
Packet Chaining: Efficient Single-Cycle Allocation for
On-Chip Networks

George Michelogiannakis
Electrical Engineering Dept.

Stanford University
Stanford, CA 94305

mihelog@stanford.edu

Nan Jiang
Electrical Engineering Dept.

Stanford University
Stanford, CA 94305

njiang37@stanford.edu

Daniel Becker
Electrical Engineering Dept.

Stanford University
Stanford, CA 94305

dub@stanford.edu

William J. Dally
Electrical Engineering Dept.

Stanford University
Stanford, CA 94305

dally@stanford.edu

ABSTRACT

This paper introduces packet chaining, a simple and effec-
tive method to increase allocator matching efficiency and
hence network performance, particularly suited to networks
with short packets and short cycle times. Packet chain-
ing operates by chaining packets destined to the same out-
put together, to reuse the switch connection of a departing
packet. This allows an allocator to build up an efficient
matching over a number of cycles like incremental alloca-
tion, but not limited by packet length. For a 64-node 2D
mesh at maximum injection rate and with single-flit packets,
packet chaining increases network throughput by 15% com-
pared to a highly-tuned router using a conventional single-
iteration separable iSLIP allocator, and outperforms signifi-
cantly more complex allocators. Specifically, it outperforms
multiple-iteration iSLIP allocators and wavefront allocators
by 10% and 6% respectively, and gives comparable through-
put with an augmenting paths allocator. Packet chaining
achieves this performance with a cycle time comparable to
a single-iteration separable allocator. Packet chaining also
reduces average network latency by 22.5% compared to a
single-iteration iSLIP allocator. Finally, packet chaining in-
creases IPC up to 46% (16% average) for application bench-
marks because short packets are critical in a typical cache-
coherent chip multiprocessor.

Categories and Subject Descriptors

B.4.3 [Hardware]: Input/output and data communications—
Interconnections; C.1.2 [Computer systems organiza-

tion]: Multiple data stream architectures—Interconnection

architectures

c©ACM, (2011). This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definite version was published in MICRO’11, December 3-7, 2011, Porto
Allegre, Brazil. ACM 978-1-4503-1053-6/11/12

General Terms

On-chip networks, allocation, iterations, packet chaining

1. INTRODUCTION
Networks-on-chip (NoCs) have been developed to efficiently

serve the communication requirements of large-scale systems
with hundreds or thousands of logic blocks [5, 16]. NoCs can
consume considerable amounts of area and power, as well as
affect application execution time [23]. Therefore, much re-
search has focused on improving NoC efficiency.

The performance of a NoC is extremely sensitive to the
matching efficiency of the allocators used to allocate switch
ports and virtual channels (VCs) in the NoC’s routers. Due
to their complexity, allocators are in the critical path of
many routers [21, 2]. Therefore, past research has examined
the trade-off between matching efficiency and cycle time [2].

Many NoCs use separable allocators [6] which use separate
input and output arbiters in sequence to perform allocation.
iSLIP separable allocators [18] use round-robin arbiters and
update the priorities of each arbiter when it generates a
winning grant. Separable allocators are often used because
they can operate within an aggressive cycle time. However,
making arbitration decisions independently at each port de-
grades matching efficiency. While a separable allocator’s
matching efficiency can be increased by performing multiple
iterations, this is typically not feasible within a single clock
cycle [2, 6]. Wavefront [25] and augmenting paths [7] alloca-
tors also increase matching efficiency by guaranteeing max-
imal and maximum matchings, respectively. These guaran-
tees increase delay and cost [2, 10], making such allocators
infeasible within a tight timing budget.

To provide the efficiency of multi-iteration allocation with-
out extending cycle time, past work has proposed pipelined [9]
and incremental [20] allocations. In both schemes, alloca-
tion extends over multiple cycles, during any of which new
requests can be added. In pipelined allocation, results are
only available at the end of the last iteration. In contrast,
incremental allocation makes the results of each iteration
available, such that intermediate grants can be generated.
Incremental allocation has been implemented using a separa-
ble, single-iteration allocator and holding resources granted
for the duration of a packet [20, 13]. However, both schemes

provide no benefits to single-flit packets, and small benefits
to short packets.

Many systems, such as typical cache-coherent chip mul-
tiprocessors (CMPs), send primarily short packets. For in-
stance, 53% of the packets in the applications we simulated
in this paper were single-flit and received no benefit from in-
cremental allocation. Short packets are important because
they transfer time-critical control messages. Short packets
stress allocators due to increasing the number of head flits
which correspond to new allocator requests even with in-
cremental allocation. Long packets are affected by short
packets because the allocation problem remains large caus-
ing inefficient matchings, and also because long packets can
be blocked behind short packets in the same VC. In addi-
tion, long packets can starve other packets [20, 13].

In this paper we introduce packet chaining [19], a method
for improving allocation efficiency for iterative allocators
that is particularly suited to networks with short packets
and short cycle times. Packet chaining operates by chain-
ing packets, potentially from different inputs, destined to
the same output together, facilitating reuse of a departing
packet’s switch connection. Even with uniform random traf-
fic, a significant number of packets request the same output
at every router. This allows an allocator to build up an
efficient matching over a number of cycles like incremental
allocation [20], but not limited by packet length. To pro-
vide limited fairness, we add starvation control which either
operates by releasing a connection after it has been held for
a predetermined number of cycles, or by releasing a con-
nection when a competing packet has been blocked for a
predetermined number of cycles.

Packet chaining provides excellent matchings, especially
with single-flit packets. Packet chaining enables long pack-
ets to be divided into shorter ones to avoid performance
degradation from long packets due to constant-sized buffers,
without loss of allocation efficiency. Packet chaining is im-
plemented by adding a separate packet chaining (PC) allo-
cator, and thus doubles the area and power for allocation.
The allocation timing path is lengthened only marginally,
since the PC and switch allocators operate in parallel. This
is in contrast with wavefront which is typically used to in-
crease allocation efficiency but requires up to 1.25× more
area, 1.5× more power and 36% higher delay compared to
packet chaining in the mesh. This is intensified for high-
radix routers such as the flattened butterfly (FBFly) [11],
where wavefront requires up to 1.35× more area, 3× more
power and 37% higher delay than packet chaining.

We evaluate packet chaining on an 8×8 mesh and on a 64-
terminal FBFly. Packet chaining increases the allocation ef-
ficiency of a single-iteration separable allocator to be compa-
rable to or higher than more expensive and slower allocators.
For single-flit packets at maximum injection rate, packet
chaining increases network throughput by 15% compared to
a highly-tuned router with incremental allocation using a
single-iteration iSLIP switch allocator [18]. Packet chaining
also outperforms multi-iteration iSLIP allocators and wave-
front allocators [25] by 10% and 6% respectively, and gives
comparable throughput with an augmenting paths alloca-
tor [7]. Multiple-iteration iSLIP, wavefront, and augmenting
paths allocators are typically infeasible within an aggressive
cycle time [10]. Because of their cost, wavefront allocators
can only be reasonably considered for low-radix routers or
full-custom implementations. Throughput at maximum in-

jection rate is a more representative measure than saturation
throughput because throughput-limited systems operate the
network beyond saturation. Without elaborate throttling, it
is very difficult to hold a network at the point of saturation.

Furthermore, packet chaining reduces average network la-
tency by 22.5% compared to a single-iteration iSLIP allo-
cator by increasing allocation efficiency and consequently
reducing the number of cycles packets spend blocked re-
questing to traverse the router switch by 7.5%-21.5%. Per-
formance gains decrease as packet length increases because
incremental allocation creates connections as well. However,
packet chaining still provides better or comparable through-
put with more expensive and slower allocators for packets of
any length. For instance, saturation throughput is compa-
rable (packet chaining gains drop to 2%) for packets of four
to sixteen flits. Finally, packet chaining increases IPC up to
46% (16% average) for a CMP executing application bench-
marks, which generates traffic with short and long packets.
Given the maturity of NoC routers and allocators, these per-
formance gains are significant.

