
Parallelization of Structured, Hierarchical Adaptive Mesh
Refinement Algorithms∗

Charles A. Rendleman
Vincent E. Beckner

Mike Lijewski
William Crutchfield

John B. Bell

Lawrence Berkeley National Laboratory
Berkeley, CA 94720

April 20, 1999

Abstract

We describe an approach to parallelization of structured adaptive mesh refinement algorithms. This
type of adaptive methodology is based on the use of local grids superimposed on a coarse grid to achieve
sufficient resolution in the solution. The key elements of the approach to parallelization are a dynamic
load-balancing technique to distribute work to processors and a software methodology for managing data
distribution and communications. The methodology is based on a message-passing model that exploits
the coarse-grained parallelism inherent in the algorithms. The approach is illustrated for an adaptive
algorithm for hyperbolic systems of conservation laws in three space dimensions. A numerical example
computing the interaction of a shock with a helium bubble is presented. We give timings to illustrate the
performance of the method.

Keywords: adaptive mesh refinement, parallel processing, conservation laws, load balancing, scientific
computing

1 Introduction

Advanced, higher-order finite difference methods and local adaptive mesh refinement have proven to be
an effective combination of tools for modeling problems in fluid dynamics. However, the dynamic na-
ture of the adaptivity in time dependent simulations makes it considerably more difficult to implement this
type of methodology on modern parallel computers, particularly, distributed memory architectures. In this
paper we present a software framework that facilitates the development of adaptive algorithms for multiple-
instruction, multiple-data (MIMD) architectures. The particular form of adaptivity we consider is a block-
structured style of refinement, referred to as AMR, that was originally developed by Berger and Oliger [5].
The development of the methodology here uses the approach developed by Berger and Colella [4] for gen-
eral systems of conservation laws and the extension of that methodology to three dimensions by Bell et

∗Support for this work was provided by the Applied Mathematical Sciences Program of the DOE Office of Mathematics, Infor-
mation, and Computational Sciences and by the Defense Threat Reduction Agency IACRO98-3017, through the U. S. Department
of Energy under Contract No. DE-AC03-76SF00098.

1

al. [2]. This type of adaptive refinement has been extended to incompressible flows [1] and to low Mach
number models for atmospheric flow [22] and combustion [18].

AMR is based on a sequence of nested grids with finer and finer mesh spacing in space, each level being
advanced in time with time step intervals determined by the Courant-Friedrich-Level (CFL) condition. The
fine grids are recursively embedded in coarser grids until the solution is sufficiently resolved. An error
estimation procedure automatically determines the accuracy of the solution and grid management procedures
dynamically create rectangular fine grids where required to maintain accuracy or remove rectangular fine
grids that are no longer required for accuracy. Special difference equations are used at the interface between
coarse and fine grids to insure conservation.

Several approaches to parallelization of AMR applied to hyperbolic conservation laws have been ad-
dressed in the literature. Crutchfield [9, 10] developed a prototype parallel implementation of a two-
dimensional, adaptive gas dynamics algorithm using a coarse-grained MIMD model. Berger and Saltz-
man [3] used a data-parallel model to implement an adaptive gas dynamics algorithm on a Thinking Ma-
chines CM-2. Colella and Crutchfield [7] implemented a task-queue parallel model for a multifluid algo-
rithm on a Cray C-90 which was used by Greenough et al. [13] to study a mixing layer. A major departure
of the work presented here is the development of software infrastructure that provides a general framework
for parallel, block-structured AMR algorithms. In the present approach, data distribution and communica-
tion are hidden in C++ class libraries that isolate the application developer from the details of the parallel
implementation.

In the next section we will review the basic algorithmic structure of AMR and discuss the components of
the algorithm in the context of hyperbolic conservation laws in more detail. The dynamic character of AMR
leads to a dynamic and heterogeneous work load. In section 3 we discuss a load-balancing algorithm based
on a dynamic-programming formulation that is used to control data distribution to processors. Section 4
provides a description of the parallel implementation focusing on the programming model used by the
application developer and the support for that model provided by the underlying software. We illustrate the
methodology for three-dimensional gas dynamics on computation of a shock-bubble laboratory experiment
of Sturtevant and Haas [15]. We discuss overall performance and parallel efficiency in the context of this
case study.

2 The Adaptive Mesh Refinement Algorithm

AMR solves partial differential equations using a hierarchy of grids of differing resolution. The grid hierar-
chy is composed of different levels of refinement ranging from coarsest (l = 0) to finest (l = lmax). Each
level is represented as the union of rectangular grid patches of a given resolution. In this work, we assume
the level 0 grid is a single rectangular parallelepiped, theproblem domain, although it may be decomposed
into several coarse grids. In this implementation, the refinement ratio is always even with the same factor
of refinement in each coordinate direction, i.e.,∆xl+1 = ∆xl/r, wherer is the refinement ratio. (We
note the basic concepts used in AMR require only a logically rectangular grid; neither isotropic refinement
nor uniform base grids are requirements of the fundamental algorithm.) In the actual implementation, the
refinement ratio can be a function of level; however, in the exposition we will assume thatr is constant.
The grids areproperly nested, in the sense that the union of grids at levell + 1 is contained in the union
of grids at levell for 0 ≤ l < lmax. Furthermore, the containment is strict in the sense that, except at
physical boundaries, the levell grids are large enough to guarantee that there is a border at least one levell
cell wide surrounding each levell + 1 grid. However, a fine grid can cross a coarser grid boundary and still
be properly nested. In this case, the fine grid has more than one parent grid. This is illustrated in Figure 1
in two dimensions. (This set of grids was created for a problem with initial conditions specifying a circular
discontinuity.) Grids at all levels are allowed to extend to the physical boundaries so the proper nesting is

