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ABSTRACT

Future performance improvements for microprocessors have
shifted from clock frequency scaling towards increases in on-
chip parallelism. Performance improvements for a wide va-
riety of parallel applications require domain decomposition
of data arrays from a contiguous arrangement in memory to
a tiled layout for on-chip L1 caches and scratchpads. How-
ever, DRAM performance suffers under the non-streaming
access patterns generated by many independent cores. In
this paper, we propose collective memory scheduling (CMS)
that uses simple software and inexpensive hardware to iden-
tify collective transfers and guarantee that loads and stores
arrive in memory address order to the memory controller.
CMS actively takes charge of collective transfers and pushes
or pulls data to or from the on-chip processors according to
memory address order. CMS reduces application execution
time by up to 55% (20% average) compared to a state-of-the-
art architecture where each processor reads and writes its
data independently. CMS also reduces DRAM read power
by 2.2× and write power by 50%.

1. INTRODUCTION
In recent years, the primary constraint for microprocessors

has shifted from chip area to power consumption, leading to
the stall in clock frequencies and the move towards massive
parallelism [38, 5]. Emerging data intensive applications for
these multicore platforms are projected to have enormous
demands on memory bandwidth. However, DRAM band-
width is not projected to scale proportionally to meet these
future demands [43, 41, 33, 10, 17, 2, 30]. Memory band-
width is already critical in numerous applications such as
media applications, which have already been reported to re-
quire up to 300GB/s of memory bandwidth to utilize just
48 processors [31]. In addition, processing demands force
the Xbox 360 to have 22.4GB/s of GDDR3 bandwidth to
satisfy just three processors [43]. The situation will only
become worse in the future because computational through-
put is projected to improve much faster than memory band-
width [33]. In fact, projections state that chip pins in-
crease by 10% every year whereas processors double every 18
months [33]. In addition, while memory density nearly dou-
bles every two years, the improvement in cycle time has been
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hundreds of times less, leading to tens to hundreds of pro-
cessor cycles per memory access [41]. Energy is also a major
concern because given that today’s DDR3 technology con-
sumes about 70pJ per bit, a system with only 0.2 bytes per
FLOP memory bandwidth requires over 160mW of DRAM
power [38]. This problem is already crucial in datacenters,
where 25%–40% of total power is attributed to DRAM [42].
Maximizing DRAM performance and energy efficiency is
critical, especially for future systems where DRAM’s con-
tribution will likely be proportionally larger than today [5].
Numerous crucial applications depend on parallel speedups

achieved through bulk-synchronous single program multi-
ple data (SPMD) execution where all compute elements are
employed in tandem to speed up a single kernel. In fact,
data-parallel applications have been cited as the biggest
drivers for multi-core, and applications in future multi-cores
are expected to follow data-parallelism even for consumer
and mobile applications [7]. Bulk-synchronous kernels typ-
ically rely on domain decomposition to expose data paral-
lelism. However, copying data from a contiguous represen-
tation in DRAM to the domain-decomposed (tiled) layout in
on-chip caches poses significant challenges to modern mem-
ories. That is because current chip multiprocessors (CMPs)
presume each core operates independently, even for SPMD
execution. The result is that the memory is presented with
uncoordinated and stochastic requests that exhibit poor lo-
cality, which degrades performance and power [42, 45, 32,
31]. Even though a plethora of memory controllers have
been proposed, they are typically passive elements which do
not control how requests arrive to them. Therefore, their
degree of freedom is limited to the entries in their finite-size
transaction queues [32, 18, 40, 29, 11].
In this paper, we demonstrate a combined software and

hardware approach for coordinating DRAM and on-chip data
movement for data-parallel applications named collective
memory scheduling (CMS). CMS uses the software layer
to identify collective transfer opportunities and collect the
data layout information. It then uses that information in
the hardware to read and write data arrays in the DRAM in
strict memory address order. On the on-chip network side,
CMS pushes or pulls data to or from processors according
to how the data array should be distributed to the on-chip
L1 caches or local stores. Memory access and data distri-
bution are handled by a CMS hardware engine co-located
with each memory controller, instead of individual proces-
sor prefetch or direct memory access (DMA) engines. Es-
sentially, the CMS engine acts as a memory access acceler-
ator and is inexpensive enough to include even in general-
purpose systems. CMS shifts the pattern of data movement
from concurrent actors (threads or processes in shared mem-
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Figure 1: Tiling of a dense array onto a processor grid. Each
tile is assigned to a processor. Tiles may include read-only
data that replicate neighboring data (shared data). Such an
example created by a 2D 5-point stencil is shown.

       Array = hta(name,
                 {[1,3,5], // Tile boundaries before

 //  rows 1 (start), 3 and 5
   [1,3,5]},// Likewise for columns

                  [3,3]);  // Map to a 3x3 processor array

Figure 2: Example HTA declaration code.

ory) each requesting data from memory directly and inde-
pendently, to collaborating actors accessing memory as a
group by performing collective operations. CMS guarantees
in-order memory access even with row- and column-major
mappings which are more productive for programmers but
normally produce unfavorable memory access patterns [14].
CMS also performs bandwidth filtering in algorithms where
processors share data by reading such data just once from
memory and then distributing it to all recipients. This can
drastically reduce memory reads in data parallel numeri-
cal kernels such as matrix multiplication, stencils and FFTs
where working sets are highly overlapping.

To make access to CMS easy for programmers, we aug-
ment the hierarchically tiled array (HTA) programming ab-
straction [15] to efficiently and compactly express collective
transfers and pass on the required information to the CMS
hardware engine. This way, CMS simplifies the application
programming interface (API) since the same collective func-
tion call is performed by all processors, with no need to
calculate individual DMA address ranges [36]. Although we
use the HTA library to demonstrate the programming in-
terface for CMS, the concept could easily be exploited by
numerous other compiler-based programming systems, such
as OpenMP and OpenACC.

