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Abstract—This paper introduces packet chaining, a simple and effective method to increase allocator matching efficiency and

hence network performance, particularly suited to networks with short packets and short cycle times. Packet chaining operates

by chaining packets destined to the same output together, to reuse the switch connection of a departing packet. This allows an

allocator to build up an efficient matching over a number of cycles, like incremental allocation, but not limited by packet length. For

a 64-node 2D mesh at maximum injection rate and with single-flit packets, packet chaining increases network throughput by 15%

compared to a conventional single-iteration separable iSLIP allocator, outperforms a wavefront allocator, and gives comparable

throughput with an augmenting paths allocator. Packet chaining achieves this performance with a cycle time comparable to a

single-iteration separable allocator. Packet chaining also reduces average network latency by 22.5% compared to iSLIP. Finally,

packet chaining increases IPC up to 46% (16% average) for application benchmarks because short packets are critical in a typical

cache-coherent CMP. These are considerable improvements given the maturity of network-on-chip routers and allocators.

Index Terms—On-chip interconnection networks, Interconnection architectures
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1 INTRODUCTION

The performance of a network-on-chip (NoC) is sensitive to the

matching efficiency of the allocators used to allocate switch ports

and virtual channels (VCs) in the routers. Allocators can easily

be in the critical path of routers and therefore present a trade-off

between matching efficiency and cycle time [2].

Separable allocators are a popular choice for modern NoCs

because of their short timing path. However, in a single iteration,

input or output arbiters may make unfavorable decisions because

they are arbitrating independently of each other. In the extreme

case of single-flit packets, the allocator starts from scratch each

cycle and in a single iteration is not able to compute an efficient

matching. While multiple iterations or more complex allocators,

such as wavefront or augmenting paths, would improve matching

efficiency, they are typically not feasible within the available

timing or cost budget, especially for high-radix routers [2], [4].

To provide the efficiency of multi-iteration allocation without

extending cycle time, past work has proposed incremental allo-

cation [9]. In this scheme, allocation extends over many cycles

and new requests can be injected in any cycle. The results of

each iteration generate grants. However, incremental allocation

provides no benefit to single-flit packets and little benefit to short

packets, which dominate traffic in a typical cache-coherent chip

multiprocessor (CMP). To exemplify the point, 53% of the packets

in the application benchmarks we simulated in this paper were

single-flit and received no benefit from incremental allocation.

In this paper, we introduce packet chaining which operates by

chaining packets destined to the same output together, to reuse

the switch connection of a departing packet. Even with uniform

random traffic, a significant number of packets request the same

output at each router by following the routing algorithm. This

allows an allocator to build up an efficient matching over a

number of cycles, like incremental allocation [9], but not limited

by packet length. Packet chaining is implemented with an extra

allocator, in parallel with the switch allocator. Therefore, packet
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chaining incurs only a marginal increase in allocation time, and

a small cost overhead. Finally, to provide limited fairness we add

starvation control which releases a connection after it has been

held for a predetermined number of cycles. This way, connections

may not be re-used indefinitely, and therefore other packets will

not starve. Packet chaining increases allocation efficiency of an

iterative allocator to be comparable or higher than more expensive

allocators. Packet chaining provides minimal benefits to non-

iterative allocators.

Packet chaining extends pseudo-circuits [1] by chaining packets

from any input and VC instead of solely the same input VC,

as well as maintaining connections when there are conflicting

requests, to increase allocation efficiency under load.

2 DETAILED DESCRIPTION

2.1 Packet Chaining

Packet chaining in effect chains packets together by holding any

finishing connections that can be used by waiting packets, even

if they are from different inputs or VCs than the packet currently

using the connection, so they look like one longer packet to the

switch allocator. The switch allocator starts, not from scratch, but

from this initial state of chained connections.

A new waiting packet is suitable for chaining if (a) it has been

routed to the same output as the tail flit of the departing packet,

(b) there is a free output VC it is eligible to use, and (c) there is

at least one credit for that output VC. The chained packet need

not be at its start. Partially transmitted packets can be chained —

in this case the only eligible output VC is the one to which the

packet is already assigned, which is stored in control state logic

of input VCs.

