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ABSTRACT 

We present a second-order accurate adaptive 
algorithm for solving reactive transport flow in 
geochemical systems.  A Strang-splitting approach is 
used to numerically decouple the transport 
component and the reaction component of the 
problem.  The transport component is solved using a 
second-order accurate IMPES-like algorithm that 
exhibits excellent control of numerical dispersion. 
The numerical scheme for the reaction component 
uses reaction network details from the chemistry 
module of TOUGHREACT, COREREACT, and 
VODE, a high-order ODE integrator, to maintain 
second-order accuracy of the algorithm.  The 
algorithm is implemented within an adaptive 
refinement framework that uses a nested hierarchy of 
logically rectangular grids with simultaneous 
refinement of the grids in both space and time.  The 
integration algorithm on the grid hierarchy is a 
recursive procedure in which coarse grids are 
advanced in time, fine grids are advanced multiple 
steps to reach the same time as the coarse grids, and 
the data at different levels are then synchronized. 
Numerical examples are presented to demonstrate the 
algorithm's accuracy and convergence properties.  
We conclude with a simulation of a reactive salt 
dome problem. 

INTRODUCTION 

Accurate modeling of a reacting flow has many 
important ramifications in geologically important 
problems such as carbon sequestration and 
environmental remediation. The increasing role of 
simulation in the analysis and decision-making 
process places significant demands on the fidelity of 
the simulation codes. However, coupling between 
transport and reaction can be complex due to scale 
differences in both space and time, placing severe 
demands on computational methodology. 
 
One of the challenges in simulation of reactive flow 
lies in the large number of chemical species in a 
geochemical system. In addition, the reaction rates 
can be disproportionably high compared to the flow 
rate, posing significant difficulties in devising an 

efficient numerical algorithm. In Steefel and 
MacQuarrie (1996), the number of species that needs 
to be tracked during transport is significantly reduced 
by assuming local equilibrium between aqueous 
species. Precipitation and dissolution are the only 
reactions with finite rates, which are usually slower 
than reaction rates between aqueous species. Even 
with this simplification however, small time steps 
may still be needed to integrate the reaction equations 
accurately, especially if the reaction rates are strongly 
nonlinear function of species’ concentrations. Grid 
resolution requirements can also be steep since 
reactions occur at the pore scale. A fully implicit 
approach to simulating geochemical system can thus 
be computationally very demanding.   
 
In this work, we develop a second-order accurate 
adaptive scheme for the accurate simulation of 
reactive flow. We describe the details of our method 
and how we make use of a reaction module of 
TOUGHREACT, COREREACT, in the next section.  
We then solve several geochemical systems based on 
our method to demonstrate its convergence properties 
and accuracy. We also compare our results to 
TOUGHREACT.  

NUMERICAL SCHEME 

The formulation of the chemical system we use 
follows Steefel and MacQuarrie (1996).  Aqueous 
species are assumed to be in local equilibrium and 
only precipitation and dissolution reactions are finite-
rate reactions. The species in a chemical system can 
be divided into primary and secondary species. This 
formulation allows the mass conservation equations 
to be written down in terms of the concentration of 
aggregated species , defined as   ci

t
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where and  are the concentration of the primary 

and secondary species, Np and Ns are the number of 
primary and secondary species, and ij are the 
stoichiometric coefficients.  We utilize databases in 
COREREACT in our code development efforts.   
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The operator-split formalism (Day and Bell, 2000) is 
used to computationally decouple the problem into 
two independent operators that represent the transport 
and reaction components. The transport operator is 
based on the total velocity formulation that 
decomposes the mass conservation equations and 
Darcy’s law into an elliptic pressure equation and a 
system of parabolic equations. This allows us to 
employ the second-order IMPES-like discretization 
approach described in Pau et al. (2009). The reaction 
component is described by a coupled system of 
pointwise nonlinear ordinary differential equations 
(ODEs). These ODEs can be very efficiently and 
accurately solved by the VODE solver, a high-order 
adaptive ODE integrator developed by Brown et al. 
(1989). Reaction rates are computed based on 
COREREACT. The flow and reactions operators are 
then coupled using the Strang-splitting approach, 
which consists of the following sequential steps 
within a time step t: 