We use algorithm kernels from the TORCH and PARSEC
collections to demonstrate the effectiveness of CMS across a
wide variety of applications [3, 19]. CMS supports arbitrary
mappings of data to processors and data array dimensions,
but we focus on data-parallel applications with regular tiled
layouts such as dense and sparse 2D data arrays because of
their broad coverage of typical use cases in consumer elec-
tronics and scientific/engineering applications [26, 28, 10,
17], and their projected criticality in future multi-cores [7].

By re-establishing a streaming access pattern, CMS re-
duces the completion time for a collective read and write
operation by 39% for dense 2D data arrays, and 60% for
sparse 2D data arrays. Consequently, CMS reduces applica-
tion execution time by up to 55% (20% average), compared
to independent DMA or prefetch operations in each pro-
cessor. CMS also reduces DRAM read power by 2.2× and
DRAM write power by 50%. In addition, CMS eliminates

network congestion by replacing many independent read and
write requests which saturate the network with a handful of
control packets. CMS achieves this with a simple hardware
engine and with no need for costly and deep transaction
queues, which modern memory controllers use to partially
recover a streaming access pattern [44, 45, 18, 32, 29].

2. BACKGROUND

2.1 Domain Decomposition
Domain decomposition is commonly used to expose par-

allelism for SPMD algorithms that operate on data much
larger that the available on-chip storage. Figure 1 illustrates
decomposition of a dense 2D data array into tiles. Tiles are
typically sized to fit L1 caches or local storage in each pro-
cessor [26]. Therefore, processors typically load their next
tile, compute on the tile with minimal communication, and
then write it back to memory. There is typically minimal
data reuse across tiles assigned to the same processor. Ac-
cessing tiles in memory is done with local independent hard-
ware prefetch [21] or cache fill streams for a cache-coherent
CMP, a list of outstanding load-store requests for a mas-
sively multithreaded architecture like a graphical processor
unit (GPU), or via a sequence of DMA requests for a local
store architecture like STI Cell [36]. Other algorithms con-
sist of sparse data arrays, where some tiles contain a large
number of or exclusively zeroes. Applications with dense
process grids leave processors with tiles containing only ze-
roes idle, whereas applications with sparse process grids
do not reserve more processors than non-zero tiles. Data-
parallel algorithms constitute critical applications in such
diverse areas as image processing, seismic imaging, machine
learning, electromagnetics, fluid dynamics, climate model-
ing, and others [26, 28, 10, 17].

2.2 Memory Access Streams and Efficiency
In current architectures and even in SPMD execution,

processors access memory independently causing requests
to arrive in nearly random order to memory [45, 42]. Ran-
dom access patterns make prefetching difficult and degrade
DRAM performance and power [44, 32, 42] because they
cannot take advantage of pre-activated rows and therefore
cause more row activations compared to sequential access
patterns [42]. As a result, in many workloads an open row
is used only once or twice before being closed due to a con-
flict [42]. Depending on the access pattern, only 14%–97%
of peak memory bandwidth can actually be utilized [31].
Overfetch penalizes both latency and power because open-

ing a new row requires charging bit lines, amplification by
sense amplifiers, and then writing bits back to the cells.
This further aggravates the memory bandwidth bottleneck
in modern architectures, causing a wide variety of applica-
tions to be constrained by memory bandwidth [10, 43, 41].
Uncoordinated memory requests can also result in redun-
dant memory accesses, because data shared between proces-
sors is fetched independently by each processor using trans-
actions potentially separated by long time intervals. Finally,
multiple independent requests congest the network waiting
for vacancies in the memory controller’s queue.

2.3 Hierarchical Tiled Arrays Representation
HTAs are a polyhedral representation language that com-

pactly expresses tiled data arrays [15]. The declaration of



1 Routers in each row send ready packets to the
router in the same column as the CMS engine

CMS

2
The shaded routers send a ready
packet for their row to the CMS

engine. Once all arrive, transfer starts.

Figure 3: Initiating a synchronous read CMS operation.

HTAs includes how the data array is tiled and how tiles map
(are distributed) to processors. The example of Figure 2 di-
vides a 6×6 array into 2×2 tiles and maps those tiles to a
3×3 array of processors, as shown in Figure 8.

3. COLLECTIVE MEMORY TRANSFERS
This Section describes collective read and write opera-

tions, different data array layouts, the CMS hardware en-
gine, and finally the programming interface to CMS.

3.1 Collective Read Operations
In read operations, the CMS engine reads memory se-

quentially and distributes data to the appropriate processors
according to the data array’s mapping to the processors. Es-
sentially, the CMS engine takes charge of the collective oper-
ation and pushes data to the processors. Data that is shared
between processors, such as ghost zones in stencil compu-
tations in the example of Figure 1, is read only once from
memory and then distributed to all recipients with multicast
or duplicate unicast packets.

The CMS engine initiates the transfer when all proces-
sors make the collective read function call for the same data
array. This inserts an implicit barrier which can replace ex-
isting barrier calls, which are typical in computation loops
of data-parallel computations [17]. To coordinate operation
start, we employ a simple hierarchical communication pat-
tern, shown in Figure 3. For cases where inserting a barrier
would be inefficient, we also implement non-barrier reads
where the transfer initiates when only the first processor is
ready. This requires non-ready processors to store the next
iteration’s tile in addition to the current iteration’s tile (the
tile under computation), and possibly the previous itera-
tion’s tile which may be still in the process of being written
back to memory. We do not allow processors to be further
out of synchronization, to reduce local storage requirements.