2

Figure 1: Two levels of refined grids. Grids are properly nested, but may have more that one parent grid.
The thick lines represent grids at the coarse level; the thin lines, grids at the fine level.

not strict there.
Both the initial creation of the grid hierarchy and the subsequent regriding operations in which the

grids are dynamically changed to reflect changing flow conditions use the same procedures to create new
grids. Cells requiring additional refinement are identified and tagged using an error estimation criteria. The
error estimation criteria may use Richardson extrapolation to estimate the error, as described in Berger and
Colella [4], or it may use some other user-supplied criterion. The tagged cells are grouped into rectangular
patches using the clustering algorithm given in Berger and Rigoutsos [6]. The generated patches will in
general contain cells that were not tagged for refinement. Thegrid efficiencyis the fraction of the cells
in a new grid that are tagged by the error estimation process. A grid efficiency criterion (typically 70%)
determines the minimum grid efficiency that is acceptable. These rectangular patches are refined to form
the grids at the next level. The process is repeated until either the error tolerance criteria are satisfied or a
specified maximum level of refinement is reached. The proper nesting requirement is imposed at this stage.

The initial, t = 0, data is used to create grids at level 0 throughlmax. (Grids have a user-specified
maximum size, therefore more than one grid may be needed to cover the physical domain.) As the solution
advances in time, the regriding algorithm is called everykl (also user-specified) levell steps to redefine grids
at levelsl + 1 to lmax. Grids at levell + 1 are only modified at the end of levell time steps, but because we
sub-cycle in time, i.e.,∆tl+1 = ∆tl/r, level l + 2 grids can be created and/or modified in the middle of a
level l time step ifkl+1 < r.

When new grids are created at levell +1, the data on these new grids are copied from the previous grids
at levell + 1 where possible, otherwise the data is interpolated in space from the underlying levell grids.

The method we use for solving partial differential equations on a grid hierarchy is to solve on a given
level using Dirichlet data obtained from coarser levels. This results in flux errors at the boundary with
the coarse grid, which are then fixed in a synchronization step described below. The time-step algorithm
advances grids at different levels using time steps appropriate to that level based on CFL considerations and
the flux corrections are typically imposed in a time-averaged sense. The AMR algorithm, shown in Figure 2,
is a recursive algorithm that advances levelsl, 0 ≤ l ≤ lmax. The recursive invocation of theAdvance is
repeatedr times;r being the refinement ratio for levell. The repetition is required to comply with the CFL

3

Recursive ProcedureAdvance (levell)
if time to regrid at levell + 1

Estimate errors at levell + 1
Generate new grids at levell + 1
if l + 1 < lmax then regridl + 2

endif
if l == 0 obtain boundary data from physical

boundary conditions.
elseobtain boundary data from coarser grids

and from physical boundary conditions.
Integrate levell in time.
if l < lmax

repeatr times: Advance (levell + 1)
endif
Synchronize the data between levelsl andl + 1.

End Recursive ProcedureAdvance

Figure 2: Basic AMR Algorithm

constraint: because the resolution of levell + 1 is r times that of levell, the time step must be cycled with
stepsr times smaller.

Before turning to the parallelization issues we first discuss, in the case of hyperbolic conservation laws,
some of the details of the above algorithm, especially details related to communication of data between lev-
els. Essentially all of the inter-level data communications occurs in two phases of the algorithm. The coarser
grids supply boundary data in order to integrate finer grids, and the coarse and fine grids are synchronized
at the end of fine grid time steps when the coarse and fine grid solution have reached the same time. For
the case considered here, boundary data is provided by fillingghost cellsin a band around the fine grid data
whose width is determined by the stencil of the finite difference scheme. If this data is available from grids
at the same level of refinement the data is provided by a simple copy. If the data is not available from grids
at the same level, it is obtained by interpolation of the coarse grid data in time and space.

When the coarse and fine grids reach the same time and we synchronize, there are two corrections that
we need to make. First, for all coarse cells covered by fine grid cells, we replace the coarse data by the
volume weighted average of the fine grid data. Second, because coarse cells adjacent to the fine cells were
advanced using different fluxes than were used for the fine cells on the other side of the interface, we must
correct the coarse cell values by adding the difference between the coarse and fine grid fluxes. We note that
for the case of explicit algorithms for conservation laws, the synchronization only involves corrections to
the coarse grid. Almgren et al. [1] show that for other types of algorithms this synchronization can become
considerably more complex.

The AMR software is organized into five relatively separate components. The error estimation and grid
generation routines identify regions needing refinement and generate fine grids to cover the region. Grid
management routines manage the grid hierarchy allowing access to the individual grids as needed. Interpo-
lation routines initialize a solution on a newly created fine grid and also provide the boundary conditions
for integrating the fine grids. Synchronization routines correct mismatches at coarse/fine boundaries aris-
ing because we integrate the levels independently, apart from boundary conditions. Finally, the integration
routines discretize the physical processes on the grids.