2. DETAILED DESCRIPTION

2.1 Conventional Allocation with Short Pack-
ets

With short packets, a conventional single-iteration sepa-
rable allocator gives poor matching efficiency because it is
frequently restarting the allocation process and in a single
iteration is not able to compute an efficient matching. While
multiple iterations or more complex allocators could improve
matching efficiency, they are typically not feasible within a
tight timing budget.

The poor allocation efficiency of a conventional iSLIP al-
locator in the extreme case of single-flit packets is illustrated
in Figure 1. The figure shows three cycles of allocations for a
6×6 router. Each input port has four VCs each containing a
single one-flit packet. Each packet is labeled with the output
port it requires. No additional packets arrive over the three
cycles illustrated. Dark squares denote both requests and
grants generated by the input and output arbiters. With
input-first allocation, an input arbiter first selects one re-
quest from each row (input grants) and then an output ar-
biter selects one surviving request from each column (output
grants). After a single iteration the resulting allocation is
poor—with just three grants out of a possible five.

The situation is repeated in cycles 1 and 2, but with the
iSLIP allocator rotating the input and output arbiter pri-
orities for ports that are granted. Outputs are left idle be-
cause many input arbiters picked the same output, which
can only serve a single input at a time. If there was time for
multiple iterations, these idle outputs would be connected
to unmatched inputs.

Figure 3(a) shows the activity on the output channels. For
a cycle in which an output is busy, a dark rectangle is labeled
with the input and the VC that is using that output. Output
2 is idle for all three cycles because no packet requests it.
There are five other idle output cycles. A better allocator
could fill most of these cycles resulting in higher throughput.

2.2 Packet Chaining
Packet chaining [19] performs more efficient allocation with-

out increasing cycle time by starting with the existing set of
connections and holding any finishing connections that can

1
1
5

Input0
V0
V1
V2

0
0
5

Input1

1
3
1

Input2

0
4
4

Input3

V0
V1
V2

V0
V1
V2

V0
V1
V2

3
5
3

Input4

1
5
5

Input5

V0
V1
V2

V0
V1
V2

 1
1 1
 1 1
1 1
 1 1

1 1

0 1 2 3 4 5
0
1
2
3
4
5

Requests

 1
1
 1
1

0 1 2 3 4 5
0
1
2
3

Input grants

 1
1

0 1 2 3 4 5
0
1
2
3

Output grants

 1
1

4
5

 1

4
5

 1

 1

0 1 2 3 4 5
0
1
2
3
4
5

Requests
0 1 2 3 4 5

0
1
2
3

Input grants

0 1 2 3 4 5
0
1
2
3

Output grants

4
5

4
5

5

5

V3

V3

3V3

0

3V3

V3

V3 5

Cycle 0

Cycle 1

1 Request/grant

Initial state:

 1

 1

0 1 2 3 4 5
0
1
2
3
4
5

Requests
0 1 2 3 4 5

0
1
2
3

Input grants

0 1 2 3 4 5
0
1
2
3

Output grants

4
5

4
5

Cycle 2

Throughput: 56%

Figure 1: Example allocation of iSLIP without

packet chaining.

1
1
5

Input0
V0
V1
V2

0
0
5

Input1

1
3
1

Input2

0
4
4

Input3

V0
V1
V2

V0
V1
V2

V0
V1
V2

3
5
3

Input4

1
5
5

Input5

V0
V1
V2

V0
V1
V2

Requests

0 1 2 3 4 5
0
1
2
3

Input grants

0 1 2 3 4 5
0
1
2
3

Output grants

4
5

4
5

X

0 1 2 3 4 5
0
1
2
3
4
5

Requests
0 1 2 3 4 5

0
1
2
3

Input grants

0 1 2 3 4 5
0
1
2
3

Output grants

4
5

4
5

5

5

V3

V3

3V3

0

3V3

V3

V3 5

Cycle 0

Cycle 1

Request/grant

Initial state:

Requests
0 1 2 3 4 5

0
1
2
3

Input grants

0 1 2 3 4 5
0
1
2
3

Output grants

4
5

4
5

Cycle 2

Throughput: 72% X Prior cycle connection

 X
X

X

0 1 2 3 4 5
0
1
2
3
4
5

X

X

X
X

X

X

0 1 2 3 4 5
0
1
2
3
4
5

X
X

X

X

Figure 2: Example allocation of iSLIP with packet

chaining.

be used by waiting packets. Packet chaining in effect chains

packets together, even if they are from different inputs or
VCs, so they look like one longer packet to the switch allo-
cator. The switch allocator does not start from scratch, but
from this initial state of chained connections. The result is
comparable to running multiple iterations of a conventional
allocator.

Packet chaining finds a new packet, potentially from any
input and VC, destined to the same output to chain onto
a departing tail flit. A new waiting packet is suitable if (a)
it has been routed to the same output as the tail flit, (b)
there is a free output VC it is eligible to use, and (c) there is
at least one credit for that output VC. The chained packet
need not be at its start; partially transmitted packets can be
chained, in which case the only eligible output VC is the one
to which the packet is already assigned, as stored in control
state logic of input VCs.

Figure 2 illustrates the same example as Figure 1 with
packet chaining. In this figure, an X denotes a connection
during the previous cycle and a dot (•) denotes requests

� �

�
�

�
�
��
�
��

���	AB	C	�D

�
�

�
�

EF�

�F�

�F�

�F��B��	AD�B����B�����B�FB��B�

�F�

�F�

�F�

�F�

�FE

�FE

�FE

�

(a) Without packet chaining.

� �

�
�

�
�
��
�
��

���	AB	C	�D

�
�

�
�

EF�

�FE

�F�

�F��B��	AD�B����B�����B�FB��B�

�FE

EFE

�FE

�F�

�FE

�F�

�FE

�F�

�F�

�F�

�

(b) With packet chaining.

Figure 3: A timeline of output port usage using the

same example.

and grants. In cycle 0, the allocator starts with five connec-
tions inherited from cycle -1. Three of these connections are
reused by new packets requesting the same output and thus
chaining onto the departing packet as denoted by a square
in the cycle 0 request matrix with both an X and a •. The
other two connections, denoted by an X without a •, are ter-
minated. The three chained packets eliminate competing re-
quests for the same input and output ports before the input
arbiters. The result of arbitration at the inputs includes the
three chained packets as well as additional requests. Only
one of the new requests is granted by the output arbiter,
giving four packets transmitted in cycle 0.

As shown in the second row of Figure 2, all four connec-
tions from cycle 0 are chained in cycle 1. The allocator
makes one additional grant giving a total of five packets
transmitted in cycle 1. In cycle 2, only two of the five con-
nections are chained and the allocator makes two additional
grants, resulting in four packets being transmitted.

Figure 3(b) shows the activity on the output channels.
Other than output 2 being idle because there are no re-
quests for it, the figure shows two other idle output cycles,
compared to five for allocation without chaining. Of these
two idle cycles, only the first—on output 4 in cycle 0—is
avoidable. A better allocator could have assigned (3,1) or
(3,2) to this channel. An idle cycle on either channel 0 or
channel 4 in cycle 2 is unavoidable since only input 3 has
requests for these two outputs. The allocator thus generates
maximum matchings in cycles 1 and 2.

Overall, packet chaining increases the quality of alloca-
tion, resulting in more packets being sent (13 vs. 10 in this
example). This is accomplished by reusing existing connec-
tions where possible rather than returning the inputs and
output ports to the switch allocation pool where they run the
risk of being idled due to inefficient allocation as described
in Section 2.1. This is equivalent to performing multiple
allocator iterations, one per cycle, while at the same time
using the results of each iteration, as in incremental alloca-
tion [20] but independent of packet length. Packet chaining
does not always result in maximal or maximum matchings.
For example, an additional allocator iteration would add a
grant from input 3 to output 4 in cycle 0. Packet chaining
and incremental allocation provide little benefit to allocators
whose matching does not improve with multiple iterations.

