
1

Interactive, Internet Delivery of Visualization via
Structured, Prerendered Multiresolution Imagery

Jerry Chen, Ilmi Yoon, Member, IEEE and E. Wes Bethel, Member, IEEE

Abstract—
We present a novel approach for latency-tolerant deliv-

ery of visualization and rendering results where client-
side frame rate display performance is independent of
source dataset size, image size, visualization technique or
rendering complexity. Our approach delivers pre-rendered,
multiresolution images to a remote user as they navigate
through different viewpoints, visualization parameters or
rendering parameters. We employ demand-driven tiled,
multiresolution image streaming and prefetching to ef-
ficiently utilize available bandwidth while providing the
maximum resolution a user can perceive from a given
viewpoint. Since image data is the only input to our system,
our approach is generally applicable to all visualization
and graphics rendering applications capable of generating
image files in an ordered fashion. In our implementation,
a normal web server provides on-demand images to a
remote custom client application, which uses client-pull
to obtain and cache only those images required to fulfill
the interaction needs. The main contributions of this
work are: (1) an architecture for latency-tolerant, remote
delivery of precomputed imagery suitable for use with any
visualization or rendering application capable of producing
images in an ordered fashion; (2) a performance study
showing the impact of diverse network environments and
different tunable system parameters on end-to-end system
performance in terms of deliverable frames per second.

Index Terms— remote visualization, remote rendering,
internet media delivery, multiresolution digital media

I. INTRODUCTION

It is well accepted that interactive visual data ex-
ploration is an effective means to facilitate data un-
derstanding [27]. Typically, output from visualization
and graphics applications consists of a set of images
that result from changes in visualization and rendering
parameters. Generally speaking, we can characterize the
resulting image set as the result of an exploration of
visualization or rendering parameter space.

The work in this paper describes a novel approach
for delivering the interactive exploration experience to

Manuscript received December 2006, revised April 2007.
J. Chen is with Yahoo Inc., Sunnyvale CA, jerryc@yahoo-inc.com
Yoon is with San Francisco State University, yoon@cs.sfsu.edu
Bethel is with Lawrence Berkeley National Laboratory, ew-

bethel@lbl.gov

users. This new approach is appropriate for many, but
not all, visualization and graphics use modalities. In
particular, it provides what appears to the consumer to
be an interactive data exploration experience in the form
of semi-constrained navigation through visualization or
rendering parameter space but without the cost associ-
ated with learning how to execute or use a potentially
complex application on a remote computing platform. It
is a general purpose solution that is widely applicable
to any application that produces visual output. It offers
capabilities that overcome limitations of previous similar
approaches making it suitable for use in delivering
an interactive visual data exploration experience to a
potentially large body of consumers.

A. Background and Motivation

In [5], Bergeron describes three broad user-centric
visualization use modalities. “Presentation visualization”
is where you know what is there and want to show
it to someone else. “Analytical visualization” is where
you know what you are looking for. “Discovery visu-
alization” occurs when you have no idea what you’re
looking for. Discovery visualization is characterized as
an “undirected search,” or “unconstrained navigation”
through visualization or rendering parameter space.

Perhaps the most practical way to implement discov-
ery visualization is to have the consumer/user actually
execute the application and interact with it to perform
unconstrained navigation through an n−dimensional vi-
sualization and rendering parameter space. It would be a
nearly intractable problem to precompute and store im-
ages that span these n dimensions for later exploration.

The other two use modes – analytical and presentation
visualization – do not require full, unconstrained navi-
gation through an n−dimensional parameter space. In
these modes, and depending of course on the ultimate
application, the size of n will probably be small and the
sampling of each of these dimensions will be limited to a
meaningful range of values. In these modes, it becomes
feasible to compute and store the images produced by the
visualization and rendering process for later exploration
by a set of consumers.

There are a number of benefits associated with this

2

approach. First, consumers are relieved of the bur-
den of learning to launch and interact with potentially
complex applications. Second, the potentially high cost
of visualization and rendering is amortized across a
potentially large number of consumers. Third, we can
facilitate trivial access to the resulting images so that
a consumer need not ever be faced with a command-
line prompt, nor have to obtain a login at a central
computing facility. Fourth, it is possible through a unique
implementation, such as the one we describe here, to
provide the experience of interactive data exploration
through a multidimensional parameter space. Fifth, it
offers an exciting new set of possibilities for presentation
visualization, which typically takes the form of static
images, one-dimensional movies (MPEG) or interactive
movies with significant restrictions (QuickTime). In our
experience working with scientific users [17], we have
found such benefits to be of high value and interest to
scientific users; discovery visualization plays a key, but
not dominant, role in the scientific process, and ease-of-
use issues are a significant barrier to use of visualiza-
tion technology. After an initial phase where discovery
visualization plays a key role, scientific users tend to
spend much more time in analytical and presentation
visualization.

B. Our Approach and Contribution

The work we present here describes a methodology for
preparing and for efficiently and effectively delivering
multidimensional visualization and rendering results –
sets of images – to a remote consumer. The primary
motivation and context for this work stems from the
desire to overcome a number of difficulties characteristic
of remote and distributed visualization while providing
the benefits associated with interactive exploration of
multidimensional visual results. Our aim is to provide
the opportunity for such benefits without the burdens
typically associated with forcing users to run remote and
distributed applications to perform interactive visual data
exploration.

The fundamental idea behind our approach is as
follows. First, a rendering application generates a set
of images in a structured and ordered fashion, perhaps
by varying the view position, one or more visualiza-
tion parameters, temporal slice of data, and so forth.
A collection of structured images might contain views
of a 3D object where the viewpoint is moved along
regular lines of latitude and longitude about the object.
Second, a preprocessing step we refer to as “encoding”
prepares the images for transmission to and consumption
by the client. Third, a client application requests and
displays the precomputed images at the user’s pleasure.

For example, the user may navigate from view to view
to inspect a 3D object from any precomputed view.
Since input to our system consists only of images, this
method of encoding, delivery and user interaction with
content is generally applicable to any interactive visual
domain. This type of approach is not new – it is the basis
of several different types of interactive digital media,
including MPEG, QuickTime and QuickTime VR [7]
movies. Figure 1 shows a complete, end-to-end view of
the system.

Fig. 1. An end-to-end view of our image delivery implementation.