1. We advance the reaction operator for t/2 to 
obtain solution at t + t/2 using VODE; 

2. We integrate the flow operator for an 
interval of t based on the discretization 
described earlier; and finally    

3. We advance the reaction operator for 
another t/2 to obtain solution at t + t 
using VODE. 

 
The operator-splitting approach we have adopted 
here is somewhat similar to the sequential 
noniterative algorithm option of TOUGHREACT.  
However, there are significant differences between 
our method and TOUGHREACT in how the 
individual operators are handled, as well as in the 
coupling scheme itself. The TOUGHREACT flow 
module uses a fully implicit temporal discretization 
coupled with a first-order upstream weighting to 
compute spatial derivatives. This approach provides a 
robust discretization, but requires the solution of a 
large nonlinear system of algebraic equations. In our 
sequential approach, we first solve the pressure 
equation to determine a total velocity and then solve 
the component conservation equations in total 
velocity form. Discretization of each component is 
tailored to reflect its underlying mathematical 
character. The pressure equation is solved implicitly 
using a finite difference method. The mass 
conservation equations are solved semi-explicitly 
using an explicit second-order Godunov method for 
advection and an implicit Crank-Nicolson 
discretization of diffusion, resulting in excellent 
control of numerical dispersion.  
 
The reaction module of TOUGHREACT uses fixed 
time steps and Newton’s method to solve the 

resulting systems of nonlinear ODEs.  In contrast, the 
VODE solver applied here utilizes an automatic 
adaptive time subcycling procedure to numerically 
integrate the ODEs to the desired level of accuracy. 
Also, the Strang-splitting approach is formally 
second-order accurate, while the sequential 
noniterative approach is only first-order accurate.    
These enhancements allow our method to work in 
many cases where TOUGHREACT fails with the 
sequential noniterative algorithm option.    
 
The extension of the aforementioned single-grid 
algorithm to an adaptive hierarchy of nested 
rectangular grids follows the algorithmic details 
outlined in Pau et al. (2009). The structured-grid 
adaptive mesh refinement approach, introduced for 
gas dynamics by Berger and Colella (1989), was first 
applied to porous media flow by Hornung and 
Trangenstein (1997) and by Propp (1998). We note 
that the use of adaptive mesh refinement strategies in 
reactive flow is particularly advantageous, because it 
allows the simulation to efficiently capture localized 
phenomena, such as localized reactions, steep 
concentration gradients, and saturation fronts. As we 
will show later, grid resolution strongly influences 
the solutions of reactive flow. Dynamic gridding 
capability then allows efficient amortization of 
computing resources.  Figure 1 shows a snapshot of 
the grid for a problem where the specie AB is formed 
along the center of the domain where aqueous 
solutions of A and B mix. Two successive levels of 
fine grids are placed where gradients of the species’ 
concentrations are steep.   
 
The adaptive mesh refinement (AMR) framework 
used here can be efficiently parallelized (Rendleman 
et al., 2000). The reaction component of the 
procedure is a pointwise operation and thus trivially 
parallelizable. The parallelization of the flow 
operator, which involves solving an elliptic equation, 
is less efficient, but the code is scalable up to several 
thousands CPUs. In most cases, since the 
computational cost of the reaction operator dominates 
the total computational cost, good scaling behavior is 
usually achieved. 
 

 

Figure 1. AMR grid with two levels of refinement.  
Refinement criterion is based on sum of 
concentration gradients of all 
components.  Shown is the component 
AB(aq) of a simple reaction A(aq) + B(aq)  
AB(aq). 
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RESULTS 

We first look at the convergence properties of the 
method based on a simple kinetic reaction with a 
finite rate. This is followed by a more realistic 
geochemical system that utilizes the TOUGHREACT 
framework. We conclude the section with a 
simulation of a reactive salt dome problem.  
Comparisons are made to results using 
TOUGHREACT and its sequential iterative 
algorithm option. 

Convergence Properties 

As a first test, we consider a simple reaction where 
A(aq) + B(aq)  AB(aq), with a finite reaction rate.  The 
problem setup for this test is shown in Figure 2. The 
2D rectangular domain is of width W = 4 m and 
height H = 1 m. The top and bottom boundaries are 
impermeable. Fluid flows into the domain from the 
left boundary and flows out of the domain at the right 
boundary. The domain is initially filled with aqueous 
solution of A. Aqueous solution of B is then injected 
into the domain from the left boundary with a 
smoothly increasing injection rate to prevent the 
initial discontinuity in the rate from affecting the 
determination of the theoretical convergence rate.  
For the same reason, the permeability function varies 
vertically from 200 mD at the center of the domain to 
100 mD at the top and bottom boundaries. The time 
step is determined based on a fixed Courant-
Friedrichs-Levy (CFL) number of 0.5.   
 