Connections are released if they cannot be used produc-
tively either because the output VC has no more credits or
the input VC becomes empty [13]. To accommodate higher-

priority traffic, a connection is released if a higher-priority
request exists for the connected output. Chained packets
may bypass older packets residing at another VC, but this
is also possible without packet chaining if there is more than
one VC. Therefore, packet chaining does not cause out-of-
order delivery of packets or flits if they would be ordered
without packet chaining.

We implement packet chaining on top of a combined switch-
VC allocator [13] that reserves output VCs only for pack-
ets which win switch allocation. This leaves more output
VCs free compared to performing VC allocation in advance,
therefore giving more flexibility to packet chaining to find
free output VCs. However, packet chaining may also be used
in a router with a VC allocator [21].

2.3 Chaining Variations
We consider three variations in the set of inputs and VCs

that are considered for chaining:

• Same input VC : The simplest scheme is to consider
only the same input VC as the previous packet that
used the connection.

• Same input, any VC : This scheme considers all eligible
VCs of the same input as the previous packet that
used the connection. This multiplies the probability
of finding a suitable packet by the number of VCs.

• Any input, any VC : This scheme considers eligible
packets in any input and any VC. Thus, this scheme
increases the probability of finding a packet to chain
by the number of other inputs and VCs. Packets are
chained in the same way regardless if they are from
the same or another input.

The complexity of the chaining logic depends on the packet
chaining scheme. Considering only the same input VC re-
quires just a comparator to check if the next packet requests
the same output as the departing tail flit. Considering all
VCs of the same input requires a similar comparator for each
input VC as well as an arbiter to select among eligible input
VCs. Finally, the scheme with the most chaining candidates
(any input and any VC) requires a complete and separate
PC allocator similar to the switch allocator. However, all
schemes require the same logic to check for active connec-
tions, output VCs and credits. Regardless of complexity and
chaining scheme, chaining is performed in the PC stage in
the manner described below.

2.4 Packet Chaining Pipeline
Packet chaining adds an extra PC stage to a conventional

two-stage VC router with look-ahead routing [8]. Newly ar-
riving packets skip the PC stage and start directly in the
switch allocation (SA) stage. Hence, adding the PC stage
does not increase router latency. Packets that are not eli-
gible for SA remain in the PC stage and participate in PC
allocation. Packets participate in PC allocation if there is
an active connection they can use which will be released in
the next cycle (the tail flit will be traversing the switch in
the next cycle). Packets participate in SA if they are at the
head of their input VC and their input and output are not
currently connected. As discussed below, packets in the SA
stage may participate in both PC and SA. Packets that get
chained advance to or remain in the SA stage in the next

Cycle 0

Cycle 1

Cycle 2

PT

SA ST

X

PTX

X

PC PC: Packet chaining

SA: Switch allocation

ST: Switch traversal

PT: Preceding tail flit

X : Waiting packet

Stage

Figure 4: An example of flit X being chained to use

PT’s connection.

cycle because they need to remain behind the preceding tail
flit, but do not participate in SA. Packets that receive a
switch grant advance to the ST (switch traversal) stage.

Figure 4 shows a waiting packet X that shares its output
with PT (a preceding tail flit). When PT is in the SA stage,
requests are submitted to the PC allocator for waiting pack-
ets eligible for chaining, to reuse PT’s connection. In this
example, packet X is granted the connection from the PC
allocator during cycle 0. If PT fails SA during cycle 0, PC
allocation is cancelled and packets X and PT remain in the
same stage—repeating both allocations in the next cycle. In
this example, PT receives a switch grant and traverses the
switch during cycle 1 while the head flit of X advances to
the SA stage. Since X was allocated the connection during
the PC stage, it does not participate in SA during cycle 1.
The established connection blocks competing packets from
X’s input and output. Look-ahead routing is performed for
packet X during the SA stage. Finally, in cycle 2, the head
flit of X traverses the switch. In our latency-optimized two-
stage router pipeline, chained flits may not skip the SA stage
even if no flit is ahead of them in the ST stage, because that
would require a separate VC allocator and would complicate
timing with the input channels, buffers and routing logic.

Because packet chaining operates when PT is in the SA
stage, it is guaranteed to chain an eligible packet and re-
move competing packets from consideration by the switch
allocator. Biasing the switch allocator to favor maintain-
ing connections across packets does not achieve the same
end because competing packets are not removed from con-
sideration, and thus may impact switch allocator decisions
negatively.

Because PC allocation considers only outputs currently
connected (which will be released in the next cycle) and
connected outputs are not eligible for SA, outputs may not
participate in both PC and switch allocation. For the same
reason, inputs may not participate in both allocations with
chaining schemes which consider only the same input, be-
cause with those schemes only a single output—that of the
previous packet holding the connection—is considered. How-
ever, when considering any input for chaining, an input VC
may participate in both allocations only if the packet at its
head requests two or more outputs, and one is unconnected
while the other is connected and available for chaining. Sim-
ilarly, an input may participate in both allocations as long
as it has multiple VCs, because the packets at the heads of
that input’s VCs may request different outputs. Therefore,
conflicts may arise between the two allocators. If the two
allocators grant the same input (regardless if they grant the
same input VCs), the PC allocator’s decision is disregarded
and the connection is released enabling packets to bid for
that output through the switch allocator.

Eligibility to participate in PC and switch allocation is de-
termined at the beginning of the cycle. However, the eligibil-

ity of a packet for chaining may depend on switch allocator
decisions in the same cycle as PC allocation. For example,
an input VC may contain a packet eligible for chaining ex-
cept that the input port which contains that VC is part of
another connection to another output which has to be re-
leased in order for that packet to be chained. Similarly, a
tail flit for which there is no connection needs to be granted
by the switch allocation in order to form a connection and
provide a chaining opportunity for other packets. In each
of those two cases, a packet will become eligible for chain-
ing only by a favorable switch allocator decision in the same
cycle. Packets in those two cases generate a lower-priority
speculative request to the PC allocator. This way, PC al-
locator requests which may later have to be invalidated do
not take resources away from packets which are definitely el-
igible for chaining. However, sub-optimal chaining decisions
are still possible because only some of the lower-priority re-
quests may actually become eligible, but other lower-priority
requests may have been granted instead.

For input VCs participating in SA, PC allocator requests
are generated based on the flits behind the flits at the head
of the buffers. Because eligibility for chaining depends on
the flits at the head departing, those PC requests are also
marked as lower-priority. Enabling this functionality as well
as the other lower-priority PC requests described previously
is not required for packet chaining and represents a tradeoff
between complexity and the number of chaining candidates.
Other types of priorities, such as age priorities, are taken
into account within each of the two aforementioned priority
classes of PC requests.

2.5 Starvation Control
Packet chaining intensifies the fairness and starvation is-

sues of incremental allocation [20, 13] because a connection
can remain active indefinitely. To provide limited fairness,
we extend packet chaining with starvation control. Starva-
tion control uses age to increase a waiting packet’s priority.
Since higher-priority requests cause established connections
to be released (potentially mid-packet), starvation is pre-
vented. Age should be increased after a predetermined num-
ber of cycles that is large enough to preserve the benefits of
packet chaining. A simpler alternative is to release a connec-
tion and inhibit packet chaining for the affected input and
output if a connection has been held for more than a max-
imum number of cycles. With this mechanism, connections
that will reach the starvation threshold at the next cycle are
not eligible for chaining. Thus, switch ports held by a long
series of packets are returned to the switch allocator pool
to be reassigned to waiting packets. The latter mechanism
does not require multiple priority levels and thus reduces
PC allocator complexity. However, it may not adequately
prevent starvation in the rare scenario where a connection
is released after reaching the threshold but it keeps being
re-established because the other packets that are waiting for
the same output and are getting starved cannot request that
output because they are in an input which participates in
another connection every time the connection causing the
starvation is released. In practice this scenario can only oc-
cur indefinitely with traffic patterns chosen to exploit this
weakness. That is because at low loads input VCs will even-
tually be left without flits and at high loads output VCs will
run out of credits, thus releasing the connection.

