in the first phase, it performs an imprecise dynamic analysis of an execution of the program and
finds potential data races that could happen if the program is executed with a di↵erent thread schedule. In
the second phase, active testing re-executes the program by actively controlling the thread schedule so that
the data races reported in the first phase can be confirmed. A key highlight of our technique is that it can
scalably handle distributed programs with bulk communication and single- and split-phase barriers. Another
key feature of our technique is that it is precise—a data race confirmed by active testing is an actual data
race present in the program; however, being a testing approach, our technique can miss actual data races. We
implement the framework for the UPC programming language and demonstrate scalability up to a thousand
cores for programs with both fine-grained and bulk (MPI style) communication. The tool confirms previously
known bugs and uncovers several unknown ones. Our extensions capture constructs proposed in several
modern programming languages for High Performance Computing, most notably non-blocking barriers and
collectives.

Scaling Data Race Detection for Partitioned Global Address Space Programs Chang-
Seo Park, Koushik Sen, Costin Iancu. ICS 2013.

Contemporary and future programming languages for HPC promote hybrid parallelism and shared mem-
ory abstractions using a global address space. In this programming style, data races occur easily and are
notoriously hard to find. Existing state-of-the-art data race detectors exhibit 10⇥�100⇥ performance degra-
dation and do not handle hybrid parallelism. In this paper we present the first complete implementation of
data race detection at scale for UPC programs. Our implementation tracks local and global memory references
in the program and it uses two techniques to reduce the overhead: 1) hierarchical function and instruction
level sampling; and 2) exploiting the runtime persistence of aliasing and locality specific to Partitioned Global
Address Space applications. The results indicate that both techniques are required in practice: well optimized
instruction sampling introduces overheads as high as 6500% (65⇥ slowdown), while each technique in sepa-
ration is able to reduce it only to 1000% (10⇥ slowdown). When applying the optimizations in conjunction
our tool finds all previously known data races in our benchmark programs with at most 50% overhead when
running on 2048 cores. Furthermore, while previous results illustrate the benefits of function level sampling,
our experiences show that this technique does not work for scientific programs: instruction sampling or a
hybrid approach is required.



E.2 Speculative Transformations
Our research in this area has resulted in software available with NWChem.

Barrier Elision for Production Parallel Programs Milind Chabbi, Wim Lavrijsen, Wibe
de Jong, Koushik Sen, John Mellor-Crummey, Costin Iancu. PPoPP 2015.

Large scientific code bases are often composed of several layers of runtime libraries, implemented in
multiple programming languages. In such situation, programmers often choose conservative synchronization
patterns leading to suboptimal performance. In this paper, we present context-sensitive dynamic optimizations
that elide barriers redundant during the program execution. In our technique, we perform data race detection
alongside the program to identify redundant barriers in their calling contexts; after an initial learning, we
start eliding all future instances of barriers occurring in the same calling context. We present an automatic
on-the-fly optimization and a multi-pass guided optimization. We apply our techniques to NWChem—a 6
million line computational chemistry code written in C/C++/Fortran that uses several runtime libraries such
as Global Arrays, ComEx, DMAPP, and MPI. Our technique elides a surprisingly high fraction of barriers
(as many as 63%) in production runs. This redundancy elimination translates to application speedups as
high as 14% on 2048 cores. Our techniques also provided valuable insight about the application behavior,
later used by NWChem developers. Overall, we demonstrate the value of holistic context-sensitive analyses
that consider the domain science in conjunction with the associated runtime software stack.

E.3 Concurrency Reduction for Debugging
OCR: Partial Deterministic Record and Replay of One-Sided Communication Xuehai
Qian, Paul Hargrove, Koushik Sen, Costin Iancu. In preparation.