3.2 Collective Write Operations
To easily guarantee memory access order, CMS write op-

erations are performed as reads from the standpoint of the
CMS engine. In other words, the CMS engine pulls data
from the processors and writes it to memory. When the
processor that holds the first tile line of the data array in
memory address order (e.g., processor 1 in the top left of
Figure 8) is ready to write its tile, it sends a write ready
packet to the CMS engine. The CMS engine then sends
read requests to retrieve the whole data array in memory
address order. In the mapping of Figure 8, the first read
request for elements (1, 1) and (2, 1) is served by processor
1, (3, 1) and (4, 1) by processor 2, (5, 1) and (6, 1) by proces-
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Figure 4: An example data layout array and the resulting
mapping of tile lines to a 3×3 processor array.

sor 3, (1, 2) and (2, 2) by processor 1, and so on. Processors
may delay their response until they produce the data.
In order to cover the communication delay and keep the

memory constantly busy, there need to be more than one
outstanding read requests in flight. Because the network
guarantees no ordering, the CMS engine uses a small reorder
buffer to enqueue read replies and write data to memory in
address order. The size of the reorder buffer represents a
tradeoff between eliminating memory idle cycles versus cost
and network load. In our 8×8 2D mesh and using dense 2D
data arrays, the minimum size which guarantees that the
CMS engine constantly has data to write to the memory is
six transactions for arrays of 512×512 elements, four trans-
actions for 1024×1024, and three for 2048×2048 arrays.

3.3 Data Array Layout
CMS supports regular and flexible mappings of multi-

dimensional data arrays in memory to processors. Regular
mappings are for tiled arrays and map each tile to a proces-
sor according to a function or a mapping matrix. For exam-
ple, the dense 2D data array of Figure 8 follows the function
F (x) = x because tile i maps to processor i. Regular map-
pings can also express sparse data arrays. For instance, in
the same 3× 3 processor array, a 3×3 mapping matrix with
tile ID 1 in position (1, 1) (indicating that processor (1, 1) is
assigned tile 1), 2 in position (2, 2) and 3 in position (3, 3)
defines a sparse data array with tiles only in the diagonal.
By knowing how the data array is mapped to memory ad-
dresses (such as row-major), the CMS engine calculates the
address ranges of each tile. Regular mappings also have a
parameter to define the shared data in each tile. In Figure 8,
this parameter has a value of one.
Flexible mappings support any layout of memory addresses

to processors. To enable this, the CMS engine maintains a
small dedicated data layout array recording which processor
owns each data. An example array is shown in Figure 4. To
reduce its size, this array is indexed at a granularity defined
by the largest contiguous address range that belongs to a
single processor. With row- or column-major mapping and
tiles, that is a tile line. The CMS engine may also include
an identical additional data layout array to record processors
that share each tile line.
The size of the data layout and sharer arrays depends on

the size of the data array and the indexing granularity. To
support a 2048×2048 2D data array in a 64-processor system
with 256B tile lines, the data layout array is 20KB, which is
less than 0.1% of the cache size in the Intel Xeon Phi, and
similarly a very small fraction of other on-chip caches or
local storage. Data arrays with finer indexing granularities
may need more storage. This can be mitigated by mapping
the data array to memory addresses such as to increase the
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Figure 5: CMS engine outline.

indexing granularity. Instead of adding dedicated storage,
the CMS engine can also use part of the L3 cache local to
the memory controller the CMS engine is co-located with.
If space in the data layout array does not suffice, part of the
collective transfer is performed without CMS.

The data layout array is populated by the CMS engine af-
ter observing the memory access pattern created when each
processor fetches its first tile without coordination. We rely
on processors to explicitly mark what read requests are for
shared data (data in another processor’s tile). The CMS
engine also discovers the data layout array indexing gran-
ularity during that time by observing the size of read re-
quests. After the initial learning period, all subsequent read
and write transfers are performed collectively until the ap-
plication initiates a new learning period, indicating that it
is now accessing a data array with a different layout.

We choose to have the CMS engine discover the layouts of
data arrays instead of transferring the data layout informa-
tion from the processors to the CMS engine in the request
packets due to the on-chip data movement that would create.
The performance impact from performing the first transfer
without coordination is negligible due to the large number of
computation iterations typical in data-parallel applications.
For most applications, one owner and one reader (sharer)
processors suffice. However, if there are more readers than
sharer data arrays, the additional readers do not participate
in the collective transfers for their read-only (shared) data.

Ready (request) packets contain the starting address of
the data array and information about how it maps to pro-
cessors. For data arrays with regular mappings, ready pack-
ets contain the mapping function or matrix as previously
discussed, which can easily be contained in a few flits. For
flexible mapping arrays, ready packets need only contain an
indication of whether a new learning period should initiate.

3.4 Collective Memory Scheduling Engine
We implement the CMS engine atop a typical DMA en-

gine. As illustrated in Figure 5, the CMS engine has a
memory interface side and an on-chip network interface side.
Read or write requests arrive from the network interface side.
At the memory interface side, the CMS engine either sends
read requests as fast as the memory controller allows, or
it sends write requests whenever it has valid data to write.
Once the collective transfer is complete, the CMS engine
returns to idle, waiting to accept a new operation.

The memory access logic stores the collective transfer in-
formation. In regular mapping mode, the CMS engine stores
that information from the collective request packet. Other-
wise, the CMS engine uses the logic outlined in Figure 6.

The allowed number of pending memory transactions de-
pends on the size of the CMS engine’s buffers. Read oper-
ations use two small buffers (“mem. read buffers”) for the
outstanding DRAM read requests and to permit duplicating

Next memory address

+ Tile line size register

Memory address

Tile line counter
Owned data
layout array

CPU ID

Request size

Shared data
layout array

CPU ID

Figure 6: An outline of the memory access logic for data
arrays with flexible mapping. Since accessing a tile line in
the DRAM requires many cycles, these circuits are pipelined
to avoid extending the CMS engine critical path.

