Improving Grounding Line Discretization using an Embedded-Boundary Approach in BISICLES

Dan Martin

Lawrence Berkeley National Laboratory SIAM CSE

π

Joint work with:

- □ Peter Schwartz (LBNL)
- Phil Colella (LBNL)
- □ Stephen Cornford (Bristol)
- □ Mark Adams (LBNL)
- □ Esmond Ng (LBNL)

Land Ice Sheets - coupling with Oceans

Motivation: Projecting future Sea Level Rise

- Potentially large Antarctic contributions to SLR resulting from marine ice sheet instability, particularly from WAIS.
- Climate driver: subshelf melting driven by warm(ing) ocean water intruding into subshelf cavities.
- Melt-driven thinning, loss of shelf buttressing lead to grounding-line retreat.
- Paleorecord implies that WAIS has deglaciated in the past.

DOE Context - PISCEES and ACME

Part of the DOE "big picture" in climate

□ **PISCEES** (Predicting Ice Sheet and Climate Evolution at Extreme Scales)

- DOE-sponsored (SciDAC2) ice-sheet modeling effort
- Leverages DOE modeling, HPC capabilities
- Dycore development
 - BISICLES block-structured finite-volume AMR, L1L2
 - FELIX Finite Element unstructured mesh, Blatter-Pattyn/Stokes
- Initialization, UQ, V&V
- □ ACME (Accelerated Climate Model for Energy)
 - DOE-sponsored ESM effort
 - 3 science questions (#3 is cryospheric contribution to SLR)
 - Starting point is CESM

Big Picture -- target

- Aiming for coupled ice-sheet-ocean modeling in ESM
- Multi-decadal to century timescales
 - Target resolution:
 - Ocean: 0.1 Degree
 - Ice-sheet: 500 m (adaptive)
 - Why put an ice-sheet model into an ESM?
 - fuller picture of sea-level change
 - feedbacks may matter on timescales of years, not millenia
- Credible projections require correct GL dynamics

Grounding-line dynamics experiments

- Series of ice-sheet modeling community model intercomparison projects designed to understand issues in modeling of GLs
 - MISMIP, MISMIP3D, MISMIP+
- All point to a need for very fine spatial resolution to get
 GL dynamics right (sub-km in most cases)
- □ Prime use case for adaptive mesh refinement (AMR)

BISICLES Ice Sheet Model

- Scalable adaptive mesh refinement (AMR) ice sheet model
 - Dynamic local refinement of mesh to improve accuracy
- □ Chombo AMR framework for block-structured AMR
 - Support for AMR discretizations
 - Scalable solvers
 - Developed at LBNL
 - DOE ASCR supported (FASTMath)
- Collaboration with Bristol (U.K.) and LANL
- Variant of "L1L2" model (Schoof and Hindmarsh, 2009)
- Coupled to Community Ice Sheet Model (CISM).
- Users in Berkeley, Bristol,
 Beijing, Brussels, and Berlin...

BISICLES Results - MISMIP3D

Experiment P75R: (Pattyn et al (2011)

- Begin with steady-state (equilibrium) grounding line.
- Add Gaussian slippery spot perturbation at center of grounding line
- □ Ice velocity increases, GL advances.
- □ After 100 years, remove perturbation.
- Grounding line should return to original steady state.
- □ Figures show AMR calculation:
 - $\Delta x_0 = 6.5 km$ base mesh,
 - 5 levels of refinement
 - Finest mesh $\Delta x_4 = 0.195 km$.
 - t = 0, 1, 50, 101, 120, 200 *yr*
- Boxes show patches of refined mesh.
- □ GL positions match Elmer (full-Stokes)

MISMIP3D: Mesh resolution

- Plot shows grounding line position x_{GL} at y = 50km vs. time for different spatial resolutions.
- $\Box \quad \Delta x = 0.195 km \rightarrow 6.25 km$
- Appears to require finer than
 1 km mesh to resolve
 dynamics
- $\Box \quad \text{Converges as } O(\Delta x)$ (as expected)

MISMIP3D (cont): Spatial Resolution

• Very fine (~200 m) resolution needed to achieve full reversibility!

