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Stochastic Algorithms for the Analysis of Numerical
Flame Simulations

Abstract

Recent progress in simulation methodologies and new, high-performance
parallel architectures have made it is possible to perform detailed simulations of
multidimensional combustion phenomena using comprehensive kinetics mech-
anisms. However, as simulation complexity increases, it becomes increasingly
difficult to extract detailed quantitative information about the flame from the
numerical solution, particularly regarding the details of chemical processes. In
this paper we present a new diagnostic tool for analysis of numerical simulations
of combustion phenomena. Our approach is based on recasting an Eulerian flow
solution in a Lagrangian frame. Unlike a conventional Lagrangian viewpoint
in which we follow the evolution of a volume of the fluid, we instead follow
specific chemical elements, e.g., carbon, nitrogen, etc., as they move through
the system. From this perspective an “atom” is part of some molecule that is
transported through the domain by advection and diffusion. Reactions cause
the atom to shift from one species to another with the subsequent transport
given by the movement of the new species. We represent these processes using
a stochastic particle formulation that treats advection deterministically and
models diffusion as a suitable random-walk process. Within this probabilistic
framework, reactions can be view as a Markov process transforming molecule to
molecule with given probabilities. In this paper, we discuss the numerical issues
in more detail and demonstrate that an ensemble of stochastic trajectories can
accurately capture key features of the continuum solution. We also illustrate
how the method can be applied to studying the role of cyano chemistry on NOx

production in a diffusion flame.

Introduction

Recent progress in simulation methodologies and high-performance architectures
make feasible detailed simulations of multidimensional combustion phenomena using
comprehensive kinetics mechanisms. Smooke and his co-workers [1–5] have performed
a number of studies of laminar methane diffusion flames with detailed kinetics. Sul-
livan et al. [6] have studied nitrogen chemistry in ammonia-enriched methane flames.
For premixed flames, Najm and co-workers [7–9], and Bell et al. [10], have stud-
ied vortex flame interactions with detailed methane chemistry. Baum et al. [11] have
studied two-dimensional turbulent flame interactions for detailed hydrogen chemistry,
and Haworth et al. [12] have used a detailed propane chemistry model to simulate
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propane–air flames. More recently Tanahashi et al. [13] have performed direct nu-
merical simulations of turbulent, premixed hydrogen flames in three dimension with
detailed hydrogen chemistry.

As simulation complexity increases, interpretation of computational results be-
comes increasingly difficult. Mean and fluctuating statistics can provide basic infor-
mation about the flame. Probability distribution functions provide a more detailed
view of the flame and begin to elucidate flame morphology in greater detail. These
approaches provide information about basic flame structure and about the fluid dy-
namical behavior of the flame. However, understanding chemical activity against the
backdrop of multidimensional fluid flow is difficult, even for relatively simple laminar
flames.

This paper introduces a new diagnostic procedure for analyzing reacting flow
simulation results with an emphasis on following chemical behavior within the sys-
tem. The methodology is based on tracking individual “atoms” through the system,
tabulating their trajectories and the chemical reactions they undergo. We adopt a
Lagrangian viewpoint and use the Lagrangian form of the flow equations to derive a
stochastic particle algorithm to track atoms through the system. The development
and application of Lagrangian methods to reacting flow simulations remains an active
area of research. We refer the reader to the survey article of Givi [14] for a discussion
of vortex methods for reacting flow. In the present paper, however, we assume that
the computation has been performed in an Eulerian frame and use the Lagrangian
formulation for diagnostics.

Diagnostic Algorithm

Here we discuss the basic diagnostic model for tracking “atoms” through the
system. In essence, we are looking for a numerical techniques for tagging a given
atom (or collection of atoms) and monitoring their path through the flow domain and
the history of which molecules transport them. The data to be analyzed is obtained
by numerical solution of the reacting Navier-Stokes equations. The development
is independent of whether the solution is obtained with a compressible or a low
Mach number formulation. For clarity of exposition, we will assume that differential
diffusion of species is given by a mixture model. Thus, the transport of species is
given by the equation

