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Figure 1: A 2D graph showing the topology of the 3D potential energy function of a complex of formic and acetic acids,
which depends on the positions of constituting atoms. Blue and red dots represent minimum energy configurations and lowest
barriers connecting neighboring minima, respectively. Edges represent the energy cost of a particular transformation, with
darker and wider edges corresponding to transformations through lower barriers (more likely transformations). Two vertical
branches corresponding to different positions of protons are visible on the left and right side of the graph. Energy barriers for
transforming the right branch into left one are lower than for the reverse transformation.

Abstract
Studying transformation in a chemical system by considering its energy as a function of coordinates of the sys-
tem’s components provides insight and changes our understanding of this process. Currently, a lack of effective
visualization techniques for high-dimensional energy functions limits chemists to plot energy with respect to one
or two coordinates at a time. In some complex systems, developing a comprehensive understanding requires new
visualization techniques that show relationships between all coordinates at the same time. We propose a new
visualization technique that combines concepts from topological analysis, multi-dimensional scaling, and graph
layout to enable the analysis of energy functions for a wide range of molecular structures. We demonstrate our
technique by studying the energy function of a dimer of formic and acetic acids and a LTA zeolite structure, in
which we consider diffusion of methane.

Categories and Subject Descriptors (according to ACM CCS): J.2.4 [Computer Applications]: Physical Sciences and
Engineering—Chemistry I.3.8 [Computing Methodologies]: Computer Graphics—Applications

1. Introduction

In chemistry, transformation processes that involve changes
of relative positions of atoms in chemical systems are of fun-
damental interest. Examples of such transformations include
internal rotation of fragments of a molecule (e.g., confor-
mation change), translation of atoms or molecules within a

chemical system (e.g., diffusion), and shifting of atoms lead-
ing to breaking and/or re-arrangement of chemical bonds
(e.g., chemical reactions). An important factor of any trans-
formation is its cost. Chemists usually focus on transfor-
mations between configurations of chemical systems corre-
sponding to energy minima, representing stable states of the
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system. The term “configuration” is generalized here and can
bear two meanings: It can refer to a set of strictly defined po-
sitions of all atoms of a studied system as it is done in the
vast majority of quantum chemical calculations relying on
the Born-Oppenheimer approximation. On the other hand,
it can also refer to a representative or dominantly populated
state within a class.

The cost of a transformation between stable states can be
defined as the energy difference between the two minima
involved in the transformation. In a typical case, a transfor-
mation involves a transition through a higher energy con-
figuration, a barrier that determines the probability of the
transformation (or time required for it to happen). The analy-
sis of transformation pathways in a chemical system usually
follows the same general scheme. After identifying impor-
tant energy minima, connecting pathways and corresponding
barriers are found. A chemical system has 3n degrees of free-
dom, where n is the number of atoms. Analyzing transforma-
tions in such a system requires identifying minima and tran-
sition states in a 3n-dimensional space. Chemists can often
reduce the dimensionality of this space by exploiting prior
knowledge about the system. For example, when consider-
ing a diffusion process, it is often sufficient to consider only
translation and rotation of a rigid molecule, and the anal-
ysis can be performed for a six-dimensional energy func-
tion. When considering only conformational changes of a
molecule, it is sufficient to investigate 3n−6 internal degrees
of freedom. The latter can be simplified further by assuming
that some coordinates are constant due to very high energy
cost associated with their change.

Once minima and transition states are identified in the
original or simplified high-dimensional energy function, it
becomes necessary to visualize and analyze the relation be-
tween minima and their connecting paths. Due to the sys-
tem’s complexity and a lack of effective means for visual-
izing relationships in high-dimensional space, chemists usu-
ally select only one or two most important coordinates in the
transforming chemical system (e.g., a reaction coordinate)
and show the corresponding two- or three-dimensional en-
ergy plots. For example, in case of the dimer of formic and
acetic acid, shown in the Figure 2a, a chemist would select
the rotation angle of one methyl group as target coordinate
and measure system energy as a function of it, see Figure 2b.
An analysis of the energy function in this case is simple, and
such one- and two-dimensional plots are commonly seen in
discussions and publications demonstrating their usefulness.
Similar attempts to plot higher-dimensional energy data are
not common, although complex transformations involving
more than two coordinates arise in many studied systems.
We aim to provide a convenient approach to visualize the
energy cost and barriers of possible transformation pathways
in chemical systems.