Pine Island Glacier (Cornford, Martin, et al, JCP)

Coloring is ice velocity, Γ_{gl} is the grounding line. Superscripts denote number of refinements. Note resolution-dependence of Γ_{gl}

Amundsen Sea (Cornford, Martin et al, submitted)

- Need at least 2 km
 resolution to get any
 measurable
 contribution to SLR.
- □ Sub-km is better.
- □ Appears to converge at first-order in ∆x

SLR vs. year, Amundsen Sea Sector

time (years)

eustatic sea level rise (mm)

GL Resolution requirements

- Not model-specific; reported by many authors
 - Full-Stokes (Elmer Durand et al)
 - Hybrid SSA-SIA (PISM-PIK)
- □ Such resolution requirements are inconvenient, at best.
- Point to the fact that in models with hydrostatic formulations, GL is a singular point (set)
 - Basal friction drops to zero
 - SSA-type equations go from parabolic to elliptic
 - Surface slopes are discontinuous (one-sided differencing)

Other approaches

- Sub-km mesh resolution requirements are inconvenient at best for continental-scale models.
- Many attempts to handle this through subgrid-scale models
 - Transition zones (Pattyn)
 - Partial-cell parameterization (Gladstone et al, Seroussi et al)
 - More complicated asymptotics (Leguy et al)

Embedded Boundary (EB) for Grounding Lines

- Embedded Boundary (EBChombo)
 - Currently force GL and ice margins to cell faces
 - "Stair-step" discretization Known to be inadequate from experience with Stefan Problem in other contexts!
 - Use Chombo Embedded-boundary support to improve discretization of GL's and ice margins.
 - Can solve as a Stefan Problem, with appropriate jump conditions enforced at grounding line. (as in Schoof, 2007)

Flowline (1D) model problem

• Based on Vieli and Payne (2005)

• SSA Momentum balance reduces to:

$$\left(\beta - \frac{\partial}{\partial x} \left(4\mu H \frac{\partial}{\partial x}\right)\right) u_b = -\rho g H \frac{\partial s}{\partial x}$$

• Mass Conservation reduces to:

$$\frac{\partial H}{\partial t} + \nabla \cdot (uH) = Src$$

Multifluid formulation

- Can conceive of the grounding line problem as a phase-change across a multifluid interface (Stefan problem)
- Discretization follows Crockett, Colella, and Graves (2011)

Multifluid Velocity Solve

- □ Multifluid discretization (Crockett et al, 2011)
- □ Grounded, floating "phases" discretized independently
- Phases communicate via interface jump relations
- Quadratic interpolation/extrapolation to interface
- Velocity-solve jump relations (1D):

[H] = 0[u] = 0 $[u_b] = 0$ $[\tau] = [\mu \frac{\partial u}{\partial x}] = 0$

System currently solved exactly (Gaussian elimination)

Multifluid Velocity Solve (cont)

Multifluid extrapolation to faces:

- □ Multivalued cell-centered value for each phase in MF cell
- □ Avoid "small-cell problem" ($\kappa \rightarrow 0$) by not using partial cell values in stencils
- □ Need quadratic extrapolant to preserve accuracy

Multifluid Velocity Solve (cont)

- Initial velocity solve
- □ Red dashed line: "regular" discretization $\Delta x = 195$ m
- \Box Green line, multifluid discretization, $\Delta x = 1500$ m

Advection - GL advance/retreat

Two possible advection/evolution options:

1. Recompute GL every time based on finding the levelset where thickness over flotation is zero.

2. Explicitly move GL based on thickness change and basal slope

Conclusions

- Fine (sub 1-km) resolution required to get grounding lines right
- Evidence suggests that better discretizations at grounding lines may help relax resolution requirement
- □ Can treat GL as multifluid interfaces between 2 phases
- Multifluid velocity solver implemented
- □ Time-dependent evolution is next!

Acknowledgements:

- US Department of Energy Office of Science (ASCR/BER) SciDAC applications program (PISCEES)
- □ NERSC
- □ Steph Cornford, Tony Payne at the University of Bristol
- □ Mark Adams (LBNL)

Extras

BISICLES Results - Ice2Sea Amundsen Sea

- □ Study of effects of warm-water incursion into Amundsen Sea.
- □ Results from Payne et al, (2012), submitted.
- Modified 1996 BEDMAP geometry (Le Brocq 2010), basal traction and damage coefficients to match Joughin 2010 velocity.
- □ Background SMB and basal melt rate chosen for initial equilibrium.
- □ SMB held fixed.
- Perturbations in the form of additional subshelf melting:
 - derived from FESOM circumpolar deep water
 - ~5 m/a in 21st Century,
 - ~25 m/a in 22nd Century.