Array = hta(name, {[1,3,5],  [1,3,5]}, [3,3],
   F(x) = x, // Mapping function
  1); // Tiles share one cell from their edges

Figure 7: An example declaration for a regular mapping.
Each tile shares cells adjacent to their boundaries (therefore
two rows and two columns in total).

shared data packets. No new DRAM read requests may be
issued until one of the two buffers is free. The reorder buffer
for write operations tags requests to tiles for their tile lines
and uses that tag to write the returned data into the correct
location in the reorder buffer such that memory address or-
der is preserved. The CMS engine can also include a small
queue to store pending collective transfer requests, but only
one is active at a time.
We co-locate a CMS engine with each memory controller

in order to reduce communication distance. The CMS en-
gine can be integrated into the memory controller instead
of remaining a separate entity. In memory controllers with
multiple channels, we can extend the CMS engine to per-
form different parts of the collective transfer in different
channels. Alternatively, we can use one CMS engine per
channel to perform multiple concurrent collective transfers.
With multiple memory controllers, a large collective transfer
is divided into smaller ones, each of which is assigned to a
CMS engine. Therefore, a chip-wide operation will activate
all CMS engines, each performing a portion of the operation.
Because the CMS engine guarantees memory address or-

der, the memory controller need not be more complex than a
FIFO scheduler with just enough transaction queue entries
for memory pipelining. Moreover, since the CMS engine
performs the entire operation instead of individual-processor
DMA engines or prefetch units, these is opportunity to sim-
plify memory controllers and local processor DMA engines
or prefetch units. Doing so would outweigh the additional
complexity of the CMS engine compared to a typical DMA
engine because of the complexity of modern memory con-
trollers with large transaction queues and complex schedul-
ing policies [32, 18, 40, 29, 11]. Even without these cost
reductions, as we show in Section 4.2.4, CMS engines are
inexpensive enough to be included in general-purpose sys-
tems at a minimal cost increase. When there are no col-
lective transfer opportunities, CMS engines remain inactive
and can power down, similar to any other accelerator.

3.5 Programming Interface
CMS uses the software to identify transfers as collective,

transfer the necessary data layout information to the CMS
hardware engine, and make the collective transfer capabili-
ties easily accessible to the programmer. Although a vari-
ety of APIs and libraries can take advantage of this kind of
collective memory operations (such as OpenMP and Ope-
nACC), we choose the HTA syntax [15] as an interface to
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Figure 8: The mapping from our example declaration. Only
the shared zones for the shaded (middle) tile are shown.
Vertical and horizontal lines are tile boundaries.

Loading a HTA with a CMS read

HTA_instance = CMS_read (HTA_instance);

Loading the same HTA with DMA operations for each line of data

   Array[row1] = DMA (Starting_address_row1,
Ending_address_row1);
.
.

   Array[rowN] = DMA (Starting_address_rowN,
Ending_address_rowN);

Figure 9: Without CMS, the programmer needs to calculate
starting and ending addresses for each tile line in a local-
store architecture, including shared data.

formally express tiled data arrays. For regular mappings,
CMS adds a parameter to HTAs to define the regular map-
ping, and another parameter for the number of cells shared
between neighboring processors to accommodate computa-
tions such as stencils, as discussed in Section 3.3. Figure 7
shows an example. The resulting mapping is illustrated in
Figure 8. HTAs have been extended to offer an alternative
and more complex but also more powerful syntax to declare
shared zones of arbitrary shapes and sizes [15], which we
can also use for CMS. For flexible mappings, the library can
abstractly determine if a new learning period is required,
and thus no added parameters are necessary. Flexible map-
pings that cannot be expressed with HTAs require library
modifications or alternative polyhedral representations.

We provide access to CMS functionality using a library
that exposes an API similar to DMA function calls [36].
This leaves the programming style intact and simply re-
quires the programmer to use CMS function calls instead
of DMA function calls. A CMS read or write function call
requires only the HTA instance as parameters. Since the
HTA instance contains all tiling, layout, and addressing in-
formation, the library abstractly constructs request packets
with the information required by the CMS engine. There-
fore, all processors that wish to read or write the same HTA
make the exact same function call.

The CMS API is considerably simpler than DMA opera-
tions in local-store architectures such as STI Cell [36]. In
the common case that a processor’s tile consists of non-
contiguous memory addresses [16, 30], a potentially large
number of DMA calls is required, which in turn require deep
transaction queues in each DMA engine [22]. As an exam-
ple, to transfer a tile in a 64-core system from a regularly-
mapped 2048×2048 data array without architectural sup-
port for strided memory access, each processor requires 256
separate DMA transfers. That is because each processor’s
tile contains 256 rows each of which are disjoint in memory
address order with row- or column-major mappings, which

are typically used. The equivalent CMS operation requires
only one function call, as shown in Figure 9.
Although our example programming interface is limited

to local-store architectures with an explicit API, this is not
a requirement. Conventional directives-based approaches
such as OpenACC, and Polyhedral representations alterna-
tive to HTAs can also use CMS hardware [23, 4]. Alterna-
tively, compilers or run-time systems can analyze memory
access patterns and data structure layouts to identify collec-
tive transfers. Finally, collective transfers can be performed
even using basic language constructs, but this requires the
programmer to directly communicate with the CMS engine.