The new contributions of our work are as follows.
First, we employ multiresolution imagery and client-
side view-dependent resolution selection to overcome the
fixed image resolution typically associated with digital
media formats and user experiences. Second, our ap-
proach offers the ability to perform n−dimensional at-
tribute browsing; in contrast, MPEG-1 and MPEG-2 of-
fer one-dimensional browsing while QuickTime VR of-
fers navigation through only three dimensions. Third, our
implementation has a relatively small, fixed-size memory
footprint making it suitable for use on a wide range
of platforms. Fourth, we use a prefetching algorithm to
minimize display latency and overlap I/O with display
operations. Fifth, we present performance studies: (1)
evaluating the impact of tunable system parameters on
storage requirements and end-to-end performance; and
(2) reporting the performance improvement that result
from prefetching, which effectively overlaps I/O and
display processing.

We begin in Section II with a discussion of back-
ground topics germane to our work. Next, we present
in Section III the architecture of our approach including
all requisite preprocessing steps, client application design
and implementation, and tunable system parameters like
image tile size, prefetching and caching. In Section IV
we present a performance study that describes server-
side storage and client-side performance characteristics
under a variety of network and tunable parameter config-
urations. We conclude with discussion and suggestions
for future work in Section V.

3

II. BACKGROUND AND PREVIOUS WORK

A. Remote and Distributed Visualization

The term “remote and distributed visualization” refers
to a mapping of visualization pipeline components onto
distributed resources. Remote visualization is motivated
by the reality that users need to perform analysis of
data that is too large to move to their local workstation
or cluster, or that exceeds the capacity of their local
resources to process.

From a high level, there are three fundamental types
of bulk payload data that move between components of
the visualization pipeline: “scientific data,” visualization
results (geometry and renderable objects), and image
data ([4], [25]). In some instances and applications, the
portion of the pipeline that moves raw data between
components is further resolved to distinguish between
“raw” and “filtered data” ([29], [19], [18]). For simplicity
and without loss of generality, we refer to these three
partitioning strategies as “send data,” “send geometry”
and “send images.”

The “send data” partitioning aims to move data from
server to client for visualization and rendering. Optimiz-
ing this portion of the pipeline can take several different
forms. One is to optimize use of distributed network
data caches and replicas so a request for data goes to
a “nearby” rather than “distant” source, as well as to
leverage high performance protocols more suitable for
bulk data transfers than TCP [2]. Other optimizations
leverage data subsetting, filtering and progressive trans-
mission from remote sources to reduce the level of data
payload crossing the network ([18], [28]).

In a “send geometry” partitioning, data I/O and vi-
sualization algorithms run on a server with resulting
“renderable geometry” sent to a client for rendering and
display. One way to optimize this path is to send only
those geometric primitives that lie within a view frustum;
such optimizations have proven useful in network-based
walkthroughs of large and complex data [8]. Frustum
culling, when combined with occlusion culling and level-
of-detail selection at the geometric model level, can
result in reduced transmission payload [23].

In a “send images” partitioning, all processing needed
to compute a final image is performed on a server,
then the resulting image data is transmitted to a client.
Over the years, there have been several different ap-
proaches to implement this partitioning strategy. Virtual
Network Computing (VNC) [30] uses a client-server
model: the custom client viewer on the local machine
intercepts events and sends them to the VNC server
running at the remote location; the server detects screen
updates, packages and sends them to the client for

display. OpenGL Vizserver [33] and VirtualGL [10] use
a client-server model for remote delivery of hardware-
accelerated rendering, but without access to the entire
remote desktop. Some visualization applications, e.g.,
VisIt [24] and ParaView [22], support a “send images”
mode of operation where a scalable visualization and
rendering back-end provides images to a remote client. In
these approaches, a remote client requests a new frame;
the server-side application responds by executing the
local part of the visualization pipeline to produce and
transmit a new image.

Several works in the “send images” theme are more
closely aligned with our work here. Engel’s system
provides an image-streaming codec suitable for use with
OpenInventor applications that communicate using a
multicast model to a group of clients that may have vastly
different connection characteristics [12]. GVid [15] is
the video streaming module of the Grid Visualization
Kernel [20]. As middleware, it enables encoding, trans-
mission and display of on-demand images produced by
GLUT applications, including GLUT-based visualization
applications. More recently, Ellsworth [11] generates
MPEG-encoded movies directly from running climate
simulations for immediate consumption and sharing by
climate scientists.

Our approach offers distinct advantages over these
previous works. First is the notion of generality: any ap-
plication that produces visual output can provide source
images for delivery to remote consumers. Second, our
delivery mechanism allows for multiresolution image
browsing, something not supported by existing digital
media formats. Third, once the visual output has been
produced, the results can be reused across a potentially
large audience (this benefit is shared with some previ-
ous works, e.g., [11]). Related, consumers need not be
experts in setting up and running potentially complex
distributed applications.

B. Image-Based Rendering for Remote Visualization and
Interaction

Image-based rendering (IBR) refers to the process
of rendering a new frame from existing frames rather
than from scene content. IBR rendering speed for in-
cremental frames is independent of the complexity or
size of the scene and the quality of rendered images.
IBR approaches appear useful for remote scientific vi-
sualization: scientific datasets currently are commonly
in the range of 10s of TB and growing. In contrast,
the storage requirements for collections of presentation
and analytical visualization images is likely to be much
smaller and will incur a much smaller cost to deliver to
a large user community.

4

The notion of accelerating remote visualization via
IBR techniques is not new. Image-based rendering ac-
celeration and compression (IBRAC) extracts temporal
coherence between frames and the server sends only
the difference between the frames [35]. Visapult [3],
Semotus Visum [25] and an optimized GVK [23] all
employ IBR or IBR-like methods to accelerate remote
visualization.

QuickTime VR [7] provides interactive navigation
through pre-rendered images. The two types of QTVR –
panorama and object movies – each support a different
type of user navigation. QTVR object movies, which are
more closely related to our work, consist of up to three
dimensions, or arrays, of images. Whereas panorama
movie images typically represent views from a fixed
viewpoint to different azimuthal angles, object movie
images typically represent viewpoints from different
“latitude and longitude” positions, but with a common
“look at” point, as well as zoom-in and zoom-out. The
QTVR player responds to user input by selecting the
correct image to display from up to three dimensions
of images. While not strictly IBR, QTVR deals only in
image data and presents new image data in response to
user-induced viewpoint changes.

An earlier version of the work we present here lever-
ages the QTVR object movie concept to implement 3D,
time varying navigation of scientific visualization results
[6]. Here, frames were generated by a visualization
application using prescribed viewpoints, then encoded as
a QTVR object movie. A user obtains the movie using
a web browser, then interacts with the movie using a
“garden variety” QTVR player.

Our present work overcomes two fundamental limi-
tations of our previous approach. The first is a resource
consumption problem: QTVR object movies can become
quite large and players will download the entire movie
into main memory. In some cases, no navigation is
possible until the entire movie has been downloaded.
The second limitation is one of fixed image resolution.
When the client zooms in for a closer view, the zoom
is accomplished by image scaling. The result is either
degraded visual quality if the movie is comprised of low-
resolution images, or inefficient use of resources if the
movie consists of high-resolution images.