4

3 Parallelization of AMR—Load Balance

We have adopted a coarse-grained, message-passing model in our approach to parallelization. This ap-
proach is generally associated with distributed memory MIMD architectures, but it can be used on shared
memory architectures as well. We make this choice because it enhances portability on distributed memory
architectures, and because we feel message-passing programs are more robust. In message-passing parallel
programs, the only communication between processors is through the exchange of messages. Direct access
to another processor’s memory is not provided. In this approach, it is critical to choose carefully which
processor has which piece of data. As is apparent from Figure 1, grids vary considerably in size and shape.
In AMR the number of grids also changes and is seldom an integer multiple of the number of processors.
It is therefore inefficient to assign the grids sequentially to the processors, since the result is unlikely to be
load balanced. We will use a load-balancing strategy based on the approach developed by Crutchfield [9].
Because most of the data and computational effort is required by the finest level of grids, we need only be
concerned with load-balancing the grids on the finest level. In general, the effort required by the coarser
grids will be a minor perturbation.

In the serial version of the AMR algorithm, extra work is performed at the boundaries of grids (obtaining
boundary data and synchronization). As a result, the overhead is reduced if the points tagged for refinement
are covered with a small number of large grids, rather than a large number of small grids. However, it is
generally true that decreasing the number of grids also decreases the grid efficiency. The regriding algorithm
of Berger and Rigoutsos [6] used in the serial algorithm [2] seeks to optimize the computational efficiency
of the grids by reducing the number of grids for a given minimum grid efficiency.

In a parallel algorithm, the necessity of assigning each grid to a processor introduces another compli-
cation to the regriding algorithm. One possible parallelization strategy for AMR would be to modify the
regriding algorithm to introduce a secondary goal of producing grids that can be assigned to processors in a
fashion that balances the load. However, this approach introduces nuances of the particular machine charac-
teristics into the grid generation algorithm. For this reason, we chose not to modify the regriding algorithm.
We will accept the set of grids provided by the regriding algorithm and seek to find a well-balanced assign-
ment of grids to processors. It turns out to be possible to find well-balanced assignments if we can make the
following assumptions.

1. The computational cost of a grid can be estimated using some type of work estimate.

2. The total computational cost of the algorithm is well approximated as the sum of the costs of time-
stepping the grids on the finest level. Other costs such as communications, time-stepping coarser
grids, regriding, refluxing, etc., are treated as ignorable perturbations.

3. The grids can be approximated as having a broad random distribution in work estimate, i.e., that the
standard deviation of the distribution is not small compared to the average.

4. The average number of grids per processor is large enough.

We can state the load-balancing problem in simple terms. Suppose we haveK processors andN grids. The
grids have random sizes and shapes taken from some distribution. The problem is to assign the grids to the
processors so that the processors have nearly equal amounts of work. LetWα

i be the work required for the
ith grid when the work is performed on processorα. The task for the load balance routine is to minimize
the load balance inefficiency, which is defined as

InefficiencyLB = 1−
∑

αi W
α
i

K maxα
∑

i W
α
i

.

5

The minimization is over all possible distributions of grids onto processors. The termmaxα
∑

i W
α
i , in the

denominator (the summation is over all grids assigned to processorα,) is the work load on the most loaded
processor. The numerator,

∑
αi W

α
i , is the total work load on all processors. Therefore, the InefficiencyLB,

is simply related to the standard measure of parallel efficiency. This problem is an application of the knap-
sack dynamic programming algorithm, a description of which may be found in Sedgewick’s book on algo-
rithms [19]. In general, the knapsack problem is NP complete and finding the best assignment of grids to
processors will requireO(N !) possible operations, which is not practical. Below is a heuristic algorithm for
finding a good, if not optimal load balance.

procedure KNAPSACK
Sort grids by size, those with the most work

first.
foreachgrid, starting with the one with the

most work, assign grid to the least loaded
processor.

endfor
L1: Find the most loaded processor.

foreachgrid i on the most loaded processor
foreachgrid j not on the most loaded

processor
if interchangingi andj improves LB,

perform interchange,
gotoL1.

endif
endfor

endfor
endproc KNAPSACK

Figure 3 is a plot of average inefficiency versus the average number of grids per processor. The data
points in the figure were determined by applying theKNAPSACK algorithm to random test data and av-
eraging the results of many trials. Several curves are presented, corresponding to different numbers of
processors. Also presented, for purposes of comparison, is the load balance inefficiency for grids with fixed
work estimate—the non-random case—where all grids are the same size. The distribution of the random
test data was chosen to be similar in shape, mean, and variance to the distribution of grids produced by the
regriding process of AMR. The results are not very sensitive to the choice of probability distribution. The
inefficiency of the non-random case goes to zero when the number of grids is an integer multiple of the
number of processors, as indicated by Figure 3. Note that the curves for randomly sized grids have general
properties independent of the number of processors. When the ratioN/K is near one, the average ineffi-
ciency of the random work estimate cases is higher than the inefficiency of the non-random case. When
the average number of grids per processor exceeds 2, the random distribution is always more efficient than
the non-random distribution except when the average number of grids per processor is slightly less than an
integer. The random variation in the work estimate of the grids allows extra freedom to improve the load
balance by the interchange of grids. The inefficiency of the random case decreases faster than the ineffi-
ciency of the non-random case as the average number of grids per processor increases (excluding the points
whereN/K is integral.)