4. EVALUATION

4.1 Methodology
We use DRAMSim2 [34] to model DRAM performance

in response to the access patterns generated by our test-
cases. We then input these resulting DRAM performance
and power models to a heavily-modified version of the Book-
sim network simulator that includes processors and local
stores. This architecture is representative of future many-
core chips with local stores, which we use as a proof of
concept and later discuss the applicability of CMS to other
platforms. All our simulations use dense process grids (all
processors participate regardless of the amount of data as-
signed to them). Initially we simulate writes and barrier
read operations of 2D dense and sparse regularly mapped
data arrays with no shared data. Variables (cells) in data
arrays are 8-byte double precision.
We then present application results for the following im-

portant applications: Fluidanimate and streamcluster from
the PARSEC benchmark suite [3], seismic wave propagation
simulation (RTM) [26], the SOBEL filter used extensively for
image processing (SOBEL) [12], LU factorization of a dense
matrix (LU), sparse matrix multiply (SpMV), and conjugate
gradient (CG) from the TORCH benchmark suite [19], and
the Laplacian stencil from [20]. All applications use a regu-
lar mapping of tiles to processors, therefore there is no data
layout array in the CMS engine. Such regular mapped data
arrays comprise the building blocks of applications ranging
from image processing in consumer devices to the largest
scale high performance computing (HPC) applications such
as climate modeling and fluid simulations. SpMV and CG
use sparse matrices with approximately 25% non-zeroes, pre-
dominantly located in tiles on the diagonal. Similar to past
work, only non-zero values are stored in and transferred
to and from main memory [6]. LU and streamcluster use
dense tiled data arrays, while fluidanimate, RTM, SOBEL
and Laplacian use dense tiled data arrays with stencils and
therefore use shared data.
For our application results, we model a CMP with an 8×8

array of Intel Xeon Phi co-processors, which are simple in-
order x86-based processors and representative of the simple
cores projected for future many-core chips [5]. For each ap-
plication, we calculate the processing time per array variable
as well as the shared data size, and simulate ten iterations of
each application’s execution loop (more iterations produce
comparable results). Because thread migration is detrimen-
tal to data-parallel applications, we use a static mapping of
threads to processors. We assume enough local storage for
triple buffering for all tile sizes, which prevents performance
degradation due to redundant DRAM or higher-level cache



accesses as tile size increases. In general-purpose systems,
the software can perform cache blocking to resize tiles to fit
available local storage. We use the typically-used row-major
mapping of data arrays to memory (column-major produces
comparable results) [16, 30, 14].

Our memory subsystem consists of memory channels with
independent controllers, which matches the configuration of
many contemporary server processor designs [2, 33]. We
place four memory controllers at the corners of our CMP,
and a CMS engine co-located with each memory controller.
We use static address-based mapping to map tile lines (mem-
ory addresses) to memory controllers. Therefore, each pro-
cessor requests each tile line from the appropriate memory
controller and CMS engine.

A 2D mesh on-chip network is used with dimension-order
routing (DOR) and four-stage input-buffered routers [9]. In-
put buffers have 4 virtual channels (VCs), with eight flit slots
statically assigned to each. Two VCs are used for request
packets, and two VCs for replies. The datapath is 128 bits
wide. Data-transferring packets carry one line of a proces-
sor’s tile, plus one head flit.

For the memory, we simulate a 16MB DDR3 1600MHz
memory module from Micron with a 64-bit data path and
two ranks with 8 banks each. There is a single memory
controller for the two ranks. The most significant bits of
the address determine the channel, then the row, column,
bank, and finally rank. The memory controller has 32-
slot transaction and DRAM command reorder queues, and
first ready first come first served (FRFCFS) scheduling [32,
45]. Our FRFCFS scheduler uses an open-row policy which
respects row buffer locality by prioritizing transactions to
open DRAM rows. This essentially performs limited trans-
action reordering by address, similar to other modern sched-
ulers [32, 18, 29, 11]. We compare CMS against FRFCFS be-
cause FRFCFS maximizes memory throughput compared to
a variety of other controllers [40, 32]. FRFCFS does not nec-
essarily minimize application execution time because max-
imizing memory throughput may be unfair to threads [29].
However, we do not model and therefore hold these adver-
sary effects against FRFCFS. Therefore, our FRFCFS rep-
resents an optimized state-of-the-art memory controller. We
use 1600MHz for all processors and the network.

4.2 Results

4.2.1 Memory Throughput Degradation

First, we quantify the performance of DRAM in response
to an uncoordinated access pattern that results from a SPMD
algorithm running on a conventional many-core memory sub-
system. In this case, our FRFCFS memory controller tries
to maximize performance by reconstructing a linear access
pattern and respecting row buffer locality using transaction
reordering. However, even a sophisticated controller’s re-
ordering capability is inherently limited by the depth of
its transaction queue since memory controllers do not con-
trol the order requests arrive into their queue. In contrast,
CMS guarantees in-order memory access without complex
reordering schemes or deep queues.

To set up this experiment, we use DRAMsim2 [34] to sim-
ulate a synthetic 16MB in-order trace of loads to represent
the coordinated memory accesses created by CMS, and an
out-of-order trace to simulate the uncoordinated case where
loads or stores are presented to the memory controller in ran-

dom order. A single load accesses a 64-Byte word, causing an
eight-cycle burst due to the 64-bit memory controller dat-
apath. The uncoordinated requests are randomly-ordered
in sizes of 128 bytes representing one tile line. These traces
therefore accurately represent the unpredictable memory ac-
cess stream that would arrive to a memory controller in the
baseline case where processors send requests for each tile
line without coordination. Experiments with access traces
larger than 16MB produce comparable results.
Our results show that for the uncoordinated access pat-

tern (baseline with FRFCFS), DRAM throughput drops by
25% for loads and 41% for stores. Also, median latency
increases by 23% for loads and 64% for stores, maximum la-
tency increases by 2× in both cases, and power increases by
2.2× for loads and 50% for stores. Compared to the DRAM
peak bandwidth, reads achieve 80% and writes 75% with
CMS compared to 60% and 44% respectively for the unco-
ordinated case. Even streaming unit-stride traces cannot
achieve 100% throughput due to refresh operations.
The uncoordinated case exhibits higher power consump-

tion due to an increase in activate and precharge power
(5.2× for loads and 3.4× for stores), caused by a 96% row
buffer miss rate in the uncoordinated case compared to 3%
with CMS. Past work has found similar results, and not
even the best-performing memory transaction scheduler can
bridge the gap between random and in-order accesses [32,
42, 44, 41]. For example, the row buffer hit rate drops from
60% for a single processor to 35% in a baseline 16-processor
CMP, in a variety of benchmarks [42]. Also, in a 16-core
CMP, a row fetched into the row buffer is typically used
only once or twice before being closed due to a conflict [42].