∂ρYk

∂t
+∇ · uρYk = ∇ · ρDk∇Yk + ρωk , (1)

where Yk is the mass fraction of molecule Mk, ρ is density, u is velocity, and Dk and ωk

are the diffusion coefficient and production rate for Mk. Since we know the numerical
solution, all of these fields are specified as functions of space and time. Rewriting this
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equation in advective form using the mass conservation equation ρt + ∇ · (ρU) = 0
we obtain

D Yk

D t
=

∂Yk

∂t
+ u · ∇Yk =

1

ρ
∇ · ρDk∇Yk + ωk . (2)

This equation provides a Lagrangian view of the dynamics of molecules of species k
being transported along particles paths with their relative proportion being modu-
lated by diffusion and reaction. To track the progress of a specific atom through the
system, we need to interpret (2) from the perspective of atoms in the system. To
make this notion more precise, suppose we are interested in the behavior of atoms A
of some specific element in a subset of the molecules M1, M2, . . . ,Mm that describe
the chemical system. At any given time, A is part of one of these molecules and
its motion is specified by the movement of that molecule. If we define xA to be the
location of A and assume that A is currently part of molecule Mk (which we indicate
by A ∈ Mk), then in the absence of reactions, the movement of A can be described
by the stochastic differential equation

dxA = u(xA, t)dt + dWk(xA, t) , (3)

where dWk denotes a generalized Wiener measure that determines a suitable Brownian
motion with properties chosen to represent the diffusion of Mk. (Characterizing
diffusion as a random walk in Lagrangian numerical methods is a common approach,
cf. [15].)

Rather than attempt to construct an analytic form of the random walk to model
species diffusion, we introduce a spatial scale ∆x and a temporal scale ∆t and use a
lattice model for the random walk. To this end, we consider a discretization of the
diffusion part of equation (2) in one dimension of the form

Y n+1
k = Y n

k +
∆t

∆x2ρn
k

[
(ρD)n

k+1/2
(Y n

k+1 − Y n
k ) + (ρD)n

k−1/2
(Y n

k−1 − Y n
k )

]
, (4)

where the subscript ±1 represents a right or left shift by ∆x, with half-∆x shifts
defined analogously. For ∆t sufficiently small, we can collect terms and rewrite this
equation as

Y n+1
k = (1− pR − pL)Y n

k + pRY n
k,+1 + pLY n

k,−1 (5)

where pR = ∆t(ρD)n
k+1/2

/∆x2ρn
k with pL defined similarly. In this form we can inter-

pret pR as the probability that a molecule of species k shifts right ∆x in time ∆t, pL

as probability that it shift left and (1− pR − pL) as the probability that it does not
shift.

We can then define a method to solve equation (3) by defining x∗p = xn
p + ∆t u .

We then choose a random number α ∈ [0, 1] and define

xn+1
p =


x∗p + ∆x if 0 ≤ α ≤ pR,

x∗p −∆x if pR < α ≤ pR + pL,

x∗p if pR + pL < α ≤ 1.
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For ∆tDmax/∆x2 � 1 the lattice approximation provides sufficient accuracy that sta-
tistical sampling error dominates errors arising from the lattice approximation. The
generalization of this approach to two and three space dimension is straightforward.

We now need to augment this procedure to include chemical reactions. In keeping
with the probabilistic framework, we seek a stochastic view of the chemical kinetics.
This is most easily done by introducing a time interval ∆tc over which we wish
to model the chemistry. If A ∈ Mk at (xA, t), there are a collection of reactions,
R1, . . . , RN , that transform Mk along with other reaction participants into a new
collection of molecules. As a result of this transformation Mk is destroyed and A is
transferred from Mk to Mkn by reaction Rn. This destruction of Mk is expressed at
the continuum level as

d[Mk]

dt
= −

N∑
n=1

Rn . (6)

where [Mk] represents the molar concentration of Mk. (Reactions representing cre-
ation of Mk are not considered because these reactions do not affect A.) Assuming
∆tc is sufficiently small, (6) can be approximated by

[Mk]
n+1 = [Mk]

n −∆tc
N∑

n=1

Rn .