 
 
 

 

 

 

Figure 2.  Configuration for the test problem. The 
domain is initially filled with Solution A.  
Solution B is then injected into the domain 
from the left boundary. 

Table 1 shows the discrete L1 and L2 norms of the 
difference between the concentration of A obtained 
on each grid and that obtained on the next finer grid, 
and the resulting convergence rates. The rate between 
the two columns of error norms is defined as log2 
(εl/εr) where εl and εr are the errors shown in the 
columns to the left and right of the rate columns. It 
clearly demonstrates the second-order convergence 
property of the algorithm.   
 

Table 1. Convergence rate of algorithm 

Δx 1/24 rate 1/25 rate 1/26 

L1 1.68e-2 2.00 4.21e-3 2.00 1.05e-3

L2 2.82e-2 1.99 7.12e-3 1.99 1.79e-3
 
In addition to maintaining the second-order accuracy 
of our method, the use of VODE has the added 
advantage of having an adaptive time-stepping 
procedure that automatically subcycles the reactions 
in time to achieve the desired level of accuracy.  As a 
second test, we compare our approach to 
TOUGHREACT based on a simple chemical system 
that examines the precipitation of calcite, using the 
same physical setup shown in Figure 2. The system 
involves seven primary species (H2O, H+, Ca2, Na+, 
HCO3

-, Cl- and CaCO3(s)) and 11 secondary species.    
The domain’s size is given by H = 0.01m and W = 
0.1 m. It is initially saturated with CaCl2(aq) (0.4 
mol/kg water). NaHCO3(aq) in concentration of 0.8 
mol/kg water is then  injected from the left boundary 
at a speed of 1.12354  10-6 m/s. Under these 
conditions, calcite will precipitate, with the 
precipitation front moving from one end to the other.  
We will compare the concentration of calcite we 
obtained along the length of the simulation domain 
with results from TOUGHREACT.   
 
As shown in Figure 3, results based on our method 
for t = 10 s and 1 s are identical. On the other hand, 
solutions obtained from TOUGHREACT for t = 5 s 
and 0.1 s deviate significantly, suggesting that even 
at t = 0.1 s, the solution from TOUGHREACT has 
not converged to an accurate solution. Furthermore, 
the peak decreases as t is decreased, suggesting that 
solutions from our method are closer to the 
converged value. The discrepancy can be attributed 
to the fact that the precipitation rate is a 
discontinuous function of the species’ concentrations 
for this particular problem (i.e., the rate equation is 
not a continuously differentiable function through the 
equilibrium point). A very small time step is needed 
to resolve this discontinuity. VODE’s adaptive time 
integration scheme is able to automatically resolve 
this discontinuity to the desired accuracy efficiently 
without using a fixed small time step. We finally note 
that if the sequential noniterative algorithm option is 
used in TOUGHREACT, an incorrect solution is 
obtained. The above observations thus suggest that 
when reactions are not too stiff, our method is able to 
treat nonlinearity in the reaction rate accurately.  
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Figure 3. Comparison of the concentration of 
CaCO3(s) determined by TOUGHREACT 
and current method for different time 
steps. 

Resolution effect in reactive flow 

We now consider the simulation of an experimental 
setting reported in Redden et al. (2007) and shown in 
Figure 4. We again consider a chemical system 
involving the precipitation of CaCO3.  The simulation 
domain of size 0.075 m  0.6 m is initially filled with 
aqueous species in low concentration, and these 
species are in equilibrium. High concentrations of 
aqueous CaCl2 (0.4 mol/kg water) and aqueous 
NaHCO3 (0.8 mol/kg water) are respectively injected 
from the left and right half of the lower boundary of 
the domain with a Darcy velocity of 1.67  10-4 m/s.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Configuration for problem in Redden et 
al. (2007). The domain is initially filled 
with H2O. CaCl2(aq) and NaHCO3(aq) are 
respectively injected from the left and 
right half of the lower boundary of the 
domain. 