Debugging large-scale distributed HPC applications is challenging. One-sided communication is widely
used in Partitioned Global Address Space (PGAS) programming models. Despite its potential performance
advantages, the inherent non-determinism makes debugging more di�cult. The essential challenge is that the
readers of updated shared data do not have any information on which remote threads produced the updates.
This paper presents OPR (One-sided communication Partial Record and Replay (R&R)), a general deter-
ministic R&R scheme that could partially replay one-sided communications. Using OPR, the user specifies
a subset of threads (R Set) to record, threads in R Set could be partially replayed without executing threads
not in R Set. Due to the lack of producer information, data replay is used to ensure replay correctness. In
record phase with all threads, OPR logs input values for read operations to shared addresses and generates a
value log for each thread in R Set. In replay, each thread in R Set reproduces the same execution in isolation
deterministically based on value log. To reduce value log size, in record phase, each thread maintains a shadow
memory for the values that have seen by a thread. We only log the values for reads when they are either
initial (first read) or has been changed. To infer the communication pattern, OPR runs a simplified vector
clock algorithm during record and imprecisely generates an event order log. The even order information is
used together with value log to match the producer and consumer in replay phase. Therefore, OPR makes it
possible to debug part of a large execution on small machines.

E.4 Floating Point Reproducibility
Our research has resulted in the ReproBLAS released software.

Reproducible Tall-Skinny QR Factorization H.D. Nguyen and J. Demmel. 22st IEEE
Symposium on Computer Arithmetic 2015.

Reproducibility is the ability to obtain bitwise identical results from di↵erent runs of the same program on
the same input data, regardless of the available computing resources. Recently, techniques have been proposed
to attain reproducibility for BLAS operations, all of which rely on reproducibly computing the floating-point
summation and dot product. Nonetheless, a reproducible BLAS library does not automatically translate into
a reproducible LAPACK library, especially when communications are taken into account. For instance, for
the QR factorization, conventional algorithms such as Householder transformation or Gram-Schmidt process
can be used to reproducibly factorize a floating-point matrix by fixing the order of computation, for example
column-by-column from left to right, and by using reproducible versions of level-1 BLAS operations such as
dot product and 2-norm. In a massively parallel environment, those algorithms have high communication
cost due to the need for synchronization after each step. The Tall-Skinny QR algorithm obtains much better
performance in massively parallel environments by reducing the number of messages to O(logP) where P is



the processor count, and reducing the number of reduction operations to O(1). Those reduction operations
however are highly dependent on the network topology, in particular the number of computing nodes, and
therefore are di�cult to implement reproducibly and with reasonable performance. In this paper we present
a new technique to reproducibly compute a QR factorization for a tall skinny matrix, which is based on
the Cholesky QR algorithm to attain reproducibility as well as to improve communication cost, and the
iterative refinement technique to guarantee the accuracy of the computed results. Our technique exhibits strong
scalability in massively parallel environments, and at the same time can provide results of almost the same
accuracy as the conventional Householder QR algorithm unless the matrix is extremely badly conditioned.
Initial experimental results in Matlab show that for not too ill-conditioned matrices whose condition number
is smaller than sqrt(1/e) where e is the machine epsilon, our technique runs less than 4 times slower than
the built-in Matlab qr() function, and always computes numerically stable results in terms of column-wise
relative error.

Reproducible Parallel Summation H.D. Nguyen and J. Demmel. IEEE Transactions on
Computers, 2014.

Reproducibility, i.e. getting bitwise identical floating point results from multiple runs of the same pro-
gram, is a property that many users depend on either for debugging or correctness checking in many codes.
However, the combination of dynamic scheduling of parallel computing resources, and floating point nonas-
sociativity, makes attaining reproducibility a challenge even for simple reduction operations like computing
the sum of a vector of numbers in parallel. We propose a technique for floating point summation that is
reproducible independent of the order of summation. Our technique uses Rumps algorithm for error-free
vector transformation, and is much more e�cient than using (possibly very) high precision arithmetic. Our
algorithm reproducibly computes highly accurate results with an absolute error bound of n 228 macheps maxi
jvij at a cost of 7n FLOPs and a small constant amount of extra memory usage. Higher accuracies are also
possible by increasing the number of error-free transformations. As long as all operations are performed in
to-nearest rounding mode, results computed by the proposed algorithms are reproducible for any run on any
platform. In particular, our algorithm requires the minimum number of reductions, i.e. 1 reduction of an
array of 6 double precision floating point numbers per sum, and hence is well suited for massively parallel
environments.