We have developed our method based on the observation
that minima of the system as well as their relationships to
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Figure 2: (a) Chemical system configuration of a dimer of
formic and acetic acid. (b) Energy of the system in Hartrees
(y-axis) as a function of the methyl group rotation angle be-
tween 0 to 360 degrees (x-axis). Blue and red dots mark en-
ergy minima and barriers, respectively. (c) Naive graph rep-
resentation of transformation pathways. (d) Proposed graph
representation, where the top row of a energy minima label
displays its coordinate and the bottom row its energy value.

each other are of primary interest. A graph-like structure
describing this relationship is the Morse complex (cf. Sec-
tion 3.1), and descending regions in the Morse complex cor-
respond to classes of configurations associated with a sta-
ble state. The saddle between two adjoining regions, i.e., the
lowest function value along their boundaries, corresponds to
the barrier between the states, and transformation paths are
given by the edges connecting two minima through a sad-
dle. Figure 2b shows the segmentation of our example en-
ergy function for the dimer of formic and acetic acid system.
Three segments correspond to each of the three minima (blue
dots) of the system and three barriers (red dots) separate
each pair of neighboring minima. Figure 2c shows one way
of drawing the resulting graph representing transformational
pathways, where each edge corresponds to a segment that is
colored differently. Based on this relationship between stable
states and barriers, we construct a graph that represents the
system. To preserve relational context between stable states
for higher-dimensional cases, we utilize multidimensional
scaling to project the Morse complex graph onto the plane
and incorporate the resulting location information into the
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graph layout. We also embed chemical information, such as
the likelihood of a transformation.

Figure 2d shows the graph for our 1D energy example of
the dimer of formic and acetic acid system (Figure 2a). We
note that the barrier (red dot) between the violet and yellow
segment is split into two barriers, each connected to respec-
tive minima by dashed lines, signifying the periodic nature
of the barrier. Even though we use a 1D example to illustrate
the concepts behind our idea, the true power of using a com-
bination of Morse complex and multidimensional scaling to
project this information onto a plane lies in the fact that we
can apply it to higher-dimensional systems. In Section 4 we
provide several 2D, 3D, and 4D examples that illustrate how
our graphs can be used to gain insight into complex chemical
systems. Our main contributions are:

• Combining the structural information contained in the
Morse complex with geometric information obtained by
multi-dimensional scaling in a novel way to facilitate
analysis by chemists.

• Incorporating geometric information and properties of the
chemical system, such as the likelihood of a transforma-
tion, into a graph layout with constrained node placement.

• Handling of periodic conditions in chemical systems and
highlighting corresponding transitions in the resulting
graph.

2. Background and Related Work

2.1. Energy Representation of a Chemical System

We assume that a numerical grid representation of a (multi-
dimensional) energy function is available. The considered
dimensions correspond to changes of atomic coordinates
leading to a desired sampling of the configuration space of
the studied system. The exact definitions of energy and con-
figuration of a chemical system may vary from case to case;
the considered energy may be the potential energy (e.g.,
including electrostatic interactions between particles in the
system) or free energy, which also includes thermal and en-
tropic contributions. The configuration of the system may be
defined by precise positions of nuclei (or atoms and larger
fragments) or average positions (average over time, states in
ensemble or fragment of space) [KGK∗96].

2.2. Scalar Field Topology

There is a tight link between pathways in chemical sys-
tems and the topology of the scalar field representing en-
ergy. Scalar field topology characterizes data by topol-
ogy changes of level sets. Given a Morse function, i.e.,
a smooth, real-valued function without degenerate critical
points, level set topology changes only at isolated critical
points [Mil63]. For energy data, these critical points are en-
ergy minima (stable states), saddle points (lowest energy
barrier from one stable state to another), and energy max-
ima. The contour tree [BR63, CSA03, TFO09] (or the more

general Reeb graph [Ree46]) and the Morse and Morse-
Smale complex are structures that relate these critical points
to each other and support ranking topological features by im-
portance as well as simplifying the global topological struc-
ture [CSvdP04, GNP∗05].