Figure 3 demonstrates that load balancing is easier when the work per grid is a random distribution than
when the work per grid is uniform, provided thatN/K is large enough. It also shows that the factor that

6

Average Inefficiency

N/K (Grids/Processors)
1 2 3

0.001

0.01

0.1

1 non-random
K = 8
K = 32
K = 128

Figure 3: Average load balance inefficiency versus average number of grids per processor for differing
numbers of processors. For comparison purposes, the load balance for non-randomly sized grids is also
shown.

controls the quality of the load balance isN/K, the ratio of the number of grids to the number of processors.
When the ratio is approximately three or greater, the balance is excellent. The inefficiency is only weakly
dependent on the probability distribution or the number of processors.

The work estimate of a grid corresponds to the time estimate for computing a time-step on a grid. In
the following, we estimate the integration time as being proportional to the number of grid points in the
grid. The estimate is good but not exact since integration times are dependent on other variables as well.
For example, for the operator split algorithm we use for gas dynamics, extra work is performed in boundary
regions in the initial sweeps to provide updated boundary data for the later sweeps. This results in a mild
dependence of the work on the shape of the grid. Also, points on the physical boundary of the domain
contribute a different amount to the computational cost assigned to a grid. Such refinements have not been
incorporated into the time estimate.

As previously stated, this load-balancing technique requires several assumptions about the computa-
tional scheme that is being balanced. We have previously commented about the estimation of computational
cost of the grid, and the random distribution of grid sizes. The last assumption is that computational costs
other than the cost of time-stepping the finest grids are ignorable. Communication costs are generally impor-
tant in message-passing parallel programs, and effort is devoted to its reduction. Communication costs are
ignored in this load balance scheme. No effort is made to reduce communication costs by placing adjacent
grids on the same processor, or on adjacent processors. This is justified in the case of the AMR algorithm for
gas dynamics considered here since the Godunov time-step integration is floating-point intensive requiring
approximately a thousand operations per zone in three dimensions. Since the ratio of communication cost
to calculation cost for modern multiprocessors is not overly large, it is reasonable to ignore communication
costs in the load balance. We also ignore the computational costs of time-stepping coarse grids because,
consisting of fewer grid points, they are much less expensive to time-step. Similarly we expect the costs of
regriding and refluxing to be ignorable.

The utility of the load-balancing technique presented in this section is not limited to specific case of
AMR for hyperbolic conservation laws presented here. The only requirements that must be met are that it
be possible to estimate the execution time for the irregularly sized units, that the random distribution of data

7

unit sizes be reasonably broad, and that the total computational cost is well approximated as the sum of the
computational costs of the irregularly sized data units.

4 Implementation

This section describes the implementation of the software described in the previous sections from a perspec-
tive of the application programmer. Following some initial remarks, we describe the software infrastructure,
with special emphasis given to the two constructs that were added to the serial version to achieve parallelism.

Prior to the development of the parallel version of the hyperbolic system software, a serial version was
written, consisting of more that 50,000 lines of C++ andFORTRANcode. Several other software systems
for solving partial differential equations were also written using the same software framework. Therefore, a
significant design point for the parallel implementation of the software was that the work of the application
programmer be minimized, both in the conversion of existing software and the writing of new AMR appli-
cations. The serial versions of the software were written using a C++ foundation library which, among other
tasks, managed data-structures that are passed toFORTRANroutines for numeric processing. We chose to
implement parallelism at this level, using a Single Program, Multiple Data (SPMD) approach. In this ap-
proachFORTRANdata is distributed and each processor independently processes itsFORTRANcompatible
data.

4.1 Software Infrastructure

The methodology described in this paper has been embodied in a software system that allows for a broad
range of physics applications. It is implemented in a hybrid C++/FORTRANprogramming environment
where memory management and control flow are expressed in the C++ portions of the program and the
numerically intensive portions of the computation are handled inFORTRAN. The software is written using
a layered approach, with a foundation library,BoxLib, that is responsible for the basic algorithm domain
abstractions at the bottom, and a framework library,AMRLib, that marshals the components of the AMR al-
gorithm, above it. Other support libraries, built withBoxLib, are used as necessary to implement application
components such as the interpolation of data between levels and the coarse-fine interface synchronization
routines.

The foundation library,BoxLib, and a previous framework library, calledlibamr, has been described
by Crutchfield and Welcome [11].BoxLib has been modified and improved from the version described
in that paper, but has kept its core functionality and data structures intact. The improvements were made
incrementally, so that existing application programs would be minimally impacted. The framework library,
libamr, however was abandoned when it proved inflexible for applications other than simulating hyperbolic
systems of conservation laws.

The foundation libraryBoxLib provides support for programs solving finite difference equations on do-
mains that are unions of non-intersecting rectangles. The library presents to the application programmer
several abstractions: a global index space, labeled by tuples of integers; rectangular regions of that index
space; non-intersecting unions of rectangular regions;FORTRANcompatible data defined over rectangular
regions; andFORTRANdata defined over unions of non-intersecting rectangular regions. Each of the ab-
stractions provides a rich set of operations. For example, theBox class is used to represent a rectangular
region of index space. Among many other operations,Boxs can be resized, shifted, or intersected with other
Boxs. TheFORTRANcompatible data objects, usually floating point numbers, are designed to be used with
FORTRAN-77 style subroutines. They are allocated as a contiguous block of memory and theFORTRANrou-
tines interpret them as multi-dimensional arrays. The number of dimensions in theFORTRANcompatible
data is equal to the problem’s spatial dimensionality plus one. This allows the definition of multi-component

8

objects defined at each point in the index space. It is useful to note that we are able to implement a large
portion of the code in a space-dimension independent manner by defining the dimension as a compile time
parameter.

