
Performance Characterization and
Benchmarking for High Performance

Systems and Applications

Erich Strohmaier
NERSC/LBNL
Estrohmaier@lbl.gov

Our Starting Point

? To evaluate and compare application and system
performances we need a frame of reference in the
performance space.

?Right now only peak performance and Linpack are
widely used.

?A reference can be established by a set of
benchmarks.

?Users should be able to relate the performance of
these benchmarks to their codes.

? To develop such benchmarks we first need a better
understanding what the critical performance aspects
of algorithms are.

General Approach

?Develop a new quantitative characterization of
algorithms and codes focusing on performance
aspects.

?Avoid using any specific hardware models or
concepts for this characterization.

?Develop synthetic performance probes and
benchmarks testing these characteristics.

?Relate benchmark performance with code
performance.

?Our focus is initially the performance influence of
global data-access.

Design Ideas

Performance Characterization:
?Hardware independent.
?Global data access as main focus.
?Random data access as starting point.
Benchmark probe:
?Reference implementations together with a pencil

and paper description.
?Runtimes not tied to computational complexities of

specific algorithms.
?System and generation scalable.
? Focus on sustainable rates using substantial

fractions of available resources.

Characterizing Performance

?Characterize performance behavior of applications
and algorithms independent from hardware.
? Use most general architecture model possible.

?Based on von Neumann model we assume that the
effects of data access and instruction stream are
independent (first order approximation)

?“Time to solution =
f(Algorithmic Complexity) ‘*’
(f(Data Access Characteristics),
‘+’f(Structure of Operations))”

Concepts for Performance Ch.

Code complexities:
?Computational complexity.
?Data access complexity.
Instruction stream:
?Computational granularity.
? Ratio of instructions to data accesses.

? Length of basic instruction blocks.
? Between branches.

?Number of “global” operations.
? Coupling parallel instructions streams.

? Length of local instruction blocks.
? Between global operations.

Data Access Characteristics

Data access pattern: What do we want to capture?
?Re-use of data by modern algorithm for improving

locality – Temporal locality.
? Hierarchical block-structured or recursive algorithms.
? Hard to define hardware independent.

? Limitations of “vector”-length – Granularity.
? Due to data-dependencies, communication, etc.
? Becomes particularly important in parallel context.

?Regular contiguous memory access – Regularity.
? stride 1.
? Data-structures etc.

Temporal Locality

?How can we quantitatively describe data re-use?
? Look at temporal distribution function:
?The probability distribution of how long ago I last used

a data item.
?At every access I have a f(t)% probability to hit a location

I have visited within the last t cycles.
Cumulative temporal Distribution

0%

20%

40%

60%

80%

100%

0 500 1000 1500 2000 2500 3000 3500
T

P
ro

b
a

b
il

it
y

Temporal distance is similar to
reuse distance, stack distribution,
stack distance).

Re-use Number

Define a “re-use” number:
?M be the used memory in words.
? The re-use of a specific word is the number k of

accesses to it during a window of M successive data
accesses.

? The average re-use for the code is the average k
during this window for all accessed words.

(This assumes that all windows give me the same
answer)

? The probability at a temporal distance of M is then:

P(M) = (k-1)/k

Temporal Distribution

?Approximate the temporal distribution function of
codes by a simple generic function.
?We try to capture the ‘main’ re-use effect by using a

generic function with only a few numeric parameters.
?For recursive algorithms the cumulative temporal

distribution function should be self-similar and scale-
invariant. (A recursive algorithm is self-similar.)

?Power Function Distribution

Power Distribution

?Characterized by one number.
? Slope in log-log related to the ‘Re-use’ factor.

?Concept does not use hardware concepts such as ‘cache’
?Distribution function is problem size and scale invariant.

Cumulative temporal Distribution

0.1000

1.0000

1 10 100 1000 10000

n

P
ro

b
ab

ili
ty

Power Distribution

?All we need now is a synthetic pseudo-random
algorithm which has a power distribution as temporal
distribution function.