C. Remote Visualization Using Image Tiling and Mul-
tiresolution Streaming

Tiling, streaming and multiresolution levels are com-
mon remediation strategies for the resource utiliza-
tion problems that can result when using fixed, high-
resolution imagery. The basic premise is that tiling and
multiresolution delivery is an approach that effectively

balances bandwidth with visual perception requirements.
Since high-resolution images are not distinguishable
from low-resolution ones when viewed from a distance,
it is a waste of resources to send and display a high-
resolution image when a low-resolution one will suffice.
Here, we want to use available bandwidth as efficiently
as possible to deliver the maximum resolution that a
user can perceive from a given viewpoint. For zoomed-
in views, high-resolution images are subdivided into
tiles so only viewable tiles are downloaded as needed.
Several commercial products utilize these ideas to pro-
vide online browsing capability for very high-resolution
2D images, but without the cost of downloading the
entire, full-resolution image to the client. Zoomify [36]
and Google Map [14] use these concepts to support
2D image navigation. In contrast, our implementation
provides the ability to navigate through n dimensions
of multiresolution image data to provide a rich user
navigation experience better suited for many types of
remote scientific visualization.

NASA’s World Wind [26] and Google Earth [13]
are remote visualization tools that implement 3D earth
browsing. Google Earth shows impressive 3D navigation
through streamed satellite images demonstrating the ef-
fectiveness of simulated 3D exploration with 2D image
sets. It combines many different kinds of observed and
geoinformational data on a 3D sphere, including satellite
images, political borders, city names, animation of some
earth events, ground geometry, and so on. The Google
Earth client will dynamically download data according to
the client’s view parameters and event selection criteria.
While these projects focus exclusively on earth browsing
and related visualization on top of the geographic maps,
the concepts are generally applicable to image delivery
applications.

III. ARCHITECTURE

Our system takes as input prerendered images or pho-
tographs that represent different viewpoints, resolutions
and time steps from any kind of application that produces
visual output, including image-capture devices. The im-
ages are then preprocessed by an encoder application that
generates a new set of multiresolution image tiles that
will be streamed and pre-fetched for efficient bandwidth
utilization. In addition to images, the encoder creates two
metadata files called “map file” and “catalog file” that
contain encoding and streaming information. The catalog
file contains the information necessary to support the
map file. Contents for both types of files are described
more fully in Section III-B. Source images are retiled
as requested, and all tiles and metadata files are then
placed into a publicly accessible directory on a web

5

server. The custom client for our system, described in
Section III-C, begins by downloading the map file. Later,
as the user begins navigation through an n−dimensional
space, the client requests new images from the server
to fulfill the user’s desired viewpoint. The client uses
image prefetching, which is described in Section III-D,
to accelerate performance by hiding latency.

A. Definitions

We use the terms “view” and “pan” synonymously
to refer to an image, or set of tiles, associated with a
particular point in n−dimensional browsing space. Our
implementation and the definitions that follow reflect
a bias towards reproducing the familiar QTVR object
movie functionality. A sequence of “horizontal pans”
defines an orbit about an object across a set of azimuthal
angles at a constant latitude with the view pointing at
the center of the scene. Multiple horizontal orbits at
different “latitudes” are referred to as “vertical pans.”
There may be more than one time step per view, but
there must be the same number of time steps for all
views. While our use of the term “pan” is divergent from
the traditional cinematographic definition, it is consistent
with the definition present in the QTVR documentation,
and we adopt its use here.

While QTVR movies are limited to three dimensions
of source imagery, in our system, a user may navigate, or
browse views, in an n−dimensional “view space.” Two
of these dimensions typically correspond to changes in
horizontal and vertical pan positions. A third corresponds
to multiresolution image level and is associated with
changes in zoom level. A fourth is associated with either
temporally varying images or changes in a visualization
parameter. In principle, there is no limit to the number of
browsable dimensions. In practice, storage requirements
grow exponentially with n, so n will likely be small in
most instances.

A “tile” is a subdivided source image. As part of
preparing images for delivery to the client, we decom-
pose large, high-resolution images into tiles. The tile
size is a tunable system parameter that can have a dra-
matic effect on storage and performance requirements.
In Section IV-B, we present experimental results that
characterize the relationship between tile system and
performance.

Views may be comprised of a set of multiresolution
tiles. All views must have the same depth of multireso-
lution. In Figure 2, the red box corresponds to the subset
of four image tiles at a particular view and at some
multiresolution level that is currently being displayed to
a user via the client. The “visible area” inside the red
box is comprised of subsets of four larger image tiles.

We refer to the complete set of tiles for this view as the
“available area.”

Fig. 2. The “visible area” (red box) is the portion of a tiled scene
view that is being displayed to the user at the client. The visible area
is drawn from a potentially larger set of images, the “available area,”
which comprises all image tiles for a given scene at some point in
n-dimensional display space.

B. Preprocessing

Preprocessing consists of two stages. The first is to
create the multiresolution frames and the second is to
create tiles from the multiresolution frames and metadata
files describing tile layout, location and so forth. Any
application that can generate high-resolution image files
corresponding to prescribed views is a suitable source
of images. When multiresolution imagery is needed, the
source rendering application must produce images at
different resolutions. During this first stage of prepro-
cessing, each individual image corresponds to a single
point in the n−dimensional view space. By “each indi-
vidual image” we also mean the multiple resolutions of
a single source image corresponding to some position in
an n−dimensional view space.

The second preprocessing step consists of two sub-
steps; first, create image tiles from individual source
images and then second, generate metadata for the
complete collection of images. We refer to this second
preprocessing step as “encoding.” Our encoder first sub-
divides an individual view image into a set of view
tiles. The tile size is a tunable parameter. Its value
has an impact on server-side storage requirements (see
Section IV-B) and download speed (see Section IV-C).
The encoder generates an XML “map file” that contains
metadata describing the set of tiles. The client later uses
the map file to determine the location of the image
tiles. The encoder also creates a “catalogue file” that
contains URLs of map files. The catalogue file is a useful

6

mechanism for organizing collections of related movies.
At the end of the preprocessing step, the map file and
image tiles are placed into a location accessible to the
web server for later distribution to remote consumers.

In our performance experiment, we did not collect data
measuring the runtime of the encoding step. Concep-
tually, the cost of this one-time operation is amortized
over many uses of the resulting collection of images.
Conceptually, the cost of this step is low: the source
images are read into memory, then written back out to
disk in tiled form. The runtime and storage complexity
of this step is linear with respect to the number of source
images.