In this form we note that ∆tc
∑N

n=1 Rn represents the amount of Mk that is destroyed
by reaction in the time interval ∆tc. Motivated by this observation, we can rewrite
this equation as

[Mk]
n+1 = [Mk]

n(1−∆tc
N∑

n=1

Rn/[Mk]) .

and then define pn = ∆tcRn/[Mk] to be the probability that reaction Rn trans-
forms A from Mk to Mkn during the time interval ∆tc. We also define p0 = (1 −
∆tc

∑N
n=1 Rn/[Mk]) > 0 which is the probability that the molecule Mk containing A

does not react during the time interval. Thus, from a finite time perspective we can
represent the transfer of A from molecule to molecule as a result of chemical reactions
as a Markov process M.

There are several subtleties associated with constructing the Markov process M.
First, although most of the data required to construct M can be obtained from
a standard CHEMKIN reaction file, some additional detail may be required. Issues
arise when molecules in the reaction contain more than one atom of element A. When
the molecule is symmetric with respect to A, we can assign probabilities based on
simple counting arguments. The issue is more difficult when the structure of M is
asymmetric with respect to the A’s. In this situation, when M reacts, we need to
know which position (up to symmetry) A occupies and we must augment the reaction
probabilities to reflect the location of A in M . If the target molecule is asymmetric
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in A, we must assign probabilities for the location of A in the new molecule and view
different possible locations in the new molecule as distinct events.

Two other issues that arise are treating multiple reactions going from Mk
M→Mk′ ,

and dealing with reversible reactions. In defining the algorithm, one can amalgamate
all of the reactions that give the same transformation of A into a single transition
probability. Similarly, one can lump forward and backward rates for reversible reac-
tions into a single net rate for each cell. In the present implementation we have done
neither. Each reaction has its own probability so we can identify, for each molecular
transformation, the reaction that produced the change. For reversible reactions, we
allow both forward and backward reactions so that it is possible for an atom to jump
back and forth between to molecules several times within a cell. These choices repre-
sent the most general form of the algorithm; however, in some cases, another choice
may be appropriate. This issue will be explored in future work.

Combining the two stochastic process, we can now define a probabilistic algorithm
for tracing the path of A through the domain. First, we identify ∆t for transport
and ∆tc for chemistry. Here, we have chosen ∆tc and ∆t so that the probabilities of
reacting or taking a diffusion step are less than 10%. For stiff chemistry a suitable
∆tc is potentially very small so we subcycle the Markov process, M, with respect to
the other processes. Thus, the basic stochastic particle algorithm is, given xA with
A ∈Mk, to first update

xn+1
A = xn

A + ∆t u(xA, t) + dW∆t,Lat
k (xn

A + ∆tu, t)

where dW∆t,Lat
k is the lattice random walk algorithm described above. Then we apply

the Markov process M∆tC r times until r∆tc = ∆t.
To analyze a numerical simulation, we apply this algorithm to an ensemble of

trajectories with initial starting location and initial molecule based on the question
being considered. Before illustrating the performance of the method we first make a
couple of observations about the method. First, although at first examination it would
appear that the computations are quite costly, in fact, since most of the required data
can be precomputed, the algorithm can be implemented with minimal computational
cost. Also, since each trajectory is independent, the method parallelizes very well.
Exploiting these characteristics of the method, we have been able to follow a million
trajectories in just a few hours.

A second observation about this approach is a word of caution. With the stochas-
tic description of the algorithm it is tempting to try to relate the stochastic particles
to a Boltzmann description of the fluid. However, unlike a Boltzmann description we
do not maintain velocity distribution for the particles. Thus, our particles represent,
at best, “pseudo-particles” whose velocities are averages of the Boltzmann velocity
description. Perhaps the most accurate description of an ensemble of stochastic tra-
jectories is as a path integral representation of an approximation to the continuum
solution.
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Computational Results

In this section we demonstrate the behavior of the method and illustrate the
relations between the particle trajectories and the continuum solution. The examples
consider a laminar, steady, diffusion flame in cylindrical geometry. This flame was
modeled using a reaction mechanism due to Glarborg [16] with a low Mach number
adaptive mesh refinement algorithm [17]. This mechanism, which includes detailed
nitrogen chemistry, contains 65 species and 447 reactions. The case we consider here
was part of a combined experimental and numerical study of the effect of fuel-bound
nitrogen in the form of NH3 on NOx formation [6, 18]. Here we consider only the case
with no added NH3. Temperature and XNO obtained from the continuum solution
are shown in Fig. 1.