A contour tree tracks changes of the number of con-
nected components of the level set of a function defined on
a simply connected domain, resulting in a tree-like struc-
ture representing the topological structure of the function.
Omitting local maxima in the contour tree results in the
so-called barrier tree (cf. Section 2.3), which provides a
meaningful representation of scalar energy functions by in-
dicating the energy required to transition from one stable
state to another [FHSW02]. Whereas these structures show
all minima of interest, they show only a subset of barriers.
More importantly, only paths across lowest barriers are in-
dicated in the graph layout, which makes them unusable
for our application, thus rendering visualization paradigms
based on contour trees, such as the topological landscape
metaphor [WBP07], are unusable.

In contrast, the Morse complex and the Morse-Smale
complex [EHZ03, EHNP03] capture all barriers. Assuming
the function on the manifold is differentiable and the gradi-
ent is defined at each location, it is possible to start at any
location in the domain and follow a gradient line either to its
origin (its minimum or lower saddle) or its destination (its
maximum or upper saddle). Following gradient lines to their
origin or their destination yields the Morse complex com-
prised of either descending or ascending manifolds, respec-
tively. A superimposition of these ascending and descend-
ing manifolds results in the Morse-Smale complex. Gerber
et al. [GBPW10] proposed a novel visual analysis technique
based on Morse-Smale approximation. As we are only inter-
ested in energy minima (stable states) and their transition, we
have adopted a simpler Morse complex approximation that
only considers descending stable segments corresponding to
minima.

2.3. Topological Analysis in Chemistry

Flamm et al. [FHSW02, FHSS07] proposed the barrier tree
concept for the analysis of degenerate energy landscapes,
and Heine et al. [HSF∗06] described a visualization method
for multiple barrier trees. As discussed in the previous sec-
tion, barrier trees are related to contour trees and omit bar-
riers that are of interest to our application. Similarly, James
et al. [JWR07] introduced the concept of the disconnectivity
graph to visualize energy landscapes of water clusters in a
uniform electric field. This graph is similar to a barrier tree
but uses a different visual representation.

Recently, Okushima et al. [ONIS09] proposed to general-
ize the disconnectivity graph concept to a saddle connectiv-
ity graph. To construct this saddle connectivity graph, their
method locates minima and saddle points and combine them
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into a schematic line representation. While the saddle con-
nectivity graph shows all relevant barriers, our method is
computationally more efficient and our layout method facil-
itates easier tracking of separate transition pathways.

The stochastic roadmap simulation [ABG∗02] represents
another approach to the analysis of energy landscapes. How-
ever, this method focuses on obtaining a high-level overview,
e.g., finding the global minimum in a protein folding prob-
lem. Consequently, it can miss minima and saddles that may
be important. This method can analyze system with larger
number of degrees of freedom at the price of being stochas-
tic and not exploring the entire domain of the configuration
space. On the contrary, our method is oriented to provide
information about the entire energy landscape within the do-
main and let the user choose the desired level of detail.

2.4. Dimension Reduction

Whereas the graph itself is an abstract structure, we have to
find a proper layout to visualize it. While direct visualiza-
tion of the Morse complex graph (MCG) using the original
minima positions is possible for up to three-dimensional sys-
tems (see Figure 9a), this representation quickly becomes
cluttered and too complicated for visual analysis. Further-
more, higher-dimensional systems require an alternate lay-
out of the MCG in a plane. Although standard graph-layout
algorithms may produce visually pleasing visualizations of
the MCG, this representation does not consider relational in-
formation of the original system. This information is impor-
tant for chemical analysis due to impact of distances on the
probability of certain transformations.