BoxLib owes many of its concepts to Hilfinger and Colella’sFIDIL [16] language for defining algorithms
for solving partial differential equations. However,FIDIL is much more general and expressive, allowing
the user to express directly mathematical operations on data defined on non-rectangular domains of index
space, including domains not defined as a union of non-intersecting rectangles. Unfortunately,FIDIL has
not become widely available.LPARX, described by Kohn et al. [17], andKeLP, described by Fink [12], are
other libraries that owe much of their conceptual foundation toFIDIL. These libraries have similar purposes
to the parallel implementation ofBoxLib described in this paper.

The framework library,AMRLib, supports the flow of control and data management of a time-dependent
AMR application through its decomposition into problem dependent and problem independent components.
The problem dependent parts include the particular hyperbolic systems to be solved (and a suitable integra-
tion scheme), the initial and boundary conditions, the problem domain, and the error estimation routines.
As a consequence of the component-wise decomposition, adapting an existing integration module for use
with the AMR algorithm is usually straightforward. When a new problem is being set up the changes re-
quired to the code are localized to overriding certain virtual functions of a support class,AmrLevel , in
the framework. In addition, the programmer designates some physical quantities asstate data; for example,
the usual conserved quantities of gas dynamics together with any additional scalar conserved variables. The
framework then provides for the efficient allocation in memory of theFORTRANcompatible data associated
with the state data, the storage of restart/checkpoint and plot files. The state data also define a quantity’s
coarse-to-fine grid interpolation method used in regriding and boundary patch filling. The remainder of the
AMR framework treats the data in a problem independent fashion, usually as a list of state data. Thus,
the data structures, memory management, grid generation algorithms, time-step control, the sub-cycling on
sub-grids, interior boundary conditions, and the interfacing between grids to insure conservation are nearly
completely divorced from the particular system being solved.

4.2 Parallel Implementation

As stated above, because of the considerable body of AMR code that uses theAMRLib framework and the
BoxLib foundation libraries, we implemented parallel support in such a way as to minimize the additional
work for application programmers. The fundamental parallel abstraction inBoxLib is the MultiFab ,
which is the class that encapsulates theFORTRANcompatible data defined on unions of non-intersecting
Boxs. The grids that make up theMultiFab are distributed among the processors, withAMRLib assign-
ing grids to processors using the distribution given by the load balance scheme described in section 3. The
processor assignment of grids is managed by aDistributionMapping object, which also caches in-
formation necessary for efficient message passing of ghost cell data. Non-MultiFab operations and data
structures are replicated on each processor. For example, the index space manipulations that determine sub-
grid intersections are repeated and the results sometimes cached on each processor. This non-parallel work
is usually measured to be small. One positive consequence of the replicated index space manipulation is that
most exchanges of ghost cell data can be done with only one message: because each processor possesses
the global data layout, processors can post send and receive requests with other processors without an initial
query phase to determine data size and location.

Operations involvingMultiFab s are performed in one of two different ways depending on the implicit
communications pattern. In the simplest case, there is no interprocessor communication; the calculation
is parallelized trivially with each processor operating independently on its local data. The simple calcula-
tion may involve severalMultiFab s if their processor distributions are the same. These operations are

9

void LevelAdvance{MultiFab& mf,
const MultiFab& other_mf)

{
fillBoundary(mf); // Boundary fill.
for (int i = 0; i < mf.length(); ++i)
{

advance(mf[i], other_mf[i]); // step.
}

}

Figure 4: A prototypical, serial singly-nested loop

void LevelAdvance(MultiFab& mf,
const MultiFab& other_mf)

{
fillBoundary(mf); // Boundary fill.
FabIterator fi(mf);
DependentFabIterator data(other_mf, fi);

while (fi.good())
{

advance(*fi, *data); // Time step.
fi.next(); // Next iteration.

}
}

Figure 5: A prototypical, parallel singly-nested loop

implemented as singly nested loops over the grids in theMultiFab . The more complicated case will be
described later.

Fortunately, most of the code using the serialBoxLib library was written in a straightforward way with
simple, singly nested loops over grids at a fixed level of refinement. In order to demonstrate the style of
coding for such loops we present a simple example. The procedureLevelAdvance , shown in Figure 4,
advances a level of grids through one time-step. In this example, the targetMultiFab , mf , has its ghost
cells filled using thefillBoundary procedure. Then, theFORTRANcompatible data is accessed, grid
by grid, and further processed using an external procedure,advance . The FORTRANcompatible data
is accessed using an overloaded C++ array reference operator, i.e.,mf[i] . In this example, The external
procedure takes a secondFArrayBox argument, provided by indexing intoother mf.