For all of the examples we interpolate the solution to the finest level of the adaptive
mesh hierarchy and evaluate the reaction rates and the diffusion coefficients on the
resulting uniform grid. We then use the mesh spacing of this grid to define the lattice
spacing for the random walk. Neither of these choices represent inherent limitations
of the approach.

Dominant, Carbon Chemistry

Our first example traces the carbon chemistry of the system. For this problem,
all of the carbon enters the system as CH4 in the inflow fuel stream. From the inflow
velocity profile and composition, we construct a probability measure on the inflow
radial location that uniformly samples the molar flux of CH4 into the system. We
create an ensemble of 106 trajectories and tabulate the molecular transformations
given byM. From these transformations, we compute the net flow of carbon through
each edge of the carbon reaction network. Suitably scaled, this collection of net
transformations corresponds to a reaction path diagram for the carbon chemistry,
which is depicted graphically in Fig. 2. For steady flow we can also perform a reaction
path analysis by integrating the chemical rates over the domain. In Table 1 we
compare the strengths of the reaction pathways from the particle simulation to the
comparable data computed directly from the continuum data. For most of the edges
the stochastic simulation closely matches the result from the continuum solution.
The only major discrepancy is the strength of the CO → CO2 edge. The stochastic
algorithm predicts more net reaction than is indicated by the continuum integration.
Preliminary investigations suggest that this discrepancy reflects underlying splitting
errors in the methodology used for the simulation. For the remaining edges, four have
errors in the 1–3% range with the remaining errors less than 1%, even for relatively
weak edges.
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Trace, Nitrogen Chemistry

An important scientific objective in studying these types of flames is to study the
formation of NOx. For the case we are considering the only source of nitrogen is N2

in both the fuel and the oxidizer streams. Because N2 is a relatively stable molecule,
the number of trajectories in which nontrivial reactions occur is very small; we are
essentially looking for rare events. Although we can examine NOx chemistry as before
by sampling N in N2 molecules entering the domain, we would require a large num-
ber of trajectories to obtain a statistically significant set of interesting trajectories.
Alternatively, we can a priori decide to look only at “interesting” trajectories; i.e.,
trajectories where N2 reacts. This is done by using the continuum reaction rates for
N2 over the domain to construct a probability distribution that reflects where N2 will
first react. We use one random variable to sample this distribution for points in space
at which to begin the trajectories, and then we use a second random variable to sam-
ple the distribution of N2 reactions at such points for the initiating reactions. This
type of procedure is similar to stochastic models for studying rare reaction phenom-
ena in biological models originally developed by Gillespie [19, 20]. We again simulate
106 trajectories, in this case for the N atom, beginning with the an initial breakup of
N2. We again use the particle trajectories to compute a net reaction path diagram
for the nitrogen chemistry which is presented in Fig. 3. As before, we can compute
the analogous net reaction graph from the continuum data. A comparison of the
resulting edge weights is given in Table 2. The stochastic algorithm captures most
of the reactions to within a few percent. The only exceptions are that the stochastic
algorithm predicts an increased level of the NO → HONO → NO2 loop and a de-
crease in N2 → NNH as compared to the continuum solution. These cases correspond
to situations in which forward and reverse reaction rates are quite large and suggest
that we have insufficient statistics to accurately capture the net.

Species Concentrations

The above tests illustrate the ability of the stochastic particles to capture the
chemical kinetics in the system. We now test the ability of the stochastic particles
to represent the spatial structure of the continuum solution. Assume that we are
given a lattice that covers the computational domain. For each cell in the lattice
and for each trajectory that crosses that cell, we determine the residence time of N
while it is part of an NO molecule in that cell. If we sum these residence times over
an ensemble of trajectories the result is proportional to the molar concentration of
NO. In Fig. 4, we show the continuum r · [NO] compared to the residence time for
an increasing number of particles in the ensemble. (The continuum data is scaled by
radius because the residence time is in units proportional to moles/lattice cell not
moles/volume.) Even for a modest number of particles the residence time provides a
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reasonable, if somewhat ephemeral, view of the concentration profile. As the number
of samples is increased, however, the agreement becomes increasingly good. We also
note that better agreement can be obtained with fewer trajectories if we use a coarser
lattice.