To preserve this relational context, it becomes necessary
to project the high-dimensional point locations of the graph
onto the plane. Depending on the type of input data and
the required results, there exist a variety of methods to re-
duce the dimensionality of data. (We refer to the survey by
Fodor [Fod02] for an overview). Multidimensional scaling is
a well-accepted method [GTS04] to reduce the dimensional-
ity of data while maintaining spatial distances of points from
the original data in their projection. Considering the fact that
our points are provided in an Euclidean space and we are us-
ing a linear scaling function, the method simplifies to what
is commonly known as principal component analysis (PCA).
Using the principal components of the spread of points the
new coordinate system ensures a good preservation of dis-
tances which is important for understanding the data.

3. Algorithm

Our technique uses a combination of the Morse complex
capturing the relationship between energy minima (Sec-
tion 3.1), multi-dimensional scaling for projecting minima
positions to the two-dimensional plane, and, finally, a graph
layout incorporating all necessary chemical information
(Section 3.4). We further consider simplification schemes

for noise reduction and for focusing attention on the most
relevant features of the chemical system (Section 3.2). We
also introduce a strategy for handling additional complexity
added by a possible periodic nature of the input data (Sec-
tion 3.3). Resulting graphs show relevant transitions between
energy minima and provide a succinct summary view of rel-
evant transformations of the considered chemical system.

3.1. Morse Complex

To obtain structural transition information, we approximate
the Morse complex for the energy function fe by produc-
ing a segmentation of the input data into stable/descending
manifolds. We implemented this segmentation similar to the
approach of Gerber et al. [GBPW10] by finding a neighbor
with the steepest descending gradient for each point, and
subsequently applying a union-find algorithm to determine
its corresponding minimum.

Segmented descending regions in the resulting representa-
tion correspond to classes of configurations associated with a
minimum (i.e., stable state). Each descending region can ad-
join several other regions. The saddle between two regions,
i.e., the lowest function value along their boundaries, corre-
sponds to the barrier between the states. Since minima and
saddles in the Morse complex correspond to energy minima
and barriers, chemical transformation paths are given by the
edges connecting two minima through a saddle. Assigning
minima and saddles to nodes and connecting pathways as
edges creates the Morse complex graph (MCG).

The major steps of our algorithm can be summarized as
follows. First, we perform a sweep over all input points and
identify and store the steepest descending neighbor for each
point. Subsequently, we use a union-find data structure to
segment all input points into regions whose gradient flow
ends at the same minimum, thus approximating stable man-
ifolds. For each segment, we consider its neighboring seg-
ments and identify the lowest value along the boundary. We
construct the MCG by adding or updating three nodes—two
minima and saddle, and the two connecting edges. Finally,
we check whether any of the minimum-saddle edges crosses
a periodic domain boundary, and we also determine the di-
rection when this happens. We preserve this information for
future use for the graph layout stage (see Section 3.4).

3.2. Simplification

Noise in a dataset along with increased data complexity, e.g.,
due to a larger number of dimensions can result in convo-
luted final graphs. To ensure that a generated graph does
not overwhelm users, we need effective means of simplify-
ing the MCG before presenting and analyzing it. To sim-
plify the MCG, we have implemented a scheme that elim-
inates low-persistence minima. In our approach, we define
the persistence for each minimum-saddle pair as the abso-
lute difference of energy function values. Since one min-
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imum might belong to several minimum-saddle pairs, and
thus have multiple associated persistence values, we select
the lowest among them to decide whether a minimum is
eliminated. This approach gives us a good measure to iden-
tify the noise, which usually corresponds to minima that ap-
peared due to numerical error. Furthermore, we found that
minima with a very low persistence correspond to a latent
chemical configurations, hence their elimination does not af-
fect the analysis. Finally, we specify a persistence threshold,
such that minima with persistence below the threshold are
merged with a neighboring minima that have the lowest sad-
dle value.

We perform sequential elimination of minima, ordered by
their persistence, as follows. First, we identify the minimum
with the lowest persistence. Subsequently, we identify a min-
imum that is connected through the saddle to the minimum
we want to reduce. We then merge the two minima into the
new minimum, which inherits all the neighbors of its par-
ents. Finally, we recalculate all the saddles(barriers) along
the newly created border of the new minimum and pass on
any information associated with both minima (e.g., period-
icity information).