C. Client

The client application parses the XML map file to set
up a GUI, then fetches and displays images in response
to user input events. User input events that correspond to
navigation through an n−dimensional view space cause
the client to download and display new images from
the server. This client-pull model results in a great deal
of implementation flexibility as any web server can be
used to deliver images. Additionally, a single web server
can service multiple simultaneous clients. No server-side
communication or back-end processing code is required
for this implementation.

The client supports a multithreaded pull model so
that multiple tiles may be requested at once. Each
worker thread opens a connection back to the server
for requesting images. These connections remain open
over the lifetime of the worker thread so that they can
be reused for subsequent image requests and thus avoid
the expense of opening and closing remote network
connections. Later in Section IV-C, we show results that
indicate that the multithreaded I/O approach results in
substantial performance gains when used on high-latency
network connections.

1) Client-side Memory Management.: When the
client connects, it requests and downloads the catalogue
file, then constructs a tree of movies available at the
server side. After the user selects one of the movies, the
client will download the corresponding map file and use
its metadata to create a map structure in memory.

The client’s map structure contains an array of pan
information; each pan has an array of tile information.
From the client’s view, individual tiles have one of four
memory-resident classifications: “at server,” “download-
ing,” “in memory cache,” or “in disk cache.” In order
to access the “closest copy” of the tiles, the client must
track the current location of each tile image, and record
the filename and point to the address of the tile in the
client’s memory cache. When a tile needs to be loaded

for display, the “closest” tile is selected: “in memory
cache” is closer than “at server” or “in disk cache.”

The client-downloaded tiles are cached into memory
and ordered in a priority queue. The queue is ordered
using a least-recently used (LRU) strategy: tiles recently
viewed have higher priority in the queue, while tiles
not recently viewed have lower priority. When the user
“navigates away from” the currently displayed tile, the
client will alter the tile’s relative priority in the queue as
other tiles are more recently viewed. When the size of the
queue reaches its capacity, the least recently used tiles
will be removed from the priority queue to make room
for new, incoming tiles. For multiresolution image sets,
low-resolution images are loaded first, then refined with
higher-resolution images when needed to satisfy a given
viewpoint: low-resolution images have higher priority
than higher-resolution images. The memory cache size
– queue length – is a tunable client parameter that
trades client-side memory consumption against process-
ing speed.

In addition to a memory cache, the client has an
optional disk cache where tiles are cached to the local file
system. This secondary cache is similar to the familiar
disk cache used by web browsers. It serves to improve
performance by eliminating the need to download pre-
viously obtained images from the remote server in the
current or subsequent client sessions.

2) Client Prefetching.: By utilizing prefetching, a
client pulls tiles from the server according to the current
and predicted view position, time step, or other brows-
able attribute, and then caches them into local memory.
Such prefetching can overlap with other application
operations, like rendering. However, prefetching takes a
lower priority than an image download needed to satisfy
the current viewpoint. Prefetching can have a substantial
positive impact on client-side performance. Prefetching
design is described in Section III-D, and its impact on
performance is presented in Section IV-E.

3) Client Implementation.: The present client imple-
mentation is in C++ and makes use of JNI (Java Native
Interface) and JNLP (Java Network Launching Protocol)
technologies to launch the program remotely by clicking
a web link. A “jnlp” file contains the information about
our package for Java Web Start to download and launch
on any platform. At present, we have built and tested the
client on Windows platforms. The client uses OpenGL
to display image data using texture mapping, and uses
texture coordinate transformations to implement zoom
and translation operations.
D. Prefetching Design

Prefetching is known to improve performance and us-
ability in many application areas. Prefetching in sequen-

7

tial, streaming audio and video applications is straight-
forward since little, if any, prediction is required to
determine the next block of data the application will
need. In our application, where a user may navigate
freely through an n−dimensional space, the navigation
direction is not known in advance, but must be predicted
based upon usage patterns and heuristics.

In our implementation, there are five degrees of free-
dom (DOFs) for user navigation: four view transfor-
mations and one for “data browsing.” The four view
transformations are: left/right/up/down translation, zoom
in/out, azimuthal rotation (horizontal pan) and polar
angle rotation (vertical pan). We use the “data browsing”
degree of freedom for either temporally varying image
data, as in the case of a time-evolving dataset, or for a
visualization parameter change, such as isocontour level.

Figure 3 is a graph representation of the client’s inter-
nal state engine. During execution, the client transitions
between one of three possible states in response to user
input and completion of work tasks. Nodes in the state
graph represent a specific client state; edges represent a
state change. The edges in Figure 3 are labeled with the
event that induces a state change. The client enters the
prefetch state only when “idle.”

Display
Image Tiles

Download
Image Tiles

Prefetch
Image Tiles

User Navigation
(zoom, rotation, etc)

Download
Complete

Interrupted by
User Navigation

Idle

Prefetch
Complete

Fig. 3. The Client’s internal state diagram. Nodes represent client
state, while edges show the conditions producing a change of state.
Prescribed image tile downloads – those needed to satisfy a known
viewpoint – have priority over prefetching in this arrangement.

Some view change operations, namely zoom and
translation, do not always require a new set of images.
In cases where new images are not required, the client
implements the change in view via texture coordinate
transformations. Translating across a tile boundary, or
zooming in past a critical resolution threshold, will
trigger an image prefetch operation.

Our current client implementation switches between
image resolution levels in a discrete fashion, which can
result in visual artifacts as shown in Figure 4. That is,
we do not attempt to “blend” between source images
of different resolution as the user changes zoom levels.
Performer uses pixel-wise blending of renderings of

models from different levels-of-detail (LOD) to visually
smooth such transitions [31]. Adding such capability to
our client would make for interesting future work.

Fig. 4. These two images are screen shots of the client displaying
isosurface visualization image sequences at different zoom levels. In
the top image, we have zoomed in up to the threshold where lower-
resolution images are used as the source. The visual artifacts resulting
from zooming in on low-resolution images are clearly visible. In
the bottom image, we have zoomed in one more step – just past
the threshold where the next higher-resolution images are chosen
by the client for display. This dynamic approach to multiresolution
image selection and display approach is applicable to a broad range
of potential application areas.

Other DOFs – rotation and changes in time or visu-
alization parameter – will always require a completely
new set of images. To minimize display latency that
would result from blocking while downloading images,
the client uses a more aggressive prefetching strategy
for rotation. It will prefetch images in each of the
four possible directions of rotation: plus/minus azimuth
and plus/minus polar angle. The client initiates such
prefetching after the current view is loaded. The most
recent direction of rotation is set to be the priority in
prefetching order: the tiles in the same direction as the
most recent rotation direction will be downloaded first.