Carbon-Nitrogen Chemistry

The examples presented thus far evaluate diagnostics that are easily obtained from
the continuum solution; we have examined them to provide a measure of validation
for the stochastic particle method. As a final illustration of the use to stochastic
particles, we examine an issue for these types of flames that is not easily determined
from the continuum solution. To pose the question, we consider the nitrogen reaction
path analysis for this flame presented in Fig. 3. The N in nitrous oxides leaving the
system enters the system as N2 which is broken into N, NNH, HCN, etc. and eventually
exits the domain as either NO, or NO2. The path diagram shows a loop in which
nitrogen atoms reside for a time in carbon species. Indeed, the flow through some
carbon species is greater than that out of N2. This indicates that carbon chemistry
plays an important role in the formation of NOx with an N atom possibly recycling
through the carbon species multiple times before exiting the domain in NOx.

To understand the role of this carbon recycling on NOx chemistry we examine the
trajectories used to compute Fig. 3’s nitrogen reaction path diagram and extract the
subset of those paths that exit the domain as NO or NO2. For each of these trajec-
tories, we calculate the number of times the N atom we are tracking changes from a
non-carbon containing species to a carbon species, and refer to this quantity as the
number of cycles for that trajectory. We can then compute a probability distribution
for the number of carbon recycling cycles undergone by NO and NOx molecules leav-
ing the system. The resulting data, presented in Fig. 5, are well approximated by the
discrete geometric probability distribution

P (n) = λ(1− λ)n for λ = 0.33

indicating that entering the recycling loop can be modeled as the arrival time for a
Bernoulli process.

We can also use the particle trajectories to quantify the spatial structure of the
recycling behavior. In Fig. 6 we plot the initial reaction location for each particle that
exits the domain as NO or NO2. We can see that particles that initially react on the
outer edge of the flame are not affected by carbon recycling. However, considerable
carbon recycling occurs for trajectories initiating on the rich side of the flame sheet,
and it becomes increasingly important as we approach the base of the flame. This
provides some quantification of the overall behavior of the system and allows us to
obtain a spatial picture that indicates where carbon chemistry plays an important
role in NOx formation.
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Summary and Conclusions

We have developed a new diagnostic methodology for analyzing combustion sim-
ulations. This approach is based on tracking atoms through the system using a
stochastic particle formulation that models advective transport, differential diffusion
and reactions using the results of a pre-existing solution to the reacting flow equa-
tions. We have demonstrated that the method can recover key properties of the
continuum solution and provides a mechanism for diagnosing the behavior of com-
plex reacting flows. Perhaps, one of the most intriguing properties of this approach
is that is allows questions about the chemistry and the flow to be posed in a natural
and straightforward manner. We are currently working to extend our implementa-
tion to directly access the hierarchical grid system generated by our block-structured
adaptive reacting flow algorithm with the goal of using stochastic particles to study
chemical behavior in three-dimensional, time-dependent turbulent combustion.
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Figure 1: Temperature and NO mole fraction for the laminar nonpremixed flame.
The dotted white line is the stoichiometric boundary between the fuel and air.

CH4 CH3 CH2

CH2(S)

CH

C2H6 C2H5 C2H4 C2H2 HCCO C2O

HCCOHC2H3

CH2OH CH2O HCO CO CO2

Figure 2: Reaction path diagram for carbon chemistry. Only edges at least 3% of the
strongest are shown.
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Table 1: Comparison of edge weights for a reaction path diagram based on carbon
(C) as determined from a continuum simulation and as reproduced by the stochastic
particle method. Edges are ordered by their stochastic-particle weight; only those at
least 1% of the largest are shown.

edge stoch. cont.