4.2.2 Operation Completion Time

With the above DRAM results, we then perform collec-
tive (coordinated) and uncoordinated transfers of data ar-
rays. The results are shown in Figure 10 (left). Compared
to the uncoordinated case, CMS reduces completion time
by an average of 39% for both reads and writes for dense
data arrays, and 60% for sparse data arrays. These gains
are predominantly due to the lower throughput the DRAM
provides with random (uncoordinated) memory access pat-
terns. The slightly lower performance gains for CMS writes
for 128×128 and smaller data arrays are due to the propa-
gation delay between processors generating request (ready)
packets and accessing memory for the first time, which is
22 cycles for barrier reads and 40 for writes by average in
our system. This is easily amortized by the duration of a
transfer. Larger transfers make these delays negligible.
Larger data arrays increase the tile line size which favors

spatial locality in the uncoordinated case. However, larger
tile lines also create more severe contention and degrade
on-chip network performance because of the long packets.
Furthermore, in the uncoordinated case, sparse data arrays
create intense hotspots because the majority of the data are
destined to the few processors that are assigned the tiles
along the diagonal. This provides the performance advan-
tage for sparse arrays compared to dense arrays and illus-
trates that CMS load balances the network better because
it accesses tile lines in processors in an interleaved manner.
Otherwise, hotspots can be created depending on the order
requests arrive to the memory controller.
We then repeat the experiments, but we add a uniform

random (UR) background traffic pattern with a 10% flit in-
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Figure 10: CMS transfer completion time improvement over FRFCFS (uncoordinated) and the impact on background traffic.

jection rate. A 10% injection rate provides non-negligible
traffic, but not enough to saturate the network by itself.
This traffic is composed of read and write requests and
replies similar to DMA traffic, and represents innocent by-
stander traffic. As shown in Figure 10 (center), the reduction
in execution time for CMS in the mesh is 46% for reads and
36% for writes for dense data arrays, and 52% for sparse ar-
rays for both reads and writes. The reduction in speedup for
collective writes compared to collective reads for dense ar-
rays illustrates the increased traffic of collective writes com-
pared to reads. While background traffic degrades perfor-
mance for CMS, it is more adversary to the uncoordinated
case (FRFCFS) because that creates hundreds or thousands
of request packets that traverse the network most of which
are queued in the network for a long time because they can-
not be absorbed by the memory controller, thus contenting
with the background traffic. Figure 10 (right) illustrates the
impact to the background traffic.

Repeating these experiments in a 144-processor system
yields comparable results. Finally, having only one or two
memory controllers instead of four slightly favors CMS be-
cause the baseline case produces more severe network hotspots
and stresses the memory more.

4.2.3 Impact on Application Execution Time

We show application results in Figure 11. The gains de-
pend on the ratio of the time spent computing for each
tile versus completing a read and then a write operation.
This is the application’s byte per FLOP ratio. CMS pro-
vides a minimal (0%–2%) reduction in execution time for
the compute-bound applications in our system (RTM, LU
and CG), but CMS still reduces DRAM power. In contrast,
memory bandwidth-bound applications directly benefit from
CMS in execution time. The geometric mean of the execu-
tion time reduction for all applications is 8.5% due to the
compute-bound applications in our collection, the average is
20%, and the maximum is 55%.

Figure 11 (right) presents execution time as a function of
the bytes per FLOP ratio, in order to estimate execution
time for other architectures and applications. Dense data
array applications take advantage of CMS beyond 0.6 bytes
per FLOP, while applications with sparse arrays similar to
our applications benefit beyond 0.5 bytes per FLOP.

Sparse data array applications have their compute time
dictated by the tiles with the most non-zeroes, which in
our applications are predominantly the tiles on the diago-
nal. Because even tiles on the diagonal contain zeroes, com-
pute time per tile decreases. This decreases compute time
which increases the pressure to memory, therefore allowing

Table 1: RTL synthesis results.

DMA CMS

ASIC
Combinational area (µm2) 743 16231
Non-combinational area (µm2) 419 61313
Minimum cycle time (ns) 0.6 0.75

FPGA
LUTs for logic 245 856
Minimum cycle time (ns) 4.4 5.1

CMS to provide larger execution time benefits. Applications
with fewer non-zeroes than our 25% would further benefit
CMS for the same reason, assuming they are still memory-
bandwidth bound. Dense data array applications are per-
fectly load-balanced. In addition, we ignore scheduling or
other effects which can delay individual processors, because
such effects are potentially adversarial to any parallel ap-
plication. Moreover, our stencil-based applications have the
additional benefit of eliminating redundant memory reads
in read CMS operations, since shared data is read only once
and submitted to the owner and reader processors, instead
of each processor retrieving its shared data separately. For
example, with a 256×256 dense data array and 5-point sten-
cils, there are 12% fewer memory reads with CMS.