Our prefetching algorithm has two tunable parameters:

8

prefetch depth (how many “views ahead”) and prefetch
ratio (how many tiles for each view). The number of
image tiles a client will prefetch is a function of both of
these parameters. For example, when performing rotation
operations, if the prefetch ratio is set to 50%, then the
client will prefetch half the tiles needed to display the
current view. If the prefetch depth is set to a value of
three in this case, the client will prefetch three view’s
worth of images for each of the four possible directions
of rotation. In Section IV-E, we measure the impact of
prefetching on client performance.

IV. PERFORMANCE CHARACTERIZATION

Our application’s performance on both the server and
client side is a combination of several different factors
and processing stages, some of which are tunable. In
this section, we discuss the impact on server-side storage
and client-side performance of these tunable system
parameters.

Server-side work consists of encoding images as a pre-
processing step and then delivering images to the client.
We described the processing steps earlier in Section III-
B. Since preprocessing is performed once per collection
of images and, in our implementation, is not associated
with interactive delivery of images to the client, we
do not consider its impact on client-side performance.
Another aspect of server-side performance is responding
to client requests for images. Our implementation uses
a standard web server for this purpose: the client asks
for images using HTTP GET requests. The web server
responds by sending the client-requested image. This
request-respond conversation occurs over a TCP connec-
tion. The bandwidth limitations of TCP as a communi-
cation protocol are well understood. Previous efforts like
GridFTP [1] overcome single-stream TCP performance
through connection striping. Our multithreaded client
implements a form of TCP striping (see Sections III-C
and IV-C) to improve performance.

We report client-side performance in terms of “frame
rate,” or frames per second. In this context, client-side
frames/second reflects the sum of: (1) the time needed
for a client to decide which image it needs to satisfy a
given view; (2) the time needed to obtain the image –
this time will be less if the image is in the client’s cache
and will be higher if the client must request the image
from the server and await its arrival; (3) the time required
to display the image. Client-side runtime performance is
dominated by (2), whereas the cost of (1) and (3) is
negligible.

The remainder of this section is organized as follows.
We begin with an enumeration of experiment resources

Throughput (Mb/s) Latency (ms)
100BT LAN 93.75 0.1
Limited bandwidth fiber 5.86 22.0
Yahoo DSL 1.25 16.0

TABLE I
NETWORKS AND PERFORMANCE CHARACTERISTICS.

in Section IV-A. Tile size impact on server-side stor-
age requirements appears in Section IV-B, on single-
and multi-threaded client performance in Section IV-C.
Section IV-D presents performance data reflecting the
interplay between user navigation and multiresolution
image levels. Image prefetching’s positive impact on
client-side performance is reported in Section IV-E.

A. Experiment Resources

In all the performance experiments that follow, the
server and client computer systems remain constant
while we vary different tunable parameters and networks.
For the server, we use a desktop class machine consist-
ing of a single AMD Athlon 1400 CPU with 512MB
of memory running Apache 2.0.49 under SuSE Linux
9.2. For the client, we use a laptop consisting of a
2.66GHz P4 CPU, 448 MB RAM and RADEON IGP
345M display adapter that shares 64 MB system memory
running Windows XP. Both server and client machines
are equipped with 100BT Ethernet adapters.

For the source images, we created several different im-
age sequences from scenes having content representative
of many typical applications. One sequence consists of a
ray-traced scene containing two popular mesh models (a
Buddha and a dragon). The others are commonly used
forms of scientific visualization: direct volume render-
ing, isosurface rendering and a ball-and-stick molecular
rendering. For the scientific visualizations, we gener-
ated images at resolutions of 400x300, 1600x1200 and
4000x3000. For the ray-traced scenes, we used Pixie
(pixie.sf.net) – an open source photorealistic renderer
with a Renderman-like interface – to create images at
2000x2000 resolution and used image downsampling to
construct lower-resolution images. For the scientific visu-
alization renderings, we used OpenRM Scene Graph [9],
which includes both visualization and parallel rendering
capabilities. All images are stored in JPEG format with
a relatively high level of quality (low level of loss).
As seen in Figure 5, the size of a JPEG-compressed
file is a function of image content; we include data
from several different source applications for the sake
of completeness.

Our performance experiments use three different net-
works representative of those available to most users.
Throughput and latency measurements, obtained using
Netperf [34], are shown in Table I.

9

B. Tile Size Impact on Server-Side Storage Requirements

The tile size, which is a tuneable parameter set during
the image encoding phase, has a potentially significant
impact on performance and storage resource require-
ments. Our experiments show evidence of the classic
trade-off between speed and storage. Looking at Figure
2, we see that the portions of the image tiles contained
within the Available Area, but lying out the Visible Area,
are effectively “wasted” in the sense that those pixels
must be transmitted to the client, yet don’t contribute
to the visible part of the scene. We would expect that
smaller tile sizes would result in better overall frame rate
at the client: the amount of “wasted pixels” decreases as
tile sizes grow smaller. A smaller tile size results in an
increase in the number of tiles for each frame.

As shown in Figure 5, the space and transmission
gains one realizes from JPEG compression drop as the
tile size decreases due to two factors. First, each JPEG
file has a header – increasing the number of tiles per
frame results in more JPEG header information being
transmitted over the network than would be the case with
larger tile sizes. While the size of the JPEG header is
variable, in the case of these test images, the header
average size is about 226 bytes across all tile sizes
and image sequences. Second, JPEG compression likely
becomes less effective with decreasing tile size. In other
words, we would not necessarily expect the size of a
JPEG-compressed image to be the same as the sum
of sizes of JPEG-compressed tiles of the same image.
An additional factor influencing client-side performance
with smaller tile sizes is a larger number of image
requests from the client. While our implementation uses
persistent TCP connections (to avoid the cost of setting
up and tearing down a socket for each image request), it
is cheaper to request a single image of N bytes than to
request M images of N/M bytes due to increased work
at the server (e.g., fopen()). One of the objectives of
our performance experiment is to capture the net result
of these trade-offs with a single, client-side frames-per-
second number.

C. Tile Size and Threading Impact on Download Speed

Generally speaking, it is well accepted that TCP-based
communication performance can be improved through a
combination of protocol tuning [21] and “connection par-
allelism” ([32], [16]). We ran a set of tests to understand
the performance gain that would result when varying two
primary parameters – connection parallelism and tile size
– over three different but typical categories of networks.
We expect an increase in connection parallelism to
produce a greater throughput over a TCP-based network

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

A B C D A B C D A B C D A B C D
i

Fi
le

 s
iz

e
(B

yt
es

)

Image group #1 Image group #2 Image group #3 Image group #4

 A: 256x256
 B: 128x128
 C: 64x64
 D: 32x32

Fig. 5. This graph shows the relationship between tile size
and storage requirements at the server over several different image
sequences. In all cases, decreasing the tile size results in an increase
in server-side storage requirements. In some cases, the difference in
storage requirements between 256x256 and 32x32 tiles may be as
much as about one order of magnitude.

link; such an improvement translates into a better user
experience as measured by client-side frame rate.