Numerical Accuracy and Reproducibility at ExaScale H.D. Nguyen and J. Demmel.
21st IEEE Symposium on Computer Arithmetic, 2014.

Fast Reproducible Floating-Point Summation H.D. Nguyen and J. Demmel. 21st IEEE
Symposium on Computer Arithmetic, 2014.

Reproducibility, i.e. getting the bitwise identical floating point results from multiple runs of the same
program, is a property that many users depend on either for debugging or correctness checking in many
codes. However, the combination of dynamic scheduling of parallel computing resources, and floating point
nonassociativity, make attaining reproducibility a challenge even for simple reduction operations like com-
puting the sum of a vector of numbers in parallel. We propose a technique for floating point summation
that is reproducible independent of the order of summation. Our technique uses Rumps algorithm for error-
free vector transformation, and is much more e�cient than using (possibly very) high precision arithmetic.
Our algorithm trades o↵ e�ciency and accuracy: we reproducibly attain reasonably accurate results (with
an absolute error bound c*n2*macheps*max(v[i]) for a small constant c with just 2n + O(1) floating-point
operations, and quite accurate results (with an absolute error bound c*n3*macheps2*max(v[i])) with 5n +
O(1) floating point operations, both with just two reduction operations. Higher accuracies are also possible
by increasing the number of error-free transformations. As long as the same rounding mode is used, results
computed by the proposed algorithms are reproducible for any run on any platform.

E.5 Floating Point Precision Tuning
This research has resulted in the Precimonious software publicly available.

Precimonius: Tuning Assistant for Floating-Point Precision Cindy Rubio-González,
Cuong Nguyen, Hong Diep Nguyen, James Demmel, William Kahan, Koushik Sen, David H. Bailey,
Costin Iancu, David Hough. SC13



Given the variety of numerical errors that can occur, floating-point programs are di�cult to write, test
and debug. One common practice employed by developers without an advanced background in numerical
analysis is using the highest available precision. While more robust, this can a↵ect program performance
significantly. In this paper we describe a dynamic program analysis technique to find a lower floating-point
precision that can be used in any part of a program. Precimonious performs a search on the program
variables trying to lower their precision subject to accuracy constraints and performance goals. The tool then
recommends a type instantiation for these variables using less precision while producing an accurate enough
answer without causing exceptions. We evaluate Precimonious on a few widely used functions from the
GNU Scientific Library. For most of the programs tested, Precimonious is able to reduce precision, which
results in performance improvements as high as 25%.

Floating Point Precision Tuning Using Blame Analysis Cindy Rubio-González, Cuong
Nguyen, James Demmel, William Kahan, Koushik Sen, Wim Lavrijsen, Costin Iancu. In prepara-
tion.

While tremendously useful, automated techniques for tuning the precision of floating-point programs have
to search over the program space and face scalability challenges. We present Blame Analysis, a novel
dynamic approach to improve precision tuning. Blame Analysis performs floating-point operations in a
program with di↵erent levels of accuracy for the operands side-by-side with concrete execution. For each
instruction, Blame Analysis determines the types of all operands in all other instructions required for a
given precision in the target instruction. It then computes a solution based on a “merge” of all type assign-
ments associated with any instruction. We implemented Blame Analysis in LLVM and evaluated it on ten
scientific programs. When used standalone, Blame Analysis is successful in lowering the precision for all
tests. The biggest benefits are observed when using Blame Analysis to filter the inputs to a search-based
tool for floating-point tuning. Our experiments show that combining Blame Analysis with Precimonious
leads to finding better results faster. Combined analysis times are 9⇥ faster on average, and up to 38⇥ faster
in comparison to Precimonious alone. The solution computed is superior to the search-based tool and in
three cases we observe as much as 40% program execution speedup.