4.2.4 CMS Implementation and Synthesis

We implement a CMS engine and a typical DMA engine in
RTL and synthesize them using Synopsys Design Compiler
and a 40nm general-purpose technology library. We synthe-
size the same designs using the Xilinx FPGA design flow for
a Virtex-5 FPGA. The CMS and DMA engines are config-
ured for the DDR3 Micron modules with 64 bit datapaths
used in our evaluations. For the CMS engine, the two read
buffers are 16×128 bits each. The reorder buffer for write
operations is sized to hold eight transactions of 16×128 bits
each, for a total of 2KB. Eight transactions are enough to
keep the memory busy in the write operations of our eval-
uations, as discussed in Section 3.2. In the ASIC flow, the
reorder buffer as well as the small read buffer in the CMS en-
gine are implemented using flip-flop (FF) arrays. The CMS
engine does not include a data layout array because the size
as well as whether the data layout array is included in a L3
cache are architecture-dependent. Table 1 shows the results.
As shown, cycle time for the CMS engine increases by

25% in the ASIC flow and 16% in the FPGA flow. This is
due to the extra complexity of the CMS engine, the write
reorder buffer, and the two read buffers. Also due to the
buffers, the CMS engine occupies more area. However, to
make the CMS engine operate at the same clock frequency
as the DMA engine, we can simply pipeline the CMS engine
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Figure 11: Application execution time improvement of CMS compared to FRFCFS (uncoordinated).

by adding one more stage. The one extra cycle delay is
negligible compared to the duration of a collective transfer.
The data layout array and handling logic, shown in Figure 6,
may further increase area. However, they will not increase
cycle time because array access and the handling logic can
be heavily pipelined since one memory access covers multiple
CMS engine cycles due to the DRAM’s burst length.

CMS can simplify other system components in systems
that predominantly perform collective transfers. That is
because CMS requires only a simple FIFO memory sched-
uler with just enough transaction queue entries for memory
pipelining. Compared to modern memory controllers, this
is a significant reduction in cycle time because modern con-
trollers typically hold a few tens of transactions [32] and
perform an associative comparison of all requests in their
transaction queue every cycle (therefore requiring compara-
tors for every queue entry). They then issue a transaction
from any position in the queue based on multi-level prior-
ity and other complex schemes [45, 32]. CMS also does not
use DMA or prefetch engines in each processor allowing for
simpler designs. Even without these cost reductions, CMS
engines are inexpensive enough to be included in general
purpose systems (a CMS engine is required per memory con-
troller instead of per processor). When those systems do not
perform collective transfers, CMS engines remain inactive,
similar to any other accelerator.

5. DISCUSSION
CMS is targeted at bulk-synchronous SPMD execution

models that transfer data arrays to and from memory, and
is not intended to address irregular multi-processing work-
loads. We believe that the kinds of algorithms that are the
largest drivers for improved computational performance and
multi-core are in fact SPMD kernels such as data-parallel
kernels that are seen in image processing, face recognition,
machine learning, fluid dynamics, linear algebra, kinetics
simulation, and numerous other applications in platforms
from HPC to embedded architectures [26, 28, 10, 17]. Many
future applications in multi-cores are expected to follow data-
parallelism even for consumer and mobile applications [7]

The programming interface to CMS operates in the virtual
address space but the CMS hardware engine uses physical
addresses. This, however, does not require modifications
to existing virtual to physical memory address translation
mechanisms such as the TLB in each processor. Even though
data placed contiguously in the virtual address space may
not be contiguous in the physical address space, CMS guar-
antees that whether the DRAM page (row) accessed next is

the next contiguous page in the physical address space or
not will not affect performance and power so long as every
line within that page is used (to the extent made possible
by the application) after that page is open. Even if the TLB
relocates the page, it will not affect the CMS engine’s ability
to make maximal use of the data within that open page.
Idle processors can be programmed to mimic the func-

tionality of the CMS engine to avoid dedicated CMS en-
gines. However, this makes some processors unavailable to
the application, performs collective transfer at a much higher
energy cost, and requires processors with an unrealistically
high number of outstanding memory requests to cover the
bandwidth–delay product to memory.
Highly threaded SMs within GPUs are similarly challenged

by data-parallel applications and the desire to coalesce in-
dependent thread accesses into a limited number of accesses
to memory [1]. CMS can be used to replace or augment
the existing functionality within an SM when data is loaded
either into shared memory or the register files. CMS can
also be used to view the union of transfers performed by
the active set of SMs as a collective and move data to and
from their respective load stores. GPUs have programming
constructs capable of expressing collective transfers, such as
HTAs which have been implemented for OpenCL [47].
In applications that allow a subset of processors to make

progress faster than others, CMS would force the fast pro-
cessors to stall due to the implicit barriers. This typically
does not degrade execution time because application perfor-
mance is commonly dictated by the slowest processors, as is
the case with our sparse data array application benchmarks.
However, barrier calls are already typical in data-parallel ap-
plications that are the focus of CMS [17].
While in local-store architectures such as STI Cell [36]

we choose to identify collective transfers by using a soft-
ware API that replaces DMA function calls, typical cache-
coherent CMPs can use hardware prefetch units. In such sys-
tems, individual prefetch units in each processor can trans-
mit their predictions to the CMS engine, which can iden-
tify collective prefetching opportunities. This would require
modifications to the cache coherency protocol to allow L1
caches to receive data they did not request and to iden-
tify data to write back to the memory before it is evicted.
Prefetch decisions can also be performed by the CMS engine
by observing the memory access stream, without prefetch
engines at each processor. Alternatively, compilers can also
recognize collective transfer opportunities abstractly from
the programmer and transfer the same data layout infor-
mation that the programmer provides through HTAs in our
current implementation to the CMS hardware engine.



6. RELATED WORK
Past work has researched collective data transfer tech-

niques in very different contexts. In wide-area TCP/IP
networks, coordinating the nodes to send their data to a
common destination with a common transfer schedule that
avoids conflicts substantially reduces network congestion [8].
Alternative techniques for wide-area networks focus on het-
erogeneity and use of shared resources by transferring dif-
ferent chunks of the same file from replicas [24]. Collective
data transfers have also been applied to server disk-directed
I/O, because the access bandwidth for magnetic hard disk
drives significantly improves with sequential accesses [37].