?Many algorithms generate the same temporal
distribution, so we have some choices.

? The details of the chosen algorithm could produce
artifacts if not selected carefully.

? In particular the temporal distribution function is
independent of the selected data mapping!
? Still (almost) any regularity possible!

Granularity

Limitation of “vector”-length due to data-dependencies.
? The amount of “pre-computable” addresses.
? Access can be irregular (‘indirect’) or
? Regular (‘strided’).
? Limits the amount of dynamic reordering such as

gather-scatter or message assembly.

?We focus on indirect as it becomes more important
and represent more of a lower-bound for achievable
performance.

?Granularity becomes very important for parallel
version with explicit communication.
? It (severely) limits message sizes.

Regularity

?A mapping of the data structure to the address space
which permits stride 1 access exposes regularity.

?Re-mapping during execution might be necessary for
many algorithms to expose regularity.
?This form of ‘dynamic’ regularity has associated re-

mapping costs (gather-scatter operations).
?This type of (“irregular”) data access becomes more and

more important and is usually not avoidable.
? If irregular data access is present in a code it is likely to

become the performance bottleneck (Amdahl’s Law).
? Irregular data access is “our focus”.

Synthetic Benchmark Probe

?Measures sustainable rates.
?Warm caches etc.

?Non-uniform random memory access for re-use.
?Power-function as temporal distribution function.
?Use indexed (“irregular”) data access to measure a

lower bound for performance.

?Granularity
?Vector length for pre-computed addresses and

organization of communication.

?Regularity for simulating data structures.
?We have (only) 3 parameters so far (Small enough?).

Status: Concept

?Went through a few iterations with the concept.
?Still have not figured out the details of the non-uniform

random distribution necessary to generate a power
function as temporal distribution (math problem).

?Are 3 parameters too many already?

?Extending the concept to parallel systems.
?Details of the random process – homogeneous or

inhomogeneous memory-access?
(Do we access all words the same number or do we
allow different access numbers?)

?Detail of data-mapping – organized or pseudo-random?
(Do we group frequent accessed words together?)

Status: Benchmark Probe

? Implemented several (sequential) test-codes.
? Which kernel – DAXPY (again)?
? How many different index vectors?

?Impacts also data structures and regularity.

Early Kernel

? for (i = 0+off; i < IdxSize+off+0; i+=8) {
tmp += data[ind[i]];
tmp1 *= data[ind[i+1]];
…
…

}

Test Results – IBM Power3

R=1; no re-use (k=1)

0.1

1.0

10.0

100.0

1000.0

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

M=G (4B words)

tim
e

[c
yc

le
s]

Current Kernel

?Distribution: power(random(), 1/A) * (N/R -1);
? if (R == 1) {

for (j = 0; j < G; j++) {
res[j] += weight[j] * data[ind[j]];

}
}
else {

for (j = 0; j < G/R; j++) {
pos = ind[j] * R;
for (k = 0; k < R; k++) { R is small - unroll!

res[j] += weight[j*R+k] * data[pos + k];
}

}
}

Test Results – IBM Power3

R=1; 64 MWord (8B)

0
100
200
300
400
500
600
700
800
900

0 200 400 600 800 1000

G

ti
m

e
[n

s]

1
0.3
0.1
0.03
0.01

Test Results – IBM Power3

G=1024; 64 MWord (8B)

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20

R

ti
m

e
[n

s]

1
0.3
0.1
0.03
0.01

Future

? Finish concept and benchmarking probe (parallel).
?Determine the re-use factors and granularities for

actual codes (with paper and pencil) for making
some meaningful choices.

? ‘Fix’ some values for parameters to be used as
“The Benchmark”.

?Need to test the correlation between benchmark
probe performance and code performance for the
same re-use factors, granularities, and regularities.