3. METHODOLOGY
Evaluation is performed with a modified version of Book-

sim [6]. The topologies we use are an 8×8 2D mesh and
a 4×4 2D FBFly [11]. Routers are connected to one net-
work terminal in the mesh, and four terminals in the FBFly.
Therefore, each FBFly router has 10 ports. In the mesh,
all channels have one cycle delay. In the FBFly, injection
and ejection channels have a delay of one cycle, whereas
short, medium and long channels have two, four and six cy-
cles delay, respectively. For the mesh we use deterministic
dimension-order routing (DOR) because it is a simple and
popular choice. For the FBFly we use universal globally
adaptive load-balancing (UGAL) routing [24].

We use VC flow control [4]. Routers use the pipeline de-
scribed in Section 2.4 and operate at the same clock fre-
quency in all comparisons. Routers require two cycles to
generate and transmit credits upstream. In our evaluation,
iSLIP [18] and wavefront [25] allocators take into account
priorities. The PC allocator uses iSLIP with one itera-
tion (iSLIP-1) because a more complex PC allocator would
lengthen the allocation timing path in a router with an
iSLIP-1 switch allocator. Unless indicated otherwise, the
combined switch/VC allocator also uses iSLIP-1. All sepa-
rable allocators in our study perform input arbitration be-
fore output arbitration. Incremental allocation [20] is used
when evaluating networks without packet chaining.

Evaluation is performed using uniform random, random
permutation, shuffle, bit complement and tornado traffic
patterns [6]. The FBFly also uses transpose and neighbor
traffic. They provide little insight for the mesh due to the
absence of concentration. Packet length varies from 1 to 16
flits. Injection rates are given in flits. Our evaluation be-
gins with single-flit packets which clearly illustrate the effect
of packet chaining, and then proceeds to discuss multi-flit
packets and bimodal traffic. Our default configuration has
4 VCs, with 8 buffer slots statically assigned to each. VCs
in the FBFly are divided among the two traffic classes re-
quired by UGAL. In the default configuration, all packets
have equal priority and starvation control is disabled.

We also present execution-driven simulation results for
a typical cache-coherent CMP with 64 superscalar, out-of-
order RISC CPUs. The CPUs are two-way multithreaded
and allow a large number of outstanding memory requests.
We use five PARSEC [3] benchmarks and a parallel imple-
mentation of FFT. The benchmarks are configured to cre-
ate two threads per CPU. We use a custom, detailed and
timing-accurate CMP simulator which does not simulate
the operating system and which interfaces with Booksim.
The CMP simulator has an execution-driven front-end and
a performance-modeling back-end. The simulator models
detailed temporal effects and performance characteristics of
the simulated hardware, and influences the front-end in a
realistic way. The front-end uses Pin [17] to instrument
a native x86 multithreaded binary. The front-end passes
RISC-like instructions to the back-end.

For the application simulations, we use the previously de-
scribed mesh network, packet chaining among all VCs of the
same input, and a 64-bit wide datapath. Therefore, short
packets are single-flit, while packets carrying our 32-byte
cache lines have five flits. For fairness, connections are re-
leased if they have been active for eight cycles. L1 caches are
8KB, four-way set-associative, have a single cycle of latency
and are private to the cores. L2 caches are shared, non-

20 30 40 50 60 70 80 90 100
25

30

35

40

45

Injection rate (flits/cycle * 100)

T
h

ro
u

g
h

p
u

t
(f

lit
s
/c

y
c
le

 *
 1

0
0

)

2D mesh. DOR. Uniform random. iSLIP. 1−flit packets.

Same input VC

VCs of same input

All inputs and VCs

No chaining

Figure 5: Increasing the injection rate beyond satu-

ration illustrates network instability.

inclusive (they act as victim caches for the L1s), four-way
set-associative, have 32KBs per core, and have five cycles
of latency. There is one directory and one L2 cache slice
located at each core. There is one memory controller in ev-
ery network quadrant. We assume cores optimized for clock
frequency that are clocked at a four times higher clock fre-
quency than the network. Results for IPC correspond to
those for execution speedup. On training input datasets
IPC results matched measured speedup.

4. EVALUATION

4.1 Throughput Under Heavy Load
Packet chaining stabilizes the network by reducing through-

put degradation past saturation. As illustrated in Figure 5,
compared to iSLIP-1 (incremental allocation without packet
chaining) with single-flit packets, packet chaining increases
throughput at maximum injection rate by 15% when con-
sidering VCs of the same input. Throughput peaks at sat-
uration injection rate and then decreases because of multi-
hop paths of congested packets forming due to a few hot
spots, known as tree saturation [12]. Tree saturation still
forms with packet chaining because the PC allocator allo-
cates only with local knowledge, but is less pronounced due
to the increased allocation efficiency. With packet chaining,
throughput drops only marginally (2.5%) past saturation.

Packet chaining does not eliminate instability due to glob-
ally unfair allocation. For instance, traffic patterns such as
transpose and shuffle that cause instability in mesh networks
due to the parking-lot problem [6], where some communicat-
ing pairs have to compete for resources more times than oth-
ers, are not stabilized by packet chaining. In such patterns,
stability can be increased by age-based allocation or star-
vation control. The FBFly is stable both with and without
packet chaining.

Performance at maximum injection rate is an important
metric because a throttling mechanism might be overly con-
servative thus reducing available throughput, while the lack
of a throttling mechanism may place the network in the
instability region. Without elaborate throttling, it is very

difficult to consistently operate a network at the point of
saturation. Thus, in most systems, network-limited phases
of applications operate past saturation where throughput at
maximum injection rate dictates performance.

4.2 Comparing with Other Allocators
Figure 6 shows that packet chaining offers comparable or

higher throughput than three other popular and more com-
plex allocators. iSLIP-2 refers to iSLIP with 2 iterations.
Additional iterations do not considerably improve perfor-
mance but increase cycle time [18, 6]. Wavefront guaran-
tees maximal matchings [25] at the expense of prolonging
the allocation timing path. This is intensified for high-radix
routers and makes wavefront allocators reasonably feasible
only in small configurations or with full-custom implementa-
tions. To exemplify the point, wavefront consumes up to 6×
more power and has an increased delay by 36% compared to
a separable allocator in a FBFly, and 3× more power and
20% more delay in a mesh [2]. Augmenting paths allocators
generate maximum matchings but are too costly for single-
cycle implementations [10]. They locate all paths from un-
matched inputs to unmatched outputs in the directed bipar-
tite allocation graph [7]. These three allocators, especially
augmenting paths, are more costly primarily in cycle time
compared to iSLIP-1 with packet chaining. They are used
to show that packet chaining improves allocation efficiency
without the associated cost of more complex allocators.

Figure 6(a) shows that at maximum injection rate and
when considering all VCs of the same input, packet chaining
provides a 10% higher throughput compared to iSLIP-2 and
6% compared to wavefront. Furthermore, packet chaining
offers comparable throughput (1% more) to an augmenting
paths allocator. While an augmenting paths allocator guar-
antees maximum matchings, it optimizes throughput only
locally and does not take into account fairness. Thus, inputs
get passed over as long as selecting them prevents a maxi-
mum matching. Therefore, packet chaining is able to offer a
slight throughput increase at high loads where the fairness
issues with augmenting paths lead to increased instability.
In addition, packet chaining provides a 22.5% lower average
latency than the other allocators—computed as an average
from low to saturation injection rates. That percentage be-
comes 30% if injection rates below 20% are excluded.