Fig. 1 illustrates an example allocation with packet chaining

for a 6×6 router. Each input VC contains a single one-flit packet

which is labeled by its destination output port. In the same ex-

ample, iSLIP without packet chaining would restart the allocation

process every cycle and in a single iteration would not able to

compute an efficient matching. iSLIP separable allocators [8] use

round-robin arbiters and update the priorities of each arbiter when

that arbiter generates a winning grant. In Fig. 1, an X denotes

a connection during the previous cycle and a dot (•) denotes
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Fig. 1. Example allocation of iSLIP with packet chaining.

a request or a grant. In cycle 0, the allocator starts with five

connections inherited from cycle -1. Three of these connections

are reused by new packets requesting the same output as denoted

by a square in the cycle 0 request matrix with both an X and a

•. The other two connections, denoted by an X without a •, are

terminated. The three chained packets eliminate competing switch

requests. Only one of the new requests is granted by the output

arbiter, giving four packets transmitted in cycle 0.

As shown in the second row of Fig. 1, all four connections

from cycle 0 are chained in cycle 1. The allocator makes one

additional grant giving a total of five packets transmitted in cycle

1. In cycle 2, only two of the five connections are chained and

the allocator makes two additional grants, resulting in four packets

being transmitted.

Other than output 2 receiving no requests, there are only two

other idle output cycles, compared to five for allocation without

chaining in the same scenario. Of these two idle cycles, only the

first –on output 4 in cycle 0– is avoidable. A better allocator

could have assigned VC 1 or 2 from input 3 to this channel.

The allocator matchings in cycles 1 and 2 are both maximum.

However, packet chaining does not always result in maximum or

maximal matchings. For example, an additional allocator iteration

would add a grant from input 3 to output 4 in cycle 0.

Connections are released if they cannot be used productively

either because the output VC has no more credits or the input

VC becomes empty [7]. To accommodate higher-priority traffic,

a connection is released by a higher-priority request for the

connected output. Furthermore, we provide limited fairness by

implementing starvation control, which is also applicable to

incremental allocation. If a connection has been held for more

than a maximum number of cycles, the connection is released

(potentially mid-packet). Connections that will reach the starvation

threshold at the next cycle are not eligible for chaining. Thus, these

ports can be reassigned to waiting packets by the switch allocator.

Finally, packet chaining does not cause out-of-order delivery of

packets or flits if they would otherwise be ordered.

We implement packet chaining on top of a combined [7]

switch/VC iSLIP allocator that reserves output VCs only for

packets that win switch allocation. This leaves more output VCs

free compared to performing VC allocation in advance, therefore

giving more flexibility to packet chaining to find free output VCs.

2.2 Chaining Variations

We consider three variations for the VCs considered for chaining:
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Fig. 2. Packet chaining pipeline.

• Same input VC: The simplest scheme is to consider only

the same input VC as the previous packet that used the

connection.

• Same input, any VC: This scheme considers all eligible VCs

of the same input.

• Any input, any VC: This scheme considers eligible packets

in any input and any VC.

Restricting packet chaining to consider a single input signifi-

cantly simplifies the packet chaining logic. A full PC allocator is

required only if considering all inputs and VCs.

2.3 Packet Chaining Pipeline

Packet chaining adds an extra PC (packet chaining) allocation

stage to a conventional two-stage VC router in parallel with

switch allocation as illustrated in Fig. 2. Newly arriving packets

skip this new stage starting directly in SA (switch allocation).

Hence, adding the PC stage does not increase router latency.

Waiting packets, however, are chained during the PC stage. The

figure shows a waiting packet X that shares its output with PT

(a preceding tail flit). Packet X is granted the connection from

the PC allocator during cycle 0, while PT is in the SA stage. If

PT does not hold a connection and fails switch allocation during

cycle 0, PC allocation is cancelled and both packets remain in

the same pipeline stage. In this case, PT receives a switch grant

and traverses the switch during cycle 1, while the head flit of

X advances to the SA stage but does not participate in switch

allocation. In our latency-optimized two-stage pipeline, chained

packets may not skip SA even if no flit is in ST, because that

would require a separate VC allocator and would complicate

timing with the input channels, buffers and routing logic.

Because packet chaining operates in its own pipeline stage, it

is guaranteed to chain an eligible packet and remove competing

packets from consideration during the SA stage. Biasing the

switch allocator to favor maintaining the connection does not

achieve the same end because the competing packets are not

removed from consideration, and thus may impact switch allocator

decisions negatively.

Packet chaining eligibility is determined at the beginning of

the cycle. Packets considered for chaining do not participate in

switch allocation because their output is connected. However,

conflicts may still arise between the switch and PC allocators

because each input has multiple VCs. If the two allocators grant

the same input, the PC allocator’s decision is disregarded. In

addition, the eligibility of an input VC may depend on switch

allocator decisions, which are unknown during PC allocation. For

example, an input VC may contain a packet eligible for chaining,

but the input port which contains that VC may be part of another

connection which has to be released first. Similarly, a tail flit

without a connection will only provide a chaining opportunity if

it receives a switch grant, thus forming a connection. Any packet

that will become eligible for chaining only by a favorable switch

allocator decision generates a lower-priority request to the PC

allocator. For input VCs participating in switch allocation, PC

allocator requests are generated based on the flits behind the buffer

head. Those PC requests are also marked as lower-priority.
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Fig. 3. An illustration of network instability.