We consider two approaches for finding a suitable persis-
tence threshold. The conventional approach for finding this
threshold is based on a persistence diagram, which is ob-
tained by gradually increasing the simplification threshold
value within the possible value range and determining the
current number of minima for each value. (We refer to Sec-
tion 4 for an example of a persistence diagram.) Big drops
in the number of minima indicate a large number of related
minima and thus candidates for appropriate simplification
threshold values. For example, the persistence of the min-
ima introduced by numerical errors normally varies within
a certain range corresponding to the noise threshold. While
this approach can be very useful due to its generality, we
also utilize an alternative calculation based on chemical do-
main knowledge about the considered system. Combining
both approaches provides a user usually with sufficient in-
formation to select an appropriate simplification persistence.

We believe that the combination of this simplification
scheme and our graph layout algorithm (see Section 3.4)
sufficiently simplifies the resulting visualizations. (We in-
troduce further means for further simplifying the resulting
visualization in Section 5).

3.3. Periodicity

Proper handling of periodicity for different chemical struc-
tures and presenting them in a simple way for analysis is key
to providing readable graphs. Chemistry datasets can also
have some of their dimensions being periodic, and handling
and presenting such datasets leads to additional visualization
challenges. Our approach handles such datasets elegantly by
marking edges of the MCG that cross the domain boundary

of a periodic dimension and presents them in a graph using
dashed edges. Furthermore, we indicate directions, which
could be crucial in the analysis of porous materials.

Our interpretation of periodicity in the data is straightfor-
ward: The maximum boundary and the minimum boundary
along an axis corresponding to a periodic dimension will be
virtual neighbors when wrapping around the data set. Thus,
a maximum and minimum cell along that axis share a face,
and the triangulation must subdivide that face consistently.
To ensure this consistency and avoid possible cracks and
hanging nodes in a triangulation that might occur on the
domain’s boundary faces, we use Freudenthal’s subdivision
scheme [Fre42], which subdivides opposite cell faces con-
sistently. While Freudenthal subdivision generalizes to ar-
bitrary dimensions, the number of edges in a mesh grows
exponentially, making this approach infeasible for dimen-
sions larger than three. Thus, we utilize a k-nearest-neighbor
algorithm [TFO09] to create neighborhood graphs for high-
dimensional datasets, and guarantee a correct triangulation
by removing edges in the neighborhood graph that are not
bi-directional.

3.4. Graph Layout and Drawing

As a first step in our graph layout algorithm, we project the
location of minima to two dimensions using classical metric
multidimensional scaling (MDS). While it seems intuitive
to apply MDS both to minimum and saddle positions, we
found that this approach often leads to a cluttered graph lay-
out. Projecting only minima and placing saddles along lines
between minima results in a much cleaner graph layout and
supports encoding additional information based on the loca-
tion of barriers.

While the projection at this point is simple to navigate,
overlaps of edges and nodes might conceal important infor-
mation. Thus, we implemented an iterative optimization al-
gorithm that minimizes node/edge overlap in the final layout.
We define the node’s center Ncenter and the node’s projec-
tion to the edge’s mid-axis as PNcenter . Then, depending on a
distance between them, we can derive if the node and the
edge overlap or not. We formally define the overlap function
as Doverlap = (Nradius +Ewidth/2)−distance(Ncenter,PNcenter),
where Nradius is the radius of the node, and Ewidth is the width
of the edge. If the Doverlap is positive, we have an overlap,
otherwise not. Thus, the goal is to iteratively move the node
away from the edge along the projection line, until Doverlap
becomes zero or negative. To ensure the preservation of the
overall structure, we add a condition that the center of the
node does not move further than the predefined ε radius. Al-
though we allow users to set parameters for faster or clearer
view of the final graph layout, we found the convergence rate
of the algorithm satisfactory.