Figure 6(b) illustrates the performance of packet chaining
in five synthetic traffic patterns. On traffic other than uni-
form random, packet chaining provides a 4% to 9% higher
saturation throughput (5% by average) compared to iSLIP-
2 and wavefront, whereas it is comparable to an augment-
ing paths allocator. These percentage gains increase when
evaluating performance at maximum injection rate. The
differences between allocators with these traffic patterns are
smaller by average compared to uniform random traffic. Uni-
form random traffic stresses allocators because requests may
show up from any input to any output. In contrast, other
traffic patterns use only a subset of the inputs and outputs
in each router and therefore enable less complex switch al-
locators to provide efficient matchings.

In the FBFly, with single-flit packets and traffic patterns
other than uniform random, packet chaining offers a 3%
higher saturation throughput than each of the other alloca-
tors when selecting among all inputs and VCs. With uniform
random traffic, throughput is comparable with an augment-
ing paths allocator, and 3.5% higher compared to iSLIP-2

37

38

39

40

41

42

43

44

Chain, same input iSLIP, 2 iterations Wavefront Augmenting paths

T
h

ro
u

g
h

p
u

t
(f

li
ts

/c
y

cl
e

 *
 1

0
0

)
Mesh. 1 flit per packet. No starvation. Uniform random.

(a) Throughput at max. injection rate.

0

10

20

30

40

50

Uniform Shuffle Randperm Bitcomp Tornado Average

T
h

ro
u

g
h

p
u

t
(f

li
ts

/c
y

cl
e

 *
 1

0
0

)

Mesh. 1 flit per packet. No starvation control.

Chain, same input iSLIP, 2 iterations Wavefront Augmenting paths

(b) Saturation throughput.

Figure 6: Comparison of packet chaining with other allocators.

0 10 20 30 40 50
0

50

100

150

200

250

300

350

400

450

Injection rate (flits/cycle * 100)

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

c
lo

c
k
 c

y
c
le

s
)

2D mesh. DOR. Uniform random. iSLIP. No starvation.

Same input VC

VCs of same input

All inputs and VCs

No chaining

(a) 2D mesh.

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400

450

Injection rate (flits/cycle * 100)

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

c
lo

c
k
 c

y
c
le

s
)

FBFly. UGAL. Uniform random. iSLIP. No starvation.

Same input VC

VCs of same input

All inputs and VCs

No chaining

(b) Flattened butterfly with UGAL.

Figure 7: Injection rate-throughput with single-flit packets.

and wavefront. Finally, average latency is 2%-5% lower with
packet chaining. While the relative differences between al-
locators are the same as the mesh, in the FBFly percentage
differences are smaller because packets take fewer hops and
therefore bid for the switch less often than in the mesh.

The trends remain the same with longer packets, as shown
in Section 4.4.

4.3 Saturation Throughput and Latency
Packet chaining increases saturation throughput and re-

duces latency compared to iSLIP-1 because packets spend
less time blocked at routers. As shown in Figure 7(a), for
uniform random traffic, considering all VCs of the same in-
put or all inputs and VCs provides a 5% increase in satura-
tion throughput. By average across traffic patterns, consid-
ering all VCs of the same input increases saturation through-
put by 6% whereas considering all inputs and VCs by 4%.
Packet chaining also provides a 4.5% lower latency by av-
erage until saturation. That percentage becomes 16% if
statistics for injection rates lower than 20% are excluded.
Latency reduction is due to more efficient matchings mak-
ing flits more likely to advance if their desired output is free.
This is similar to the reduction of latency when going from
a single to multiple iterations on an iSLIP allocator [6].

To gain further insight, we extract the number of cycles
that eligible head flits wait for the connection to their desired
output to be released and for a switch allocator grant to be

0

5

10

15

20

25

30

35

40

45

50

Uniform Shuffle Randperm Bitcomp Tornado Average M
a

x
im

u
m

 t
h

ro
u

g
h

p
u

t
(f

li
ts

/c
y

cl
e

 *
 1

0
0

)

Mesh. 4 VCs. 1 flit per packet. No starvation control. No priorities.

No chaining Same input VC VCs of same input All inputs and VCs

Figure 8: Comparison by traffic pattern.

received. This is measured in the mesh at the saturation
injection rate for each case; connections are released after
eight cycles to prevent starvation and results are compared
to iSLIP-1. By average, packet chaining reduces this block-
ing latency by 13% for single-flit packets, 21.5% for two-flit
packets and 7.5% for four- or eight-flit packets. This high-
lights the increased matching efficiency from packet chaining
since packets wait fewer cycles for a switch grant, and there-
fore more packets traverse the switch in a given time period.

Results for the FBFly are shown in Figure 7(b). Select-
ing among all inputs and VCs increases throughput by 9%
for uniform random traffic and 4% by average across traffic

0 2 4 6 8 10 12 14 16
37

38

39

40

41

42

43

44

Packet length in flits

M
a
x
im

u
m

 t
h
ro

u
g
h
p
u
t
(f

lit
s
/c

y
c
le

 *
 1

0
0
)

2D mesh. DOR. No starvation. iSLIP. Uniform traffic.

Same input VC

VCs of same input

All inputs and VCs

No chaining

(a) Uniform random traffic.

0 2 4 6 8 10 12 14 16
25

25.5

26

26.5

27

27.5

28

28.5

Packet length in flits

M
a

x
im

u
m

 t
h

ro
u

g
h

p
u

t
(f

lit
s
/c

y
c
le

 *
 1

0
0

)

2D mesh. DOR. No starvation control. iSLIP.

Same input VC

VCs of same input

All inputs and VCs

No chaining

(b) Average across traffic patterns.

Figure 9: Throughput by packet length in flits for the mesh.

0 2 4 6 8 10 12 14 16
25

25.5

26

26.5

27

27.5

28

28.5

Packet length in flits

M
a
x
im

u
m

 t
h
ro

u
g
h
p
u
t
(f

lit
s
/c

y
c
le

 *
 1

0
0
)

2D mesh. DOR. No starvation control.

Wavefront

Packet chaining

No chaining

iSLIP−2

Augm. paths

Figure 10: Throughput by packet length for the dif-

ferent allocators averaged across traffic patterns.

patterns, compared to disabling packet chaining. The other
selection schemes result in comparable throughput gains.

Figure 8 shows that the advantages of packet chaining re-
main largely the same across traffic patterns except for bit-

comp (bit-complement) without starvation control because
bitcomp creates continuous flows of traffic which starve other
packets. By releasing connections after four cycles with
bitcomp, packet chaining is comparable (offers 2% higher
throughput) to iSLIP-1 without packet chaining. Results
are similar for the FBFly, where packet chaining consistently
offers higher throughput, with the exception of transpose for
the same reason as bitcomp in the mesh. For shuffle, tor-

nado and neighbor, selecting among VCs of the same input
provides a higher throughput than all inputs and VCs.

4.4 Packet Length
Packet chaining always provides performance benefits, but

the benefits decrease when increasing packet length because

incremental allocation creates connections and thus improves
switch allocation without chaining packets. The effect of
packet length is shown in Figure 9. Longer packets translate
into fewer packet boundaries and thus fewer packet chaining
opportunities. Thus, with long packets the PC allocator has
a lower activity factor.

By average across traffic patterns and compared to iSLIP-
1 (no chaining), throughput is comparable (2% gain for
packet chaining) for eight-flit or longer packets. With star-
vation control enabled, throughput for uniform random traf-
fic with sixteen-flit packets is no lower than that of iSLIP-1.
Disabling starvation control slightly (1.5%) increases through-
put for some traffic patterns. The FBFly displays similar
behavior as the mesh.