Upon mixing, CaCO3 will form along y, the vertical 
axis, and at center of the domain where the two 
aqueous solutions mix with each other through 
diffusion. Experimental results in Redden et al. 
(2007) show that precipitate will form along the 
entire y-axis. 
 
Figure 5 shows how the precipitate varies along y at 
different resolutions; the grid resolutions are 
increased by placing levels of successively finer grids 
using our AMR scheme. The higher-resolution result 
captures the mixing, and thus reactions that occur 
close to the inlet. It thus qualitatively matches the 
experimental result shown in Redden et al. (2007).  
At coarser resolutions, precipitate only begins to 
form at some distance away from the inlet. It is clear 
from Figure 5 that resolution plays an important role 
in the simulation of reactive flow.  

 0.075 m 

Figure 5.  Concentration of the precipitate 
determined from grids at different resolutions H2O 

Interaction between complex flow dynamics and 
reaction 

Here, we consider a salt dome problem coupled with 
the geochemical system described in the previous 
section. We consider a small rectangular domain of 
size 3 m  9 m as shown in Figure 6, and two 
solutions A and B (Table 2). An aqueous solution of 
CaCl2 is allowed to diffuse into the domain at 3 m < x 
< 6 m along the bottom boundary. The bottom, left 
and right boundaries are otherwise impermeable. The 
top boundary is an inflow/outflow boundary where a 
pressure gradient 0.01 atm/m is applied. We will 
examine four different cases to demonstrate the 
interaction between flow and reaction by varying the 
species and densities of solutions A and B. These 
four cases are described in Table 2. The density of 
the CaCl2 solution is 1007 kg/m3. Concentrations of 
the species are as given in the previous section. 
 

CaCO3(s) 

is formed 

0.
6 

m
  

y 

x

CaCl2(aq) NaHCO3(aq) 
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Figure 6.  Configuration for the salt dome problem 
with reaction.  CaCl2 diffuses into the 
domain, which is initially filled with 
solution A, from the center of the bottom 
boundary. Solution B flows into the 
domain from the top boundary due to the 
pressure gradient applied at the top 
boundary. 

Table 2. Cases considered. The density is the density 
of aqueous solutions A or B. 

Solution A Solution B 

Case 
Species 

Density, 

kg/m3 
Species 

Density, 

kg/m3 

1 NaHCO3 997.16 NaHCO3 997.16 

2 NaHCO3 1018 H2O 997.16 

3 H2O 997.16 NaHCO3 997.16 

4 H2O 997.16 NaHCO3 1018 
 
As previously, the reaction of NaHCO3(aq) with 
CaCl2(aq) causes the precipitation of CaCO3(s). The 
concentrations of the CaCO3(s) after 3  107 s for all 
the case 1-4 are shown in Figure 7. In Case 1, we see 
that the continual replenishment of NaHCO3 leads to 
large amounts of CaCO3(s) precipitation. In Case 2, as 
H2O squeezes out NaHCO3(aq), the buildup of 
CaCO3(s) is less.  In Cases 3 and 4, there is no 
reaction until NaHCO3(aq) has advanced to a point 
where it mixes with CaCl2(aq). This results in lower 
concentrations of CaCO3(s) compared to Cases 1 and 
2. The concentration of CaCO3(s) in Case 4 is also 
lower than that in Case 3 because the heavier 
NaHCO3(aq) in Case 4 leads to less mixing. We note 
that there is no precipitate in the right lower corner, 
indicating that the flow dynamics is such that there is 
a region where NaHCO3(aq) does not mix with 
CaCl2(aq). 
 
 

  3 
m

 

B 

Case 1 

  
Case 2 

  
Case 3 

  
Case 4 

Figure 7.  Calcite distribution in mol/dm3 for cases 
described in Table 2 at time 3  107 s 

CONCLUSION 

This paper describes a second-order accurate 
algorithm for reactive flow that utilizes the reaction 
module of TOUGHREACT. Distinctions are made 
between the current code and TOUGHREACT. We 
demonstrated the second-order accurate convergence 
property of our method. We also showed that the use 
of AMR allows efficient resolution of localized 
reactions and flow features, resulting in accurate 
determination of the solution. Finally, we looked at a 
reactive salt dome problem, in which we captured the 
complex interaction between transport and reaction.   
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