Vector machines such as the Cray-1 [35] overcome the in-
efficiencies of DRAM overfetch and access granularity by
using massive bank-switching to offer word-granularity ac-
cesses. However, vector core designs and memory controllers
are costly due to their limited market and sizable engineer-
ing costs [13]. VIRAM can also exploit data-level parallelism
to overcome the wiring costs of massive bank-switching [25],
but the memory capacities offered by the various processor-
in-memory approaches are impractically small for the com-
mercial market. Moreover, variations of DMA engines [22]
still perform transfers between only two components, thus
creating out of order access streams to memory.

The Impulse memory controller reorganizes the memory
address stream so that non-contiguous address patterns ap-
pear contiguously in the cache hierarchy [46]. However, with
Impulse the data arrays remain scattered in the DRAM,
thereby leading to inefficient DRAM performance. More-
over, even though data-to-memory address layouts alterna-
tive to row- or column-major can produce a more favor-
able memory access stream for some applications without
CMS [16, 30, 14], complex layouts are counter-productive
for programming. Such data layout transformations still
cannot outperform CMS because CMS guarantees in-order
memory access. CMS also makes communication-avoiding
optimizations unnecessary, which removes the need for ex-
tra local storage or redundant computation which is typical
from such optimizations [17, 10].

Sophisticated memory schedulers use complex scheduling
policies and can be thread-aware [32, 18, 40, 29, 11]. Many
schedulers also perform limited reordering by attempting
to exploit row buffer locality and bank parallelism among
other metrics [29]. Still, even a memory controller with an
ideal policy is inherently incapable of fully reconstructing
the memory access stream. That is because controllers are
passive elements which do not control the order requests ar-
rive to them and decide which one to serve next only from
within their transaction queues. In contrast, CMS guar-
antees in-order memory access by actively controlling the
transfer and pushing or pulling data to and from proces-
sor local stores or L1 caches. CMS has similar goals with
“memory access scheduling” proposed for stream processors,
but memory access scheduling is merely an algorithm that
applies to the memory controller, and thus is inherently
limited by the size of the memory controller’s transaction
queue [31]. As we explain in Section 4.1, we compare against
FRFCFS with an open-row policy because FRFCFS maxi-
mizes throughput compared to many other controllers.

Past work has simplified memory controllers by using the
on-chip routers to reorder requests [45]. However, because
decisions are made with local knowledge and processors still
issue requests independently, this scheme performs slightly

lower than a FRFCFS scheduler. Alternative work uses
admission control to inject only requests for open DRAM
rows [27]. However, this uses a centralized scheme and thus
faces limited scalability, and also risks idling memory due to
propagation delay. Frequently-accessed data can be placed
in the same row to favor open row DRAM policies [41]. Mod-
ifications to DRAM internals have also been proposed to re-
duce the negative power effects of random-order sequences,
by avoiding to activate all the bitlines in a row before the
exact read request is known [42].
While local and last-level cache (LLC) caches can reduce

DRAM accesses during the computation phase of a loop,
data is still retrieved from main memory when loading new
and storing old data arrays. CMS focuses on fetching new
and storing old data, and not on cache interference across
tiles during computation. In the wide variety of memory
bandwidth-bound applications discussed in this paper, re-
trieving new and storing old data suffice to saturate memory
bandwidth. LLCs may potentially assist in reducing redun-
dant memory reads, which however is not the dominant fac-
tor for CMS. LLCs can also partially reconstruct address or-
der for writes with a write back policy, especially with mech-
anisms such as the virtual write cache which relies on the
memory controller having idle cycles to fetch data from the
LLC in address order [39]. However, in memory-bandwidth
bound applications memory controllers are hardly idle. Also,
streaming (write-through) writes are preferable to write back
policies in data-parallel computations to prevent polluting
higher-level caches because the results of a computation loop
are not reused in the next iteration [10, 17].
Prefetching is currently the defacto solution for latency

hiding on modern CPU architectures. However, prefetching
typically focuses on reducing latency and offers little benefit
in systems that are bound by memory bandwidth. In gen-
eral there are two forms — cache prefetchers (move data
from cache to processors) and DRAM prefetchers (move
data from DRAM to the LLC). The performance of cache
prefetchers often suffers on bulk synchronous applications
that cache block dense arrays because the contiguous ad-
dress stream length is often short. As such, prefetcher la-
tency is not amortized and significant overfetch can occur
(a processor inappropriately prefetches data from the next
cache block), stressing memory bandwidth. Cache prefetch-
ers also typically perform predictions independently at each
processor and thus create out-of-order access patterns [21].
In addition, the performance of a DRAM prefetcher can
be particularly sensitive to the number of active threads,
how separated their address streams are, and the number of
streams the prefetcher can track. Finally, prefetching lacks
knowledge from the applications and is thus prone to er-
rors where the wrong data is fetched instead of the data the
processor actually requires. This is detrimental to both the
memory because it served erroneous requests, but also to the
processor. CMS addresses the challenges of both cache and
DRAM prefetchers by distilling the core collective memory
access pattern and avoiding mispredictions.

7. CONCLUSION
To make optimal use of the limited memory bandwidth of

current and future systems, we present CMS that provides a
shared responsibility mechanism between the software and
an inexpensive hardware engine to coordinate parallel data
accesses in a CMP such that data arrays are read from or



written to the DRAM in strict memory address order and
distributed to or collected from processors. CMS is essen-
tially a memory access accelerator that is inexpensive to in-
clude even in general-purpose systems. CMS actively takes
control of collective data transfers by pushing or pulling data
to or from on-chip L1 caches or local stores. CMS maximizes
memory throughput beyond that possible even by the most
aggressive transaction schedulers in modern memory con-
trollers, reduces memory power and latency, simplifies the
API to manage bulk-synchronous DMA operations, and al-
leviates network congestion. CMS reduces application time
by up to 55% (20% average), memory read power by up to
2.2×, and memory write power by up to 50%.
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