3 METHODOLOGY

Evaluation is performed with a cycle-accurate network simulator.

We use a 2D mesh arranged in an 8×8 grid. Routers use the

pipeline of Section 2.3. Each router is connected to one network

terminal, and all channels have a single cycle of latency. We use

deterministic dimension-order routing (DOR) because it is a sim-

ple and popular choice. We use 4 VCs, with 8 buffer slots statically

assigned to each. For this configuration, packet chaining is optimal

when considering all VCs of the same input as departing tail flits

because with DOR packets are unlikely to switch dimensions.

Therefore, the packet chaining results we present assume this

scheme. For less predictable routing algorithms, considering all

inputs and VCs may be appropriate.

We use uniform random, random permutation, shuffle, bit

complement and tornado traffic patterns. Injection rate is in flits.

Incremental allocation [9] is used for networks without packet

chaining. We also present results for a typical cache-coherent

CMP with 64 superscalar and out-of-order RISC CPUs. Each

core has two threads. We use a custom execution-driven simulator.

Network datapath width is 64 bits. Therefore, short packets are

single-flit while packets carrying our 32-byte cache lines have five

flits. A starvation threshold of eight cycles is used. L1 caches are

8KB, four-way set-associative, have a single cycle of latency and

are private to the cores. L2 caches are shared, non-inclusive, four-

way set-associative, have 32KBs per core, and have five cycles of

latency. There is one directory and one L2 cache slice at each core,

and one memory controller at every network quadrant. We assume

cores clocked at four times the network frequency. Results for IPC

correspond to those for speedup. On training input datasets IPC

results matched measured speedup.

4 EVALUATION

4.1 Throughput and Latency

As illustrated in Fig. 3, compared to iSLIP-1 (incremental

allocation without packet chaining), packet chaining increases

throughput under maximum injection rate by 15% with single-

flit packets, by reducing tree saturation [6]. This is important for

systems because without elaborate throttling, it is very difficult

to consistently operate a network at the point of saturation. In

addition, a throttling mechanism might be overly conservative thus

reducing available throughput. With packet chaining, throughput

drops only marginally (2.5%) past saturation. Packet chaining

offers 6% more throughput at maximum injection rate compared to

wavefront, and comparable throughput (1% more) to an augment-

ing paths allocator. Packet chaining achieves these gains without
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Fig. 4. Allocator comparison by traffic pattern.

the extra cost and complexity of wavefront and augmenting paths.

Augmenting paths allocators are especially complex because they

locate all paths from unmatched inputs to unmatched outputs

in the directed bipartite allocation graph [4]. Packet chaining is

comparable or marginally better than augmenting paths because

augmenting paths may make suboptimal decisions at the network

level and does not regard fairness. Packet chaining does not reduce

instability from globally unfair allocation.

Fig. 4 compares saturation throughput by traffic pattern. Com-

pared to iSLIP-1, packet chaining offers up to 12% (5.5% average)

higher throughput. Compared to wavefront, throughput increases

up to 9.5% (2.5% average). By average, packet chaining is com-

parable to an augmenting paths allocator. Performance differences

become smaller with non-uniform random traffic patterns because

they use only a subset of router inputs and outputs, making alloca-

tion easier. Packet chaining provides lower throughput for bitcomp

(bit-complement) because bitcomp creates some continuous flows

of traffic which starve other flows. By using a starvation threshold

of four cycles with bitcomp, packet chaining offers comparable

(2% higher) saturation throughput to iSLIP-1.

Moreover, packet chaining provides a 22.5% lower average

latency compared to iSLIP-1 — computed as an average from

low to maximum injection rates. The number of cycles eligible

head flits spend blocked waiting for a switch allocator grant or

the connection to their desired output to be released is reduced by

13% for single-flit packets and 7.5% for eight-flit packets. Fur-

thermore, in the application benchmark simulations of Section 4.4,

maximum packet latency was reduced by an average of 20% while

average latency was reduced by 7%. Latency reductions are due

to more efficient allocation, because flits are more probable to

advance if their output is free.