Figure 5 shows the same loop in parallelBoxLib. Again, the ghost cells inmf are filled using the exter-
nal procedurefillBoundary . The fillBoundary procedure would, in general, not be implemented
as a simple loop over the constituentFArrayBox s in theMultiFab ; its style of implementation is dis-
cussed later. The parallel looping construct follows the SPMD model: all processors execute the loop, but
different grids are processed on each processor. TheFabIterator andDependentFabIterator are
abstractions of loop indices that permit referring to theFORTRANcompatible data of aMultiFab . On a
single processor computer, theFabIterator provides the same functionality as an integer looping index.
On a multi-processor, theFabIterator only iterates over the grid data which is local to the processor.
Since all grid data is uniquely assigned to some processor, all grid data is processed in the loop. An attempt
to access grid data with a different processor distribution will cause a run-time error. TheFabIterator

10

void NaiveCopy(MultiFab& mf_to,
const MultiFab& mf_from)

{
FabIterator fi(mf_to);
while (fi.good()) // Outer
{

FabIterator fo(mf_from);
while (fo.good()) // Inner
{

if (fi->intersects(*fo))
fi->copy(*fo);

fo.next();
}
fi.next();

}
}

Figure 6: Incorrect implementation of aMultiFab to MultiFab copy.

is said tocontrol the execution of the loop. TheDependentFabIterator provides access to data in
a secondMultiFab with the same processor distribution. It is said to bedependentbecause it provides
access to data in aMultiFab in the same order as the data accessed by the control iterator. The final
fab.next() statement advances theFabIterator . The loop is executed while the iterator is “good,”
i.e., when there are still locally unprocessed grids. There is no implied synchronization of processors at the
end of this loop: the processor does not stall waiting for other processors to complete their loop bodies.

Because theFabIterator is an abstraction, it can be used to hide implementation details which may
improve parallel performance. For example, the order in which data is delivered to the loop body is not
defined. In addition, theFORTRANcompatible data which is delivered to the loop body need not be defined
on the sameBoxs that define theMultiFab . All that is required is that iterators deliver all of the data in the
MultiFab before the loop is completed. These properties permit the use of asynchronous message passing
and provide the potential for the overlap of computation and message passing (currently not implemented.)
It is important to note that the same loop structure can be used on purely shared-memory architectures. In
that case separate threads of execution would execute the loop body using a task-queue approach.

A different parallel construction is necessary when communication is required betweenMultiFab s.
In AMR applications this occurs in the context of multiply nested parallel loops. The simplest case arises in
copying data from oneMultiFab onto anotherMultiFab with a different processor distribution. Other
examples are in thefill patch operation, which interpolates from coarse cell data on to overlying fine grid
patches, and the previously mentionedfillBoundary , used to fill ghost cells. These loops cannot be
handled using the same mechanism as for singly nested loops. To see why, consider the incorrectly coded
example in Figure 6. TheOuter loop body is executed only for the sub-grids withinmf to that are local to
the processor. This implies that theInner loop body is executed only if themf from and themf to grid data
are local. It is easy to see that amf fromsub-grid can only update an intersectingmf to sub-grid if they both
reside on the same processor. That is, if the distribution of sub-grids in the twoMultiFab s is not identical,
some grids that should be involved in the copy operation will not be copied.

To perform such calculations correctly, the loops are processed in two stages: data is exchanged between
processors and then the local targets are updated. It is important to emphasize that only one message need
be sent from a processor to another, since each processor can amalgamate individual data transfers into
a single message using its knowledge of the parallel data layout. We illustrate, in Figure 7, the parallel

11

ProcedureParallelCopy (MultiFab& mf to,
const MultiFab& mf from)

MultiFabCopyDescriptor mfcd;
foreachgrid i in mf to

foreachgrid j in mf from
if i intersectsj

Register copy request inmfcd
endif

endfor
endfor
Gather remote data intomfcd.
foreachgrid i on processor

copy from mfcd to gridi
endfor

End ProcedureParallelCopy

Figure 7: ParallelMultiFab to MultiFab copy.

implementation of a multiply nested loop by presenting the pseudo-code for the simple case where grid data
is copied from one grid to another. The procedureParallelCopy first creates a helper objectmfcdof
classMultiFabCopyDescriptor which is used to build the message-passing requests formed in the
first, nested loop. This loop determines the intersecting portions of themf to andmf from MultiFab s and
builds a list of the intersecting regions and the grids that provide the data for the intersecting regions. After
this initial loop is completed, the data needed by remote processors is sent, and the data needed from the
remote processors is received. The messages associated with the sends and receives proceed concurrently
using asynchronous message passing. When the data has been gathered, each local patch in themf to
MultiFab that intersects a patch in themf fromMultiFab is updated through a copy operation.

4.3 Miscellaneous Remarks

The examples shown in section 4.2 do not give an accurate impression as to the amount of work the appli-
cation programmer needs to do to convert a serial AMR program to a parallel one. In these examples, it
seems that nearly every line of the serial procedure in Figure 4 needs to be changed in converting it to the
parallel version shown in Figure 5. However, of the more that 50,000 lines of code in the serial application,
fewer that 500 needed to be changed to parallelize the simple, singly nested loops. The multiply nested
loops involved a considerable number of changes. These are nearly completely hidden from the applica-
tion programmer because they are implemented either withinBoxLib or AMRLib or one of their auxiliary
libraries.

Finally we note that we used the MPI [21, 14] message-passing library. We used only core functionality
within the MPI library to ensure portability. Furthermore, we encapsulated the MPI specific library calls
within a class,ParallelDescriptor , which presents to users ofBoxLib an abstraction of a message-
passing environment, The use of theParallelDescriptor abstraction facilitates porting of our codes
to other message passing environments.

5 Numerical Example

To test the parallel performance of the adaptive algorithm, we have modeled the interaction of a Mach 1.25
shock in air hitting a spherical bubble of helium. The case being modeled is analogous to one of the

12

experiments described by Haas and Sturtevant [15]. The helium is a factor of 0.139 less dense than the
surrounding air which leads to acceleration of the shock as it enters the bubble and a subsequent generation
of vorticity that dramatically deforms the bubble.