We tested several different configurations of tile size
and connection parallelism over three different networks.
The results, shown in Figure 6, indicate the relation
between number of threads, tile size and performance on
different types of connection. For all of the tests in this
battery, we had the client cycle through approximately
100 viewpoint rotation steps in an ordered, sequential-
step fashion using a medium-resolution isosurface image
set as the data source. With this approach, the client
frame requests are deterministic and repeatable regard-
less of the number of client-side threads.

0

2

4

6

8

10

12

14

16

A B C A B C A B C
i

Fr
am

e
/ s

ec
. No. of threads: 1

No. of threads: 2
No. of threads: 4
No. of threads: 8
No. of threads: 16
No. of threads: 32

Yahoo DSL LAN Limited bandwidth fiber

 A: 256x256
 B: 128x128
 C: 64x64

Fig. 6. This chart shows client performance – reported as
frames/second – while varying two independent variables over the
three test networks. One independent variable is tile size and the
other is the number of client image-download threads. From these
results, we observe: (1) a tile size of 128x128 gives the best overall
performance across the three test networks; (2) the client performance
improvement resulting from increasing TCP parallelism is more
pronounced on higher-bandwidth networks.

As we begin to increase the number of client-side
threads, we see a performance increase in nearly all
cases up to a limit of about sixteen threads. These
results appear to be consistent with prior work aimed at

10

improving TCP throughput via striped connections [16].
Our testing methodology did not include the option of
exploiting parallel architectures to determine the degree
to which asymptotic network performance is correlated
to use of uniprocessor machines. Figure 6 shows that
128x128 appears to be the optimal tile size for the test
conditions in this study.

D. Impact of User Interaction and Multiresolution Im-
age Levels on Performance

There is a complex interplay between potential client-
side navigation patterns through an n−dimensional view
space and the ultimate impact on system performance. A
common navigation pattern is the context/focus model,
where where a user begins with a zoomed out view to
establish context, then zooms in to focus on detail.

Fig. 7. Outline view (top) and detail view (bottom). The visible
area, inside the red box, is visible on-screen. Outside, the pixels are
“wasted.” In the top view, the cost of downloading “wasted pixels” is
negligible since they compress well. In contrast, it is more expensive
to download the “wasted pixels” in the bottom view as they don’t
compress as well.

In Figure 7, the top image shows an overview of
a scene using low-resolution tiles. The visible area –
shown as a red outline box – is the portion that is

displayed at this particular level of zoom. The remainder
of the Available Area – the area outside the red box –
is not displayed at the client. The pixels in the Available
Area outside the red box are in effect “wasted” in this
particular view. They would be useful if the user were to
zoom out or translate the viewpoint. The bottom image
shows a focus view from the same scene. As the user
zooms in, the client requests higher-resolution tiles (if
they are available) from the server and uses them to
supplant the lower-resolution tiles for the zoomed in
view. It is important to note that the same number of tiles
and pixels are being displayed in both context and focus
views. The difference is that the context view uses low-
resolution tiles while the focus view uses high-resolution
tiles.

0

2

4

6

8

10

12

14

16

256x256 128x128 64x64 256x256 128x128 64x64

Context View Focus View

C
lie

nt
 F

ra
m

e
R

at
e

LAN
WAN

Fig. 8. Performance in frames-per-second for the context view shown
in Figure 7. Here, we measure performance while varying tile size
and run the application over several different network configurations,
both with and without striped connections.

Figure 8 shows client-side frame rates for both the
context and focus views of Figure 7. We ran these tests
over the networks shown in Table I. To simplify the
presentation in Figure 8, we averaged the client-side
frame rates from the two WAN configurations to produce
a single WAN performance number. We had the client
perform about 100 rotation steps and measured client-
side frame rate.

There are two main messages from the test results
in Figure 8. First, client-side frame rate is dependent
upon image network throughput, which is a function
of network speed, latency and image compression char-
acteristics. For this particular image sequence, tiles in
the context view compress better than those in the
focus view. Second, the degree of adverse performance
impact caused by downloading “wasted pixels” similarly
varies as a function of network throughput and image
characteristics. Scenes such as the one we show here
have a high variance in compression between low and
high-resolution image tiles. That variance is reflected in
client-side performance. We would expect that scenes
having less variance in compression would correspond-

11

ingly show less client-side performance variability when
switching resolution levels.

E. Prefetching Design and Impact on Performance

As discussed in Section III-D, the basic idea behind
prefetching is to predict which frames the user may
wish to see “next” or “soon” and request them from
the server ahead of time. The desired objective is an
overall improvement in frame rate as the latency caused
by requesting, waiting for, processing and displaying a
given image would be “hidden” from the user.

Since prefetching involves predictions in an
n−dimensional space, our performance measurement
methodology uses two types of tests. The first is a
scripted, orderly “user navigation” through a single
dimension of the n−dimensional parameter space.
We conducted one such test for each of zooming,
rotation and viewpoint translation. The second test
consists of unconstrained user navigation through the
n−dimensional parameter space. We extended our
client so that user interactions may be input via a
scripting interface. In this way, the testing conditions
are consistent and reproducible. To generate the scripts,
we modified the client to journal the user actions it
sees. We then created journals for each of four different
tests. Three of these consist of navigation through a
single dimension. One consists of random navigation
through a six-dimensional space (azimuth, polar angle,
viewpoint translation, time and isocontour level).

These tests were conducted using the same server and
client hardware described in Section IV-A, but over a
different set of networks. These networks consist of three
DSL-type connections and one broadband connection –
all are typical residential services. One of the three DSL
connections was to Taiwan, where the latency between
client and server was about 175ms, compared to an
average 15ms latency over domestic DSL services. The
broadband connection has higher bandwidth than DSL –
approximately 3.5Mb/s compared to 1.3Mb/s – but has
higher latency as well – approximately 43ms compared
to 15ms.

We used a fixed set of prefetch parameters: prefetch
depth of three and prefetch ratio of 50%. We did not
measure performance using a different set of prefetch
depth and prefetch ratio parameters. Such expanded
performance characterization would form the basis for
future work.

Rather than measure and report absolute frame rate
at the client, we instead accumulate the amount of
“delay time” a client spends between deciding it needs to
display “the next” image and when display is complete.