4.2 Packet Length

Packet chaining gains decrease as packet length increases, be-

cause long packets increase allocator efficiency using incremental

allocation. This is illustrated in Fig. 5. Throughput gains drop

to 2% (comparable throughput) for eight-flit or longer packets,

compared to iSLIP-1. Packet chaining provides a marginal (1.5%)

throughput gain even for sixteen-flit packets, because some traffic

patterns benefit in throughput from the lack of starvation control.

In those cases, starvation control increases fairness and provides

performance no lower than iSLIP-1. Traffic patterns which create

both short and long packets (bimodal), provide larger throughput

gains for packet chaining than patterns with only long packets. For

instance, when assuming a request-reply protocol with single-flit

short and five-flit long packets, packet chaining provides a 4%

increase for uniform random traffic. These gains are compared to

2.5% for five-flit packets and 5% for single-flit packets.

Even though performance gains drop, packet chaining still pro-

vides comparable or marginally increased throughput than more

complex allocators. With eight-flit packets, packet chaining is

comparable to wavefront (outperforms it by 2%), and augmenting

paths (1.5%), by average across traffic patterns. For uniform
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Fig. 5. Throughput by average across traffic patterns.

random traffic, packet chaining is comparable to augmenting paths

and provides a 2.5% higher throughput than wavefront.

Throughput drops for all test cases with the increase of packet

length. This is due to diminishing effects with our constant buffer

size which cause increased blocking in VCs. With packet chaining,

long packets can be divided into shorter ones to avoid this effect,

without loss of allocation efficiency.

4.3 Starvation and Priorities

Starvation control has a small effect on throughput. A starvation

threshold of eight cycles is comparable for single-flit (1.5%

higher throughput) and for eight-flit packets (equal throughput) to

disabling starvation control. A starvation threshold lower than the

packet length reduces throughput gains because starvation control

releases connections mid-packet, so packets wait for another

switch allocator grant while having reserved an output VC. In

the cases where performance drops with starvation control, packet

chaining never performs worse than iSLIP-1.

Disabling priority-handling in the PC allocator reduces through-

put by 6.5% for uniform random traffic and 4.5% by average

across traffic patterns, with single-flit packets. That is because PC

allocator requests which are more likely to be cancelled due to

unfavorable switch allocator decisions are no longer lower priority.

4.4 Application Performance

TABLE 1 presents results for five PARSEC [3] benchmarks and

FFT. In these simulations, 53% of the packets were single-flit.

Except for increased throughput, the primary factor for the IPC

increase is reducing packet latency. Applications with an increased

network load receive higher benefits from packet chaining. How-

ever, applications in CMPs make light use of the network if

their working sets fit in the L1 caches, and thus are not affected

by techniques improving throughput, such as packet chaining.

Therefore, application gains depend on the working set’s size and

the cache hierarchy, which affect the amount of network traffic.

Packet chaining makes the option of making a network cheaper

and thus more throughput-limited more attractive by increasing

throughput and reducing latency past very low loads.

4.5 Packet Chaining Cost

The vast majority of the cost for packet chaining is that of the PC

allocator. Implementations of combined allocators with priorities

and the associated control path consume 7% [5] or 2.5% [7] of

router power, and 7% [7] of router area. This cost is amortized

when considering it in the network or system level. Also, by

TABLE 1

Packet chaining versus iSLIP-1 using benchmarks.

Benchmark IPC increase Benchmark IPC increase

Blackscholes 46% Canneal 1%

Dedup 6% FFT 9%

Fluidanimate 3% Swaptions 29%

Average 16%

average, the switch allocator activity factor will be reduced,

reducing its dynamic power. Finally, in implementations where

the switch allocator is not in the critical path, packet chaining

does not increase cycle time. Even if the switch allocator is in

the critical path, it is lengthened only by the simple peripheral

logic required for packet chaining, such as determining input VC

eligibility and masking out PC allocator decisions due to conflicts.

5 CONCLUSIONS

Packet chaining extends the benefits of incremental allocation

to packets of any length. As we have shown, packet chaining

improves the IPC of application benchmarks on a typical cache-

coherent CMP by up to 46% (16% average) because short

messages dominate CMP traffic. On synthetic traffic patterns at

maximum injection rate and single-flit packets, packet chaining

increases throughput by 15% and decreases latency by 22.5%

compared to an iSLIP-1 allocator with comparable cycle time.

In fact, packet chaining outperforms a wavefront allocator which

is typically not feasible within the cycle time of a router [2],

[4]. It also gives performance that is comparable to an ideal

(but not realizable) augmenting paths allocator. This is true for

both short and long packets. Considering the mature state of

router and allocator design, these performance results represent

a considerable improvement.
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