The computational domain is a rectangular region with lengthx of 22.5 cm and widthy and heightz of
8.9 cm. The radius of the bubble is 2.25 cm. The bubble is centered at the point (x = 16 cm,y = 4.45 cm,
z = 4.45 cm) and the shock is initialized at 13.5 cm in thex direction moving in the direction of increasing
x. We use the operator-split second-order Godunov method of [8], with Strang [23] splitting. Reflecting
boundary conditions are set on the constantz and constanty planes. To minimize thex extent of the
problem, the inflow and outflow velocities on the constantx planes, as well as the interior fluid velocities,
are set so the frame of reference is shifted to one in which the post-shock velocity is zero. We include a
density perturbation of random phase and amplitude over a range of wave numbers to break the four-fold
symmetry of the problem.

We use aγ-law equation of state for each gas withγa = 1.4 for air andγf = 1.667 for the helium.
Mixtures of the two gases are modeled with an equation of state defined using effectiveγs,

Γc =
1

f
γf

+ (1−f)
γa

for sound speeds and

Γe = 1 +
1

f
γf−1 + (1−f)

γa−1

for energy. The harmonic average used to computeΓc expresses the net volume change of a mixture of the
gases in terms of their individual compressibilities. The sound speed defined by

c =
√

Γcp/ρ,

is used in the integration routine for defining characteristic speeds and for approximate solution of the
Riemann problem used to define fluxes. We assume that the two components of a mixed fluid cell all are at
the same pressure. Pressure is computed from density and internal energy usingΓe, namely,

p = (Γe − 1)ρe

The formula used to computeΓe insures that mixing of the two fluids at the same pressure does not result in
a pressure and internal energy change of the composite fluid.

Two sets of experiments are presented. We used the SGI/Cray T3E-900 (T3E, below) [20] at the NERSC
facility at Lawrence Berkeley National Laboratory to perform these experiments. The T3E compute nodes
are 450 MHz Digital Alpha 21164 processors, capable of up to 900 MFlops. The communication back plane
is capable of high bandwidth bi-directional message traffic with low latency (Bandwidth, up to 600 MBytes
per second, processor to processor; latency, approximately 1 microsecond per message.) Benchmarks per-
formed on other machines will yield different results. The integration used six conserved quantities (mass,
momentum, energy, and mass of helium.)

In the first set of experiments only a single level of refinement is used, i.e. no adaptivity. Three experi-
ments were run, where the number of CPUs and the problem size increases by a factor of eight over the next
coarsest experiment. The results of the experiment are summarized in Table 1. Each processor has one grid
which is 20x20x20 not including boundary cells. The figure of merit we use to measure performance is the
total wall-clock time per each cell advanced in the grid. The number of cells advanced gives an indication
of the increase in work load with problem size. On the T3E, we used the intrinsic functionrtc() , nor-
malized using the result ofIRTC RATE() , to measure wall-clock time. As noted above, the operator split

13

CPUS Base Grid Cells advanced µ-sec/cell

4 80x20x20 3104000 70.7
32 160x40x40 49664000 75.2
256 320x80x80 794624000 115.5

Table 1: Single Level performance

CPUS Effective Grid Cells advanced µ-sec/cell

4 320x80x80 142042944 95.7
32 640x160x160 1440509824 105.5
256 1280x320x320 16705155232 154.4

Table 2: Adaptive performance

algorithm performs additional work in boundary cells in early sweeps to provide accurate boundary data
for later sweeps. This additional time is included in the time/cell reported in the table. The performance
degrades with increasing processor number because inter-processor communication of interior ghost cell
grid data increases: no communications are required for ghost cell regions that abut the physical boundary.

The second sets of experiments were fully adaptive. For these computations we allowed the program
to refine the grid where the density gradient was large or in mixed regions where a non-negligible amount
of both air and helium are present. For these computations we integrate to a fixed time after the shock has
completely passed through the bubble. Again we perform three runs with each succeeding run having eight
times more processors and the base grid having eight times more points. In these runs there are two levels
of refinement, the first by a factor of 2 and the second by a factor of 4. We define theeffective resolution
to be the resolution the finest grid would have if it covered the entire problem domain. For example, the
coarsest adaptive calculation has an effective resolution of 320x80x80, which is the same as the resolution
of the finest single level example.

In Figure 8, we show volume renderings of the helium mass fraction at six times during the evolution of
the bubble. The earliest frame shows the initial data. The next frame shows the compression of the bubble
as the shock (moving left to right) passes through the bubble. Subsequent frames show the deformation of
the bubble into a torus as the vortex ring generated as the shock traverses the bubble begins to control the
dynamics. The bubble evolution qualitatively agrees with the experimental results of Haas and Sturtevant. In
Figure 9 we show the helium mass fraction at the end of the simulation with the boxes used by the adaptive
algorithm superimposed over the rendering. The plane of boxes to the right are refinements around the
shock.

Performance data for these computations are summarized in Table 2. The number of cells advanced, as
in the single level case, does not include boundary work required for the Strang splitting algorithm. The
timings also include all of the additional work such as error estimation and grid generation associated with
the adaptive algorithm. The changes in theµ-sec/zone provides some indication of the overhead associated
with the adaptive algorithm. As we noted above, the coarsest adaptive run has equivalent resolution to the
finest single level run. For this case, the use of adaptive mesh refinement reduced the total wall-clock time
by a factor of 7 compared to the single level calculation. The effectiveness of AMR is also illustrated by the
total wall-clock time for the adaptive runs. The ratio of the wall-clock time for the finest to coarsest adaptive
calculations is 190 which is less than the theoretical best factor of 256 for perfectly scaled finite difference
methods on a uniform grid. In the finer calculation, the refined grids are fitted more closely to the active
region which decreases the amount of refined grid.