Delay time will be less if the image is in the client’s
cache, and greater if at the server.

Prefetching Performance

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Zoom Translation Rotation Random

Prefetch Off
Prefetch On

Fig. 9. Image prefetching can substantially reduce the amount of
time the client spends waiting for new image data, even in cases of
random, unconstrained navigation. This graph compares the relative
amount of time the client spends waiting on new image data to arrive
with and without prefetching in four different user navigation modes.
In the case of Translation, the client with prefetching enabled spends
about 3t units of time waiting for images to arrive, while the client
without prefetching waits about 7t units of time. While the absolute
amount of speedup varies depending upon various factors, including
interaction mode, we see consistent performance improvement across
all test cases.

In Figure 9, we report the relative amount of time the
client spends waiting for image data with and without
prefetching in several different navigation modes. We
averaged the “wait time” across all four test networks
to simplify the presentation in Figure 9. Looking at the
second column labeled “Translation,” the client without
prefetching spends about 7t units of time waiting for the
next image to be ready for display while the client with
prefetching will wait only about 3t units of time – this
example shows an effective speedup of about 233% in
client-side frame rate when prefetching is enabled. We
are displaying relative time here rather than absolute time
as the relative improvement with and without prefetching
is of primary interest.

As expected, prefetching helps more when there is
an “orderly” navigation through a single dimension; it
helps the least when there is a random navigation through
many different dimensions. The effect of prefetching
helps to minimize the interframe latency and variability,
which in turn has a positive impact on usability.

F. Discussion

According to our test results, we see tiles sizes of
256x256 and 128x128 result in the best overall perfor-
mance. A smaller tile size may result in slightly better
performance in some cases, but also will result in larger
memory consumption due to the larger map structure
in the memory. Threaded requests make better use of
TCP-based network connections. The optimal number of

12

threaded connections is system and connection depen-
dent. Increasing the size of the client memory cache can
result in higher “hit rate” of tile requests and improve
overall performance. A local disk cache can augment the
memory cache, and gives performance rates comparable
those of the memory cache. Image prefetching helps to
hide the latency associated with image downloads. Our
test results show that client-side performance increases
by an amount ranging between about 180% to 300%.

Our tests, which focus on measuring the performance
impact of individual parameters in the system, do not
reflect a multi-user population simultaneously accessing
a collection of images. In such a configuration, client-
side performance will still be dominated by time required
to obtain the source images from the server. Since we
are using a standard web server to service requests for
images, those who wish to deploy a production-capable
version of our approach will benefit from a vast body of
existing knowledge describing optimization of large web
server operations in production environments.

V. CONCLUSION AND FUTURE WORK

This work presents a novel approach to remote deliv-
ery of interactive scientific visualization results. Inspired
by QuickTime VR object movies, we have shown how
to overcome limitations of fixed image resolution and
unbounded client-side memory consumption. This work
has several distinct, positive characteristics making it
attractive as a vehicle for delivering visualization and
rendering results. First, client-side image display rates
are independent of source dataset size, image size, vi-
sualization technique or rendering complexity. Second,
“expensive” images can be computed once, perhaps
offline and on large computing systems, and then served
to a large audience of consumers thereby amortizing the
cost of creating images through image reuse. Third, the
client speaks to a “garden variety” web server using an
industry standard protocol (HTTP) to request images –
no special back-end machinery is needed.

During this study, we identified several areas for future
work. One is to explore mechanisms for predictive image
prefetching, which would help to further hide latency and
improve client-side performance. Related is the notion of
“auto-tuning” the tunable prefetch parameters as well as
an exhaustive study of how tunable prefetch parameter
settings impact performance. As our approach does not
overcome a fundamental design limitation of QTVR –
namely, discrete samples through a continuous space
(constrained vs. unconstrained navigation) – interesting
future work would explore using IBR techniques in
the client for creating in-between images for viewpoint

changes as well as LOD-blending to smooth transi-
tions between different levels of multiresolution image
data. The notion of coupling our approach with a live-
running visualization application, particularly leveraging
the prefetching algorithm to have the application gener-
ate frames “ahead of the user” might have the effect of
reducing latency.

ACKNOWLEDGMENT

This work was supported by the Director, Office
of Science, Office of Advanced Scientific Computing
Research, of the U.S. Department of Energy under
Contract No. DE-AC03-76SF00098. The authors wish to
thank Scott Bishop of SFSU who used Pixie to generate
the photorealistic image sequences of the Buddha and
dragon models that we used in some of our performance
experiments. The authors also wish to thank John Shalf
of LBNL, who made significant contributions to the
early architectural design of the system, along with
anonyomous reviewers for their helpful suggestions for
improving the presentation.

REFERENCES

[1] William Allcock, John Bresnahan, Rajkumar Kettimuthu, and
Michael Link. The Globus Striped GridFTP Framework and
Server. In SC ’05: Proceedings of the 2005 ACM/IEEE
conference on Supercomputing, Washington, DC, USA, 2005.
IEEE Computer Society.

[2] Micah Beck, Terry Moore, and James S. Plank. An End-
to-end Approach to Globally Scalable Network Storage. In
SIGCOMM ’02: Proceedings of the 2002 conference on Appli-
cations, technologies, architectures, and protocols for computer
communications, pages 339–346, New York, NY, USA, 2002.
ACM Press.

[3] Wes Bethel, Brian Tierney, Jason Lee, Dan Gunter, and Stephen
Lau. Using High-Speed WANs and Network Data Caches to
Enable Remote and Distributed Visualization. In Supercom-
puting ’00: Proceedings of the 2000 ACM/IEEE conference on
Supercomputing (CDROM), Washington, DC, USA, 2000. IEEE
Computer Society.

[4] Ian Bowman, John Shalf, Kwan-Liu Ma, and E. Wes Bethel.
Performance Modeling for 3D Visualization in a Heteroge-
nous Computing Environment. Technical Report LBNL-56977,
Lawrence Berkeley National Laboratory, Visualization Group,
Berkeley, CA, USA, 2004.

[5] David M. Butler, James C. Almond, R. Daniel Bergeron,
Ken W. Brodlie, and Robert B. Haber. Visualization Reference
Models. In VIS ’93: Proceedings of the 4th conference on
Visualization ’93, pages 337–342, 1993.

[6] Jerry Chen, E. Wes Bethel, and Ilmi Yoon. Interactive, Internet
Delivery of Scientific Visualization via Structured, Prerendered
Imagery. In Proceedings of 2006 SPIE/IS&T Conference on
Electronic Imaging, Volume 6061, A 1-10, 2006.