Throughput drops for all test cases with the increase of
packet length due to the constant buffer size. Packet chain-
ing enables long packets to be divided into shorter ones to
avoid this reduction in performance, without loss of allo-
cation efficiency. The only exception is increasing to two-
flit packets with iSLIP-1, which clearly illustrates the gains
when incremental allocation is able to form connections.

Figure 10 compares packet chaining to more complex allo-
cators. For eight-flit packets, packet chaining is comparable
(outperforms by 2%) to wavefront and iSLIP-2, as well as
augmenting paths (outperforms by 1.5%) by average across
traffic patterns. For uniform random traffic, packet chain-
ing is comparable to augmenting paths, wavefront (outper-
forms by 2.5%) and iSLIP-2 (outperforms by 1%). There-
fore, packet chaining provides comparable (and slightly in-
creased) throughput to slower and more expensive allocators
with long packets. The average throughput of iSLIP-2 with
short packets is lower than that of iSLIP-1 because of bit-
comp, where locally optimal decisions made possible by the
second iteration are not globally optimal.

Traffic patterns which comprise equal amounts of short
and long packets (bimodal) still benefit significantly from
packet chaining, which increases overall throughput. For in-
stance, when assuming a request-reply protocol with single-
flit short and five-flit long packets, packet chaining provides
a marginal (1%) throughput increase by average across traf-

15 20 25 30 35 40 45
0

2

4

6

8

10

12
x 10

4

Injection rate (flits/cycle * 100)

N
u
m

b
e
r

o
f
o
c
c
u
rr

e
n
c
e
s

2D mesh. DOR. iSLIP. "All inputs and VCs" scheme.

Matched same input, same VC

Matched same input, other VC

Matched other input, any VC

Clashed with SW allocator

(a) 2D mesh.

35 40 45 50 55 60 65
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Injection rate (flits/cycle * 100)

N
u

m
b

e
r

o
f

o
c
c
u

rr
e

n
c
e

s
.

FBFly. UGAL. iSLIP. "All inputs and VCs" scheme.

Matched same input, same VC

Matched same input, other VC

Matched other input, any VC

Clashed with SW allocator

(b) Flattened butterfly with UGAL.

Figure 11: An illustration of grants by the PC allocator.

fic patterns and a 4% increase for uniform random traffic,
when considering all inputs and VCs. These gains are com-
pared to 2.5% for five-flit packets and 5% for single-flit pack-
ets under uniform random traffic.

4.5 Optimal Packet Chaining Scheme
The optimal chaining scheme depends on the network con-

figuration which affects what outputs packets are more likely
to request. Selecting among all VCs of the same input is op-
timal for the mesh because it avoids requests from different
inputs (outputs) to the same output (input), but still pro-
vides the opportunity to chain the majority of departing tail
flits because with DOR flits are more likely to remain in the
same dimension in each hop. Increasing the density of the
request matrix by selecting among all inputs and VCs can
decrease matching efficiency of our separable PC allocator,
because requests from any input to any output can cause
suboptimal decisions at the input and output arbiters.

However, more complex routing algorithms are less pre-
dictable, which may necessitate considering all inputs and
VCs. In the FBFly with UGAL, flits are less likely to re-
quest the same output as the one chained to their input.
Considering all inputs and VCs provides gains comparable
to considering all VCs of the same input, because the latter
still has an adequate number of chaining candidates due to
the presence of four VCs per input in our network. With
fewer input VCs, considering all inputs and VCs would pro-
vide higher performance. The predictability of the outputs
requested by packets also depends on the traffic pattern.
Furthermore, simpler chaining schemes intensify fairness is-
sues because more input VCs cannot be served before the
starvation control mechanism releases the conflicting con-
nection. Selecting among only the same input VC is too
restrictive for packet chaining to be effective.

4.6 Packet Chaining Probability
Figure 11 shows the input VCs that are connected with

departing tail flits, when considering all inputs and VCs.
Connections released because of conflicting switch allocator
decisions (grants for the same input or output) are also il-

lustrated. However, failed chaining attempts are not shown.
At low loads, clashes with the switch allocator are more

significant because there are only a few chaining candidates
and the switch allocator is able to provide efficient match-
ings. Thus, it is more likely to grant the same inputs and
outputs as the PC allocator. The number of clashes initially
increases and then decreases when the switch allocator’s ef-
ficiency decreases. At low loads, a significant percentage of
the few packet chaining requests are successful. The num-
ber of successful chaining attempts increases with injection
rate and remains constant after saturation (0.45 flits/cycle
for the mesh and 0.65 flits/cycle for the FBFly).

For the mesh, above 0.32 flits/cycle the number of chains
to the same input and VC decreases, and the number of
chains to another VC of the same input increases. This is
because our network assigns VCs in each traffic class in order
starting from the lowest-numbered VC. Thus, at low loads
almost all packets are in VC 0. The probability of chaining
to another input remains smaller than chaining to the same
input because with DOR the input that is already part of
the connection is more likely to contain flits routed to the
connected output. At saturation, 9% of requests chain to
another VC of the same input, 5% chain to the same input
and VC, and 8% chain to another input. The low probability
of chaining to the same input and VC illustrates the reason
for packet chaining’s poor performance gains when consid-
ering only the same input VC. Results differ for routers at
the edges and corners of the mesh because they have fewer
inputs and outputs and are also essentially operating at a
lighter load due to DOR and the asymmetry of the 2D mesh.

In the FBFly, UGAL routes packets minimally using DOR
with one hop per dimension to their intermediate and final
destinations [24]. Thus, packets are routed less predictably
than in the mesh. However, finding consecutive packets
wanting to make the same turn is still likely, as shown by
the probability to chain using the same input. Furthermore,
due to the two traffic classes required by UGAL, traffic is
spread over VCs more than in the mesh, and therefore it is
less likely to chain with the same input VC. At saturation,
14.5% of the packets chain with a packet from another input,

2% chain with a packet from the same input and VC, and
2% chain using the same input but another VC. Because the
FBFly is symmetric, chaining probabilities are comparable
among all FBFly routers.

4.7 Starvation and Priorities
Section 2.5 describes two starvation control mechanisms.

In this section, we evaluate the mechanism which releases
connections after a predetermined number of cycles. This
provides weaker fairness guarantees but also avoids increas-
ing the number of priority classes the PC allocator needs to
support. In our simulations, this mechanism was adequate
to prevent starvation.

Starvation control has a minimal effect on throughput and
latency. For single-flit packets, a starvation threshold of
eight cycles provides a marginal (1.5%) throughput increase
due to improving fairness, while for eight-flit packets it has
no effect. However, setting a starvation threshold smaller
than the packet length reduces performance gains because
starvation control releases connections before packets can
be fully transferred. Therefore, packets wait for a switch
allocator grant while having reserved an output VC. For in-
stance, using a starvation threshold of four cycles with eight-
flit packets drops maximum throughput by an average of 3%,
compared to not using starvation control. This illustrates
that starvation control can negate packet chaining gains if
it releases connections too early. As discussed in Section 4.3,
starvation control increases throughput in certain traffic pat-
terns. In the cases where performance drops with starvation
control, packet chaining never performs worse than iSLIP-1
(no packet chaining). Starvation control has a more sig-
nificant effect with packet chaining schemes with very few
chaining candidates, such as considering only the same input
and VC. That is because more inputs and VCs risk being
starved because they are not considered for chaining. When
considering all inputs and VCs, the iSLIP-1 PC allocator
already performs round-robin selection of inputs. Selecting
a PC allocator with some inherent fairness properties assists
with providing adequate fairness and starvation control.