Once we have obtained final positions for all nodes of the
graph, we add chemical information from the model system
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to the graph. Since the most important information is the en-
ergy difference between a minimum and a barrier, we color
edges according to the energy difference value. The Boltz-
mann distribution states that the probability of accessing a
state decreases exponentially with its energy. The lower the
energy difference is, the higher is the probability of a trans-
formation. Hence, we display paths with smaller energy dif-
ferences more prominently (darker colors and wider edges) ,
see Figure 1. We note that a higher energy difference leads to
very narrow and lightly colored edges, making them almost
invisible. As a consequence, these edges can be neglected
when drawing the final layout. Thus, we introduce the no-
tion of an upper threshold that signifies the highest possible
and/or interesting energy difference threshold, so that a user
can choose to discard certain edges and thus further simplify
the layout. Periodic edges are dashed and the common sad-
dle of the two connected minima is broken into two nodes
(see Figure 2c). This helps chemist to identify periodic edges
right-away. Finally, we add labels to all minima that specify
coordinates (first line) and energy value (second line). This
information helps chemists to relate the graph to the state of
the model system and it guides analysis.

4. Results

We demonstrate our visualization technique using two dis-
tinct examples of chemical systems: (i) a dimer of formic
acid and acetic acid (DFA), in which we study energetics of
conformational changes and proton transfer reactions; and
(ii) methane molecule in a crystalline porous material, in
which we investigate energies related with diffusion.

4.1. Dimer of Formic Acid and Acetic Acid

Small “model” systems are often selected by chemists to
study intra- and inter-molecular interactions. The small size
of such complexes does not only facilitate gas-phase experi-
ments (small systems usually have high vapor pressure) but
also enables performing accurate ab initio calculations to
investigate properties and simulate transformations in these
complexes. In this context, a dimer of carboxylic acids can
serve not only as model of hydrogen-bonded system but also
can be used to study proton transfer reactions [BHD∗05].
In the current study we selected a dimer of formic acid
and acetic acid as a model system to present generation of
our graph representations of transformation pathways in this
chemical system.

The initial geometry of DFA presented in Figure 2a
was optimized at the semi-empirical PM3 level of theory
[Ste89a, Ste89b] to find a minimum energy configuration.
Here, we consider up to four degrees of freedom in this sys-
tem. Therefore, we used the latter optimized geometry to
generate a four-dimensional grid with energies of DFA in the
considered configurations. The geometries of each configu-
ration were generated in the following manner. All atomic

positions (in internal coordinates), except those involved in
the considered degree of freedoms, were fixed at their opti-
mal positions. The remaining coordinates of DFA were sys-
tematically modified along the four considered directions.
Specifically, dimensions of the energy grid are defined as
follows:

• First dimension: length of H7–O3 bond is scanned
between 0.85Å and 1.85Å with a step size of
0.05Å(1Å=10−10m).

• Second dimension: length of H8–O1 bond is scanned
from 0.85Å to 1.85Å with a step size of 0.05Å.

• Third dimension: H7–O3–C5–O4 dihedral angle, which
is scanned with a step size of 15◦(24 samples, periodic).
This transformation rotates the H7–O3 group around the
C5–O3 axis and has been selected to investigate the en-
ergetic effect, associated with disrupting the O3–H7. . .O2
hydrogen bond.

• Fourth dimension: rotation of C6 methyl group along the
C6–C5 axis. It is defined by the H9–C6–C5–O3 dihedral
angle, sampled at a step size of 15◦. During the rotation
of the methyl group, all internal coordinates of atoms of
the methyl group are fixed.

For each of the generated geometries, we used the Gaus-
sian03 program [FTS∗] to obtain the corresponding en-
ergy at the semi-empirical PM3 level. The resulting 4D en-
ergy grid was used to generate our graph representations.
The energy unit used throughout this example is Hartree
(1Ha≈27.211eV).

To simplify the referencing, we define FX as
an energy function of the system, where X =
{1,2,3,4,12,13,14,23,24,34,123,124,134,234,1234}
is a set of dimension combinations. For example F124
corresponds to the energy function, defined in space of the
first, second and fourth dimensions. Absent dimensions
in our case are assumed to have a default (optimal) fixed
coordinate. Each graph representation is referred to corre-
spondingly as a MX . Note that we use scaled coordinates
between zero and one in our calculations and figures
presenting FX .