CH4 → CH3 100.0 100.0
CO → CO2 98.9 92.5

HCO → CO 63.4 64.0
CH2O → HCO 60.1 60.5
C2H4 → C2H3 44.7 42.5
C2H3 → C2H2 40.2 37.6
C2H5 → C2H4 37.0 36.5

CH2OH → CH2O 26.6 25.8
C2H2 → HCCO 24.3 22.3
CH3 → CH2OH 24.1 23.1
CH3 → C2H6 19.6 20.0

C2H6 → C2H5 19.6 20.1
CH3 → CH2O 19.3 21.3
CH3 → C2H5 17.4 16.4

HCCO → CO 13.5 12.6
CH2(S) → CH2 11.1 10.7

CH3 → CH2(S) 8.5 8.9
HCCO → CH2(S) 7.8 7.2
HCCO → C2O 7.0 6.5

CH2 → C2H4 6.6 6.1
CH2 → CH2O 6.5 6.1
C2O → CO 6.5 6.0
CH3 → C2H4 5.9 5.3

C2H2 → CO 5.4 4.9
C2H2 → HCCOH 5.1 5.1

HCCOH → HCCO 5.1 5.0
CH2 → CH 5.1 4.6

C2H2 → CH2 4.9 4.4
CH3 → CH2 4.7 4.4

C2H4 → C2H2 3.5 3.6
C2H3 → CH2HCO 3.4 3.7

CH → CH2O 3.4 3.2
CH3 → CH3OH 2.6 2.8

CH2(S) → CO 2.5 3.0
CH2(S) → CH2O 2.2 2.1

CH2HCO → CO 2.2 2.3
CH2HCO → CH3 2.1 2.3

CH3OH → CH2OH 2.1 2.3
CH2 → CO 2.1 2.3

C2H2 → CH2CO 1.9 1.9
CH3O → CH2O 1.3 1.5

CH2CO → CH3 1.2 1.2
CH → HCO 1.2 1.2

CH2CO → CO 1.2 1.2
C2H2 → C2H 1.1 1.0
C2H4 → CH2HCO 1.0 1.1
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Table 2: Comparison of edge weights for a reaction path diagram based on nitrogen
(N) as determined from a continuum simulation and as reproduced by the stochastic
particle method. Edges are ordered by their stochastic-particle weight; only those at
least 1% of the largest are shown.

edge stoch. cont.

NO → HCN 100.0 100.0
N → NO 97.2 95.9

NH → N 76.9 75.9
NCO → NH 71.9 70.3
HCN → NCO 63.0 60.7

HNCO → NH2 50.1 50.8
NCO → HNCO 46.2 46.6
NH2 → NH 45.9 46.6
HNO → NO 42.4 41.8

NO → HONO 41.0 32.3
HONO → NO2 40.2 31.9

CN → NCO 39.3 38.9
NH → NO 37.1 35.2
NH → HNO 37.0 36.7

HOCN → NCO 31.9 32.7
HCN → HOCN 30.0 30.6

N2 → N 29.7 30.8
N2 → NNH 29.0 40.1

H2CN → HCN 24.8 25.9
HCN → CN 24.1 23.3
NO2 → NO 23.9 23.1

N2 → HCN 23.1 24.3
NNH → N2O 19.2 17.7

N → H2CN 18.4 19.0
HCN → NH 16.2 15.7
NCO → NO 14.8 14.1
N2O → NO 14.7 12.5
HCN → CH3CN 13.3 13.9

N2 → N2O 12.6 8.7
CH3CN → CH2CN 11.4 11.6
CH2CN → CN 11.4 11.3

N2O → NH 11.2 8.8
NO → CN 11.2 10.9
CN → N 8.9 8.3
NO → H2CN 6.4 6.9

NH2 → HNO 5.2 5.0
HCN → HNCO 5.2 5.6
NNH → NO 4.9 5.4

N2 → NO 4.7 4.7
NNH → NH 4.5 5.3

HCNO → HCN 3.9 4.0
NO → HCNO 3.9 4.1

CH3CN → HOCN 1.9 2.1
N2 → CN 1.5 1.7

HNCO → NH 1.3 1.2
NCO → N 1.1 1.2

N → HCN 1.1 1.2
HCN → NH2 1.0 1.0
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Figure 3: Reaction path diagram for nitrogen chemistry. Only edges at least 3% of
the strongest are shown.
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Figure 4: NO concentration in moles/area comparing 32,000, 128,000 and 1,000,000
particles with the continuum solution.
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Figure 5: Distribution of carbon cycles in NOx chemistry.

Figure 6: Location of initial reaction for exiting NOx particles. Black points mark
initial reaction locations for particles that do not participate in carbon recycling. The
remaining points are color-coded to indicate the number of carbon cycles in the particle
history using a rainbow palette ranging from red (= 1) to violet (≥ 12).