Latency distributions are similar for networks with and
without starvation control. Throughput results presented
in this paper are the minimum throughput among all sources
for each simulation (worst-case throughput). Therefore, worst-
case throughput is also similar for networks with and with-
out starvation control. This shows that in all our simula-
tions, connections were released before noticeable starvation
or unfairness arose. Under low loads, connections were usu-
ally released due to input VCs becoming empty. Under high
loads, connections were usually released due to output VCs
without credits. Therefore, the starvation mechanisms we
proposed should have a threshold which does not degrade
performance in the common case, but also adequately pre-
vents fairness issues and starvation under adversarial traffic.

Disabling priority-handling in the PC allocator reduces
throughput by 6.5% for uniform random traffic and 4.5%
by average across traffic patterns and with single-flit pack-
ets. That is because PC allocator requests which are more
likely to be cancelled due to unfavorable switch allocator de-
cisions may no longer be placed in the lower priority class,
as explained in Section 2.4.

4.8 Application Performance
Table 1 presents our application results. Packet chaining

Table 1: Packet chaining versus iSLIP-1 using

benchmarks.

Benchmark IPC increase Benchmark IPC increase

Blackscholes 46% Canneal 1%
Dedup 6% FFT 9%
Fluidanimate 3% Swaptions 29%
Average 16%

increases IPC, but the gains depend on the load and traf-
fic pattern created by each application. Applications with
an increased network load, bursty traffic or shorter packets
receive higher benefits from packet chaining. Applications
with working sets large enough to not fit into L1 caches
cause a high load on the network. Under high load, the
network may operate past saturation and thus benefit from
reduced tree saturation due to packet chaining. For instance,
Blackscholes has the largest IPC reduction because it creates
more network traffic both in small periods of time (bursty
traffic) and by average. Other applications either create less
traffic or are more latency-insensitive. Increased load and
short packets may be caused by the interaction of the appli-
cation with the cache system. This is particularly true for
systems with small cache lines and more communication-
heavy coherence protocols.

Short packets are critical in a typical cache-coherent CMP.
They can affect execution time significantly because they
transfer time-critical control messages that are often on the
application’s critical path. Of note, 53% of the packets are
single-flit by average across applications in our simulations.
In addition to increased throughput, a crucial factor for the
IPC increase is reducing packet latency due to packet chain-
ing, especially at times of heavy network load. Maximum
packet latency is reduced by an average of 20%. Average
latency is only 7% less with packet chaining, because many
packets are sent under low network load, and thus have low
latency with and without packet chaining. Reducing maxi-
mum latency is important under high network load.

Most applications are not affected by the network for most
of their execution time, because many parallel algorithms
consist of computation phases with no barriers and with
working sets that fit into L1 caches. In these cases, gains
from network optimizations are limited. Finally, applica-
tions may or may not benefit from starvation control, de-
pending on their traffic pattern. For instance, performance
for Canneal and FFT degrades without starvation control.

In addition, packet chaining is comparable (provides a
0.5% lower IPC) by average across applications compared
to wavefront, which has significant timing and cost over-
heads as explained in Section 4.9. This clearly illustrates
that packet chaining offers performance comparable to more
complex allocators without the associated overhead.

Previous work has observed that many applications in cer-
tain CMP configurations make light use of the network and
thus are not affected by techniques improving throughput,
like packet chaining [23]. In these cases, networks can re-
duce their cost, for example by narrowing their datapath,
such that their average load increases and thus they become
throughput-limited. Packet chaining makes this option more
attractive by increasing maximum throughput and reduc-
ing latency past very low injection rates. To illustrate this
point, packet chaining increases IPC by an average of 16%

Switch

grants

Packet

chaining

grants

Conflict

detection

Connection

regs

(at outpus

and inputs)

Switch

allocator

PxP

Packet

chaining

allocator

PxP

Output is not

connected and

has an available

VC with credits?

Input 0, VC 0

buffer

Output is

connected and

has an available

VC with credits?

VC

selection

for winning

switch

requests

Pipe

reg

Output is

connected and

has an available

VC with credits?

Output is not

connected and

has an available

VC with credits?

Input 0, VC V

buffer

Input P, VC 0

buffer

Input P, VC V

buffer

Input 0 OR-reduce

Input 0 OR-reduce

Eligibility checking and

OR-reduce are only

illustrated for input 0

Figure 12: Block diagram of the PC and SA stages

with the PC and switch allocators in parallel.

compared to iSLIP-1 when both networks have a datapath
width of 32 bits. While the average IPC increase across ap-
plications remains the same as with a 64-bit datapath, the
maximum IPC increase is reduced to 37% for a 32-bit data-
path and occurs for Swaptions. These results also show that
packet chaining does not increase application performance
solely for single-flit packets because with a 32-bit datapath
the minimum packet length is two flits.

4.9 Packet Chaining Cost
Packet chaining, when considering all inputs and VCs, re-

quires an extra PC allocator similar to the switch allocator.
The PC allocator is placed in parallel to the switch allocator
as illustrated in Figure 12. Flits in the PC and SA stages
described in Section 2.4 are physically located in the input
buffers. Advancing to the SA stage from the PC stage is
accomplished by updating the active connections instead of
moving flits. Flits depart the buffers when ready to traverse
the switch. Similar to the combined switch allocator [13],
requests for the PC allocator are OR-reduced to a P×P set
of requests. Each input and output port maintains a register
to store which other input or output port it is connected to.

Allocators only consider eligible requests as described in
Section 2.4. Moreover, the PC allocator must have knowl-
edge of tail flits in the SA stage. That check is part of the
eligibility checking—it simply requires an extra input to the
AND gate responsible for deasserting ineligible PC allocator
requests. All data for eligibility checking resides in the input
buffers and state registers, and therefore is available at the
beginning of the cycle. This is similar to allocation without
packet chaining because that also requires output port in-
formation for eligibility checking which resides in the input
buffers. At the end of the allocation pipeline stage, a simple
logic gate performs conflict detection by deasserting any PC
allocator grants that conflict with switch allocator grants.
Then, the state registers which keep a record of the active
connections are updated, which is part of the allocation tim-
ing path with incremental allocation as well. The results of

the PC allocator affect switch allocator request eligibility in
the next cycle by setting the connection registers.

Note that the logic at the end of the pipeline stage requires
a few more logic gates if lower-priority requests to the PC
allocator are generated for chaining requests which depend
on switch allocator grants, as explained in Section 2.4. How-
ever, this check can be performed by a single logic gate at
each output which takes as input the switch allocator grant
for that output and the desired switch allocator result to
make the PC allocator grant for that output valid. This de-
sired result can be computed early in the cycle. However,
the conflict detection and lower-priority PC request handling
operate in parallel with assigning VCs to winning switch re-
quests which is more complex and also occurs at the end
of the pipeline stage for the combined switch allocator [13].
If the switch allocator is not combined but there is a sep-
arate VC allocator, the one or two gates per PC allocator
output described above prolong the allocation timing path
only marginally compared to the rest of the timing path. If
speculative VC-switch allocation is used, the logic after the
switch allocator to handle speculative requests is similarly
complex as, and in parallel with, PC conflict detection.

The cost and timing overhead of packet chaining described
above should be compared to wavefront because wavefront
provides performance comparable to or lower than packet
chaining. In a mesh, wavefront requires up to 3× the power,
2.5× the area and 20% more delay than separable alloca-
tors [2]. In high-radix routers such as the FBFly, wavefront
occupies 2.7× the area, consumes 6× the power and has an
increased delay by 36% [2]. In contrast, adding the PC al-
locator doubles the area for allocation. Power doubles in
the worst case, which we assume for our calculations, but
in the average case the switch allocator’s activity factor will
be reduced, reducing its dynamic power. Furthermore, as
explained above, PC allocation does not prolong the alloca-
tion timing path with a combined separable switch allocator.
Therefore, compared to packet chaining, wavefront requires
1.5× more power, 1.25× more area and 20% more delay in
the mesh, as well as 3× more power, 1.35× more area and
36% more delay in the FBFly. Also, compared to packet
chaining, a two-iteration separable switch allocator has the
same area but twice the delay and worst-case power because
it performs two iterations in a single cycle. Finally, augment-
ing paths allocators are even more complex than wavefront
and thus are too costly for single-cycle implementations [10].