[7] Shenchang Eric Chen. QuickTime VR – An Image-Based Ap-
proach to Virtual Environment Navigation. Computer Graphics,
29(Annual Conference Series):29–38, 1995.

[8] Daniel Cohen-Or and Eyal Zadicario. Visibility Streaming for
Network-based Walkthroughs. In Graphics Interface, pages 1–
7, 1998.

13

[9] R3vis Corporation. OpenRM Scene Graph.
http://www.openrm.org, 1999-2006.

[10] D. R. Commander. VirtualGL. http://www.virtualgl.
org.

[11] David Ellsworth, Chris Henze, Bryan Green, Patrick Moran, and
Timothy Sandstrom. Concurrent Visualization in a Production
Supercomputer Environment. IEEE Transactions on Visualiza-
tion and Computer Graphics – Proceedings Visualization 2006,
12(5):997–1004, Sept.–Oct. 2006.

[12] Klaus Engel, Ove Sommer, Christian Ernst, and Thomas Ertl.
Remote 3D Visualization Using Image-Streaming Techniques.
In Advances in Intelligent Computing and Multimedia Systems
(ISIMADE ’99), pages 91–96, 1999.

[13] Google Inc. Google Earth. http://earth.google.com/.
[14] Google Inc. Google Map. http://maps.google.com/.
[15] GUP Linz Institute of Graphics and Parallel Processing.

GVid Project Page. http://www.gup.uni-linz.ac.
at/gvid/.

[16] T. Hacker, B. Noble, and B. Athey. Improving Throughput and
Maintaining Fairness Using Parallel TCP, 2004.

[17] Bernd Hamann, E. Wes Bethel, Horst Simon, and Juan Meza.
Visualization Greenbook: Future Visualization Needs of the
DOE Computational Science Community Hosted at NERSC.
International Journal of High Performance Computing Appli-
cations, 17(2):97–124, 2003.

[18] H. Hege, A. Hutanu, R. Kähler, A. Merzky, T. Radke, E. Seidel,
and B. Ullmer. Progressive Retrieval and Hierarchical Visual-
ization of Large Remote Data. In Proceedings of the Workshop
on Adaptive Grid Middleware, Sept 2003.

[19] Hans-Christian Hege, André Merzky, and Stefan Zachow. Dis-
tributed Visualizaton with OpenGL VizServer: Practical Expe-
riences. ZIB Preprint 00-31, 2001.

[20] Paul Heinzlreiter and Dieter Kranzlmüller. Visualization Ser-
vices on the Grid: The Grid Visualization Kernel. Parallel
Processing Letters, 13(2):135–148, 2003.

[21] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for
High Performance – RFC 1323, May 1993.

[22] Kitware, Inc. and Jim Ahrens. ParaView: Parallel Visualization
Application. http://www.paraview.org/.

[23] Dieter Kranzlmüller, Gerhard Kurka, Paul Heinzlreiter, and
Jens Volkert. Optimizations in the Grid Visualization Ker-
nel. In IEEE Parallel and Distributed Processing Symposium
(CDROM), pages 129–135, 2002.

[24] Lawrence Livermore National Laboratory. VisIt: Visualize
It Parallel Visualization Application. http://www.llnl.
gov/visit/.

[25] Eric J. Luke and Charles D. Hansen. Semotus Visum: A
Flexible Remote Visualization Framework. In VIS ’02: Pro-
ceedings of the Conference on Visualization ’02, pages 61–68,
Washington, DC, USA, 2002. IEEE Computer Society.

[26] Chris Maxwell, Randy Kim, Tom Gaskins, Frank Kuehnel, and
Patrick Hogan. NASA’s World Wind. http://worldwind.
arc.nasa.gov/.

[27] Bruce McCormick, Thomas DeFanti, and Maxine Brown. Vi-
sualization in Scientific Computing. 21(6), November 1987.

[28] Valerio Pascucci and Randall J. Frank. Global Static Indexing
for Real-time Exploration of Very Large Regular Grids. In
Supercomputing ’01: Proceedings of the 2001 ACM/IEEE con-
ference on Supercomputing (CDROM), New York, NY, USA,
2001. ACM Press.

[29] Steffen Prohaska, Andrei Hutanu, Ralf Kahler, and Hans-
Christian Hege. Interactive Exploration of Large Remote Micro-
CT Scans. In VIS ’04: Proceedings of the Conference on
Visualization ’04, pages 345–352, Washington, DC, USA, 2004.
IEEE Computer Society.

[30] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood,
and Andy Hopper. Virtual Network Computing. IEEE Internet
Computing, 2(1):33–38, 1998.

[31] John Rohlf and James Helman. IRIS Performer: A High Per-
formance Multiprocessing Toolkit for Real-time 3D Graphics.
In SIGGRAPH, pages 381–394, 1994.

[32] Douglas C. Schmidt and Tatsuya Suda. Transport System
Architecture Services for High-Performance Communications
Systems. IEEE Journal on Selected Areas in Communications,
11(4):489–506, 1993.

[33] Silicon Graphics Inc. OpenGL Vizserver. http://www.
sgi.com/products/software/vizserver/.

[34] IND Networking Performance Team. NetPerf. http://www.
netperf.org/netperf/NetperfPage.html.

[35] Ilmi Yoon and Ulrich Neumann. IBRAC: Image-Based Ren-
dering Acceleration and Compression. In Eurographics 2000,
volume 19, pages 321–330, 2000.

[36] Zoomify Inc. Zoomifyer. http://www.zoomify.com/.

Jerry Chen earned his BS in Computer Sci-
ence from the University of California, Davis
in 2001 and is working towards his MS de-
gree at San Francisco State University. He
is a Software Engineer at Yahoo! Inc. in its
Small Business department where he helped
revamp an ordering service with Web2.0 tech-
nologies and improved the system’s scalability
for dynamic marketing strategies. His research

interests include internet application design, user interface/interaction
design, visualization, computer graphics.

Dr. Ilmi Yoon is an Assistant Professor in the
Computer Science Department of San Fran-
cisco State University. She earned both her
MS and Ph.D. degrees in Computer Science at
the University of Southern California at Los
Angeles in 1996 and 2000. Her focus was on
”Web-based Remote Rendering using Image-
Based Rendering Techniques.” Her recent re-
search focuses on 3D network visualizations

on the WWW, 3D Visualizations related to Life Science, and Serious
Games for Nursing. Her research relates to interactive media, Web3D,
and Information Visualization.

E. Wes Bethel is a Staff Scientist at Lawrence
Berkeley National Laboratory. His research
interests include high performance remote and
distributed visualization algorithms and archi-
tectures. He earned his MS in Computer Sci-
ence in 1986 from the University of Tulsa and
is a member of ACM and IEEE.