In Figure 3 we show the energy function for each dimen-
sion of the system. We can see that F1 and F2 have only one
minimum each, thus no transformations between minima ex-
ist in the system. However F3 has three minima, thus three
transformations are possible. M3 describes all possible trans-
formations and barriers, and handles the periodic nature of
the dimension by showing the barrier at 0 (and 359) as the
same node on the left and right sides. Therefore, we have two
ways of getting from one minimum to any other. (It naturally
corresponds to left and right rotations of the methyl group of
acetic acid.) Now, one would expect that since F4 is also pe-
riodic, M4 would have two different paths to get from one
minimum to the other. However, we are interested only in
the lowest barrier between two minima, thus M4 shows only
the lower of two barriers. Indeed, if the user has to choose
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Figure 3: Energy functions of DFA along the (a) first dimension, (b) second dimension, (c) third dimension, and (d) forth
dimension, and respective graphs for (e) the third dimension, showing the periodic nature of the dimension and (f) the fourth
dimension, where it correctly handles the special case of periodicity. All labels in (e) and (f) use the convention from Figure 2.
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Figure 4: Two-dimensional energy function landscapes of
DFA and corresponding graphs: (a) F12−M12 (b) F34−M34.
Constructed graph easily visualizes all possible paths, while
in case of direct visualization it might be not obvious.

the rotation direction, (s)he would choose the one that goes
through the lowest barrier.

Figure 4 shows the energy function landscapes and cor-
responding graph representations for each of two selected
dimension pairs. One-dimensional analysis is simple, but
two-dimensional functions introduce more complexity. F12
in Figure 4a is still relatively simple. We find two minima
and the lowest point connecting them. F13,F14,F23,F24,F34
are not so intuitive due to one or two periodic dimensions.
While it is obvious from the energy function landscape, we
might have several transformation paths between each two

-0.326529

-0.326516

-0.258201

-0.258091

-0.326516 -0.258096

(a)

-0.326282

-0.257942

-0.307364

(b)

Figure 5: Three-dimensional energy function volume render-
ings of DFA and corresponding graphs: (a) F123−M123 (b)
F124−M124. As the number of dimensions grows, direct vi-
sualization becomes complicated.

minima. For example in Figure 4b we see multiple possible
paths between the minimum at (60,180) and the minimum at
(300,180).

Figure 5 shows two examples of the energy functions for
three dimensions. Since the energy functions becomes com-
plicated in three dimensions, we have to rely on our graph
representations to observe next important characteristics.
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A1

A3

A5

A2

A6

A8

A4

A7

A9

B3

B5

B2

B6

B4

B1

Figure 6: Graph of the 4D energy function of DFA. Nodes
are labeled A1 to A9 and B1 to B6 to highlight two sub-
graphs. A1-A9 correspond to minima with coordinates of
0.95Å along the first and second dimension. The remain-
ing third and fourth coordinates are (45,345), (180,345),
(60,180), (285,345), (180,180), (60,0), (300,180), (180,0),
and (300,0) for A1 to A9, respectively. Similarly, the first
and second coordinate for B1-B6 are 1.75Å. The remain-
ing coordinates are (60,345), (180,345), (300,345), (60,0),
(180,0), (300,0) for B1 to B6, respectively.

Thorough analysis of M124 in Figure 5b shows that in a given
system, a much better transformation between the minimum
at (0.95,0.95,180) and the minimum at (1.75,1.75,0) can be
found by visiting the third minimum at (0.95,0.95,0), al-
though direct transformation is also available.

The final example is the graph representation of the 4D
energy function of DFA depicted in Figure 6, for which plot-
ting the original energy functions in all four dimensions was
not feasible. The resulting graph is fairly easy to analyze. It
clearly shows energy separation of the graph into two sub-
graphs: one corresponding to rotamers of DFA (with min-
ima denoted A1-A9) and another with double proton trans-
fer (minima denoted B1-B6). Transitions between minima
within each subgraph are at low cost as shown by heavy
edges.