Considering only VCs from the same input significantly
simplifies packet chaining because an arbiter per input is re-
quired instead of a complete allocator. This scheme still of-
fers comparable performance to wavefront in numerous cases
with only a small fraction of the cost for the PC allocator
and no delay overhead.

5. RELATED WORK
Pseudo-circuits [1] operate on the same principle as packet

chaining but only consider consecutive packets in the same
input VC. Flits in pseudo-circuits can skip router pipeline
stages. Pseudo-circuits are released when another input VC
requests the connected output in order to prioritize latency,
whereas packet chaining maintains the connection in order
to improve allocation efficiency under load. Newly-arriving
flits using a connection do not skip the switch allocation
stage with packet chaining because in our latency-optimized
two-cycle router, doing so would place look-ahead routing [8]

in the critical path. It would also require a separate VC allo-
cator which would reduce the number of free VCs available
for chaining compared to our combined allocator.

Further research has been performed on allocation. Specu-
lative VC allocation parallelizes VC and switch allocation [21].
Requests can be propagated in advance of flits in frequently-
used paths [22] or decisions can be precomputed [21]. Fi-
nally, express VCs [15] and token flow control [14] allow flits
to bypass the router pipeline based on prior knowledge or
established paths. Packet chaining does not rely on pre-
established paths and is applicable to such techniques.

6. CONCLUSIONS
Packet chaining is a simple and effective method for in-

creasing allocator matching efficiency without extending al-
location time, focusing on short packets. It extends the
benefits of incremental allocation to packets of any length.
Compared to iSLIP-1 with incremental allocation, which has
comparable allocation delay, packet chaining offers a 15%
increased throughput at maximum injection rate. Packet
chaining increases throughput compared to multi-iteration
iSLIP allocators and wavefront allocators by 10% and 6%
respectively under maximum injection rate, and gives com-
parable (1% higher) throughput to an augmenting paths al-
locator for single-flit packets. For long packets, packet chain-
ing still offers comparable or slightly increased throughput
compared to these allocators. Packet chaining achieves this
without the delay or cost of these more complex allocators,
especially in high-radix routers where the overhead of these
allocators increases and can reach up to 6× more power and
37% more delay for a wavefront allocator compared to a sep-
arable allocator in a FBFly [2]. Cache-coherent CMPs ben-
efit from packet chaining because short messages are critical
and often dominate traffic. In our simulations using appli-
cation benchmarks, packet chaining increases IPC by up to
46% (16% average). Packet chaining is beneficial to a wide
range of systems and provides a simple way to increase al-
location efficiency with minimal impact on the allocation
timing path and without the area and power overheads of
more complex allocators.

Acknowledgments

This work was supported in part by the National Science
Foundation under Grant CCF-0702341, in part by the Na-
tional Security Agency under Contract H98230-08-C-0272-
P007 and in part by the Robert Bosch, Prof. Michael Farmwald
and Prof. Michael J. Flynn Stanford Graduate Fellowships.

7. REFERENCES

[1] M. Ahn and E. J. Kim. Pseudo-circuit: Accelerating
communication for on-chip interconnection networks. In
Proceedings of the 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, 2010.

[2] D. U. Becker and W. J. Dally. Allocator implementations
for network-on-chip routers. In Proceedings of the 2009
ACM/IEEE Conference on Supercomputing, 2009.

[3] C. Bienia. Benchmarking Modern Multiprocessors. PhD
thesis, Princeton University, January 2011.

[4] W. J. Dally. Virtual-channel flow control. IEEE
Transactions on Parallel and Distributed Systems, 3(2),
1992.

[5] W. J. Dally and B. Towles. Route packets, not wires:
On-chip interconnection networks. In Proceedings of the
38th annual Design Automation Conference, 2001.

[6] W. J. Dally and B. Towles. Principles and Practices of
Interconnection Networks. Morgan Kaufmann Publishers
Inc., 2003.

[7] L. R. Ford and D. R. Fulkerson. Maximal flow through a
network. Canadian Journal of Mathematics, 8(3), 1956.

[8] M. Galles. Spider: A high-speed network interconnect.
IEEE Micro, 17(1):34–39, 1997.

[9] P. Gupta and N. McKeown. Designing and implementing a
fast crossbar scheduler. IEEE Micro, 19:20–28, 1999.

[10] R. R. Hoare, Z. Ding, and A. K. Jones. A near-optimal
real-time hardware scheduler for large cardinality crossbar
switches. In Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, 2006.

[11] J. Kim, W. J. Dally, and D. Abts. Flattened butterfly: a
cost-efficient topology for high-radix networks. In
Proceedings of the 34th annual International Symposium
on Computer Architecture, 2007.

[12] C. P. Kruskal and M. Snir. The performance of multistage
interconnection networks for multiprocessors. IEEE
Transanctions on Computers, pages 1091–1098, December
1983.

[13] A. Kumar, P. Kundu, A. Singh, L.-S. Peh, and N. Jhay. A
4.6Tbits/s 3.6GHz single-cycle NoC router with a novel
switch allocator in 65nm CMOS. In Proceedings of the 25th
International Conference on Computer Design, 2007.

[14] A. Kumar, L.-S. Peh, and N. K. Jha. Token flow control. In
Proceedings of the 41st annual IEEE/ACM International
Symposium on Microarchitecture, 2008.

[15] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha. Express
virtual channels: towards the ideal interconnection fabric.
In Proceedings of the 34th annual international symposium
on Computer architecture, 2007.

[16] R. Kumar, V. Zyuban, and D. Tullsen. Interconnections in
multi-core architectures: Understanding mechanisms,
overheads and scaling. In Proceedings of the 32nd annual
international symposium on Computer architecture, 2005.

[17] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: building customized program analysis tools with
dynamic instrumentation. In Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design
and implementation, 2005.

[18] N. McKeown. The iSLIP scheduling algorithm for
input-queued switches. IEEE/ACM Transanctions on
Networking, 7:188–201, 1999.

[19] G. Michelogiannakis, N. Jiang, D. U. Becker, and W. J.
Dally. Packet chaining: Efficient single-cycle allocation for
on-chip networks. IEEE Computer Architecture Letters,
2011.

[20] S. S. Mukherjee, F. Silla, P. Bannon, J. Emer, S. Lang, and
D. Webb. A comparative study of arbitration algorithms
for the alpha 21364 pipelined router. SIGARCH Computer
Architecture News, 30:223–234, 2002.

[21] R. Mullins, A. West, and S. Moore. Low-latency
virtual-channel routers for on-chip networks. In Proceedings
of the 31st annual International Symposium on Computer
Architecture, 2004.

[22] D. Park, R. Das, C. Nicopoulos, J. Kim, N. Vijaykrishnan,
R. K. Iyer, and C. R. Das. Design of a dynamic
priority-based fast path architecture for on-chip
interconnects. In Proceedings of the 15th Symposium on
High Performance Interconnects, 2007.

[23] D. Sanchez, G. Michelogiannakis, and C. Kozyrakis. An
analysis of interconnection networks for large scale
chip-multiprocessors. ACM Transactions on Architecture
and Code Optimization, 7(1):4:1–4:28, 2010.

[24] A. Singh. Load-Balanced Routing in Interconnection
Networks. PhD in electrical engineering, Stanford
University, 2005.

[25] Y. Tamir and H. C. Chi. Symmetric crossbar arbiters for
VLSI communication switches. IEEE Transactions on
Parallel and Distributed Systems, 4:13–27, 1993.