14

Figure 8: Temporal evolution of helium bubble. Rendering shows mass fraction of helium.

15

Figure 9: Volume rendering of the helium mass fraction at the end of the simulation with boxes used by the
refinement scheme superimposed on the image.

16

6 Conclusions

The methodology presented here provides a strategy for parallelization of block-structured adaptive refine-
ment algorithms. We described an efficient and effective dynamic-programming approach that achieves
acceptable load balance for these algorithms. We also described the software infrastructure used in our
application programs, and the changes we needed to make to produce parallel versions of our applications.
For the case of hyperbolic conservation laws we have demonstrated that methods we have used provide
are effective and have the further benefit of relieving the applications developer of much of the burden of
parallelization.

We note that additional performance analysis of applications built in this framework offer the possibility
of improving the parallel scaling. We are currently pursuing improvements to the methodology as well as
using the software framework for other applications including a variety of low Mach number algorithms.

References

[1] A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome. A conservative adaptive
projection method for the variable density incompressible Navier-Stokes equations.J. Comput. Phys.,
142:1–46, May 1998.

[2] J. Bell, M. Berger, J. Saltzman, and M. Welcome. A three-dimensional adaptive mesh refinement for
hyperbolic conservation laws.SIAM J. Sci. Statist. Comput., 15(1):127–138, 1994.

[3] M. Berger and J. Saltzman. AMR on the CM-2.Applied Numerical Mathematics, 14:239–253, 1994.

[4] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics.J. Comput.
Phys., 82(1):64–84, May 1989.

[5] M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equations.J.
Comput. Phys., 53:484–512, March 1984.

[6] M. J. Berger and J. Rigoutsos. An algorithm for point clustering and grid generation.IEEE Transac-
tions on Systems, Man, and Cybernetics, 21:1278–1286, 1991.

[7] P. Colella and W. Y. Crutchfield. A parallel adaptive mesh refinement algorithm on the C-90. In
Proceedings of the Energy Research Power Users Symposium, July 11–12, 1994.http://www.
nersc.gov/aboutnersc/ERSUG/meeting_info/ERPUS/colella.ps .

[8] P. Colella and H. M. Glaz. Efficient solution algorithms for the Reimann problem for real gases.J.
Comput. Phys., 59(2):264–289, June 1985.

[9] W. Y. Crutchfield. Load balancing irregular algorithms. Technical Report UCRL-JC-107679,
Lawrence Livermore National Laboratory, July 1991.

[10] W. Y. Crutchfield. Parallel adaptive mesh refinement: An example of parallel data encapsulation.
Technical Report UCRL-JC-107680, Lawrence Livermore National Laboratory, July 1991.

[11] W. Y. Crutchfield and M. L. Welcome. Object-oriented implementation of adaptive mesh refinement
algorithms.Journal of Scientific Programming, 2(4):145–156, 1993.

[12] Steven J. Fink.A Programming Model for Block-Structured Scientific Calculations on SMP Clusters.
PhD thesis, University of California, San Diego, November 1998.

17

[13] J. A. Greenough, W. Y. Crutchfield, and C. A. Rendleman. Numerical simulation of a wave guide
mixing layer on a Cray C-90. InProceedings of the Twenty-sixth AIAA Fluid Dynamics Conference.
AIAA-95-2174, June 1995.

[14] W. Gropp, E. Lusk, and A. Skjellum.Using MPI: Portable Parallel Programming with the Message-
Passing Interface. Scientific and Engineering Computation. The MIT Press, Cambridge, Mass, 1994.

[15] J.-F. Haas and B. Sturtevant. Interaction of weak shock waves with cylindrical and spherical gas
inhomogeneities.J. Fluid Mech., 181:41–76, 1987.

[16] P. N. Hilfinger and P. Colella. FIDIL: A language for scientific programming. In Robert Grossman,
editor,Symbolic Computing: Applications to Scientific Computing, Frontiers in Applied Mathematics,
chapter 5, pages 97–138. SIAM, 1989.

[17] Scott R. Kohn and Scott B. Baden. Irregular coarse-grain data parallelism under LPARX.Journal of
Scientific Programming, 5(3):185–202, 1996.

[18] R. B. Pember, L. H. Howell, J. B. Bell, P. Colella, W. Y. Crutchfield, W. A. Fiveland, and J. P.
Jessee. An adaptive projection method for unsteady low-Mach number combustion.Comb. Sci. Tech.,
140:123–168, 1998.

[19] R. Sedgewick.Algorithms in C++. Addison-Wesley Publishing Company, Reading, Massachusetts,
1992.

[20] Silicon Graphics, Inc. The Cray T3E-900 scalable parallel processing system, 1999.http://www.
sgi.com/t3e/t3e_900.html .

[21] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra.MPI: The Complete Reference.
Scientific and Engineering Computation. The Mit Press, Cambridge, Mass, 1996.

[22] D. E. Stevens, A. S. Almgren, and J. B. Bell. Adaptive simulations of trade cumulus convection.
submitted for publication, 1998.

[23] G. Strang. On the construction and comparison of difference schemes.SIAM J. Numer. Anal., 5:506–
517, 1968.

18