4.2. Free Energy of a Guest Molecule in a Porous
Material

The second example of application of our approach involves
analysis of free energy of a guest molecule inside a porous
material. Porous materials contain complex networks of void
channels and cages that are exploited in many different in-
dustrial applications. Zeolites, probably the most recognized
class of crystalline porous materials, have found wide use in
industry since the late 1950s. They are commonly used as
chemical catalysts, membranes and adsorbents for separa-
tions and water softeners [ACD04,SM08b,SM08a,KvB07].

One of the key processes that determine performance of
membranes is diffusion of guest species. Diffusion of gases
inside a porous material is controlled by free energy barriers.
Analysis of possible diffusion pathways and the associated
barriers is therefore critical to understand and design optimal

Figure 7: Picture of (a) methane (b) LTA zeolite struc-
ture. The orange isosurface highlights the closest distance to
which the center of the guest molecule center can approach.
The large cage is located in the center of the unit cell. The
small cage is shared among eight cells and is visible in the
corners of the unit cell.

Figure 8: Persistence diagram of the energy function of a
CH4 guest molecule in porous material.

separation devices. Our representation may facilitate such
understanding.

In the following we demonstrate our graph representation
of free energy of CH4 molecule inside LTA zeolite. The cor-
responding 3D free energy grids were prepared by the fol-
lowing procedure. The 3D space describing a periodic box of
LTA zeolite was divided into 239x239x239 volumetric bins.
We performed a Monte Carlo simulation to predict an av-
erage free energy of a guest molecule inside each bin. The
details of this procedure can be found in [KGK∗96]. We
used a force-field approach developed by García-Pérez et
al. [GPPA∗07]. The energies used in this example are ex-
pressed in kBT .

The free energy function of CH4 in LTA zeolite is sub-
stantially different from the energy functions of DFA. The
noise of the dataset is high, thus it required application of the
described simplification scheme to reduce the final graph,
based on the persistence diagram in Figure 8. Figure 9 shows
free energy and the corresponding graph representation. This
graph represents only the large cage of LTA zeolite, which
is the only fragment of void space in LTA accessible to CH4
(see [HS10] for discussion of accessibility). The graph rep-
resentation of the free energy reveals important information
about the material. There are 14 important energy minima
per periodic unit cell of LTA corresponding to favorable lo-
cations of the adsorbing CH4 molecule (adsorption sites).

To appear in Eurographics / IEEE Symposium on Visualization 2011 (EuroVis 2011)



K. Beketayev et al. / Topology-based Visualization of Transformation Pathways in Complex Chemical Systems 9

Figure 9: (a) Volume rendering of the energy function of a
CH4 molecule in an LTA zeolite and lowest energy paths
connecting neighboring minima. (b) Corresponding graph
showing lowest energy paths (an edge going through a face
of the periodic box marked with arrows).

Six of them correspond to lower energy (ca. 3.7 kBT ), and
are localized near windows connecting two periodic cells
(near faces of the unit cell). The remaining eight minima are
localized further away from the windows, on the surface of
the large cage of LTA. The further analysis of connections
between nodes/minima in our representations reveals that all
14 minima localized within the big cage are separated by
low barriers, and therefore hops of CH4 between the adsorp-
tion sites are feasible. However, connections between large
cages in the extended material lead through high barriers.
These high barriers along diffusion paths in every direction
are reflected in slower diffusion rates.

5. Conclusions and Possible Extensions

The described visual representation provides new capabili-
ties to visualize complex multidimensional energy functions.
Our approach highlights the most relevant information for
chemists: number and location of energy minima and heights
of connecting barriers. The resulting map allows investiga-

tion of all possible transformation (e.g., reaction) pathways
and the identification of the lowest energy paths.

The main motivation for developing our approach was the
lack of tools to visualize energetics of transformation path-
ways in complex systems. We expect that our energy graphs
will be widely used by scientists working on porous mate-
rials as they provide new capabilities: (i) display diffusion
paths and the corresponding energy barriers to gain insight
into materials properties and to set up proceeding molecular
simulations; (ii) display adsorption sites, which can be cor-
related with features in adsorption isotherms; and (iii) statis-
tics describing our energy graphs can be used to compare
different materials. Moreover, in studies on porous materi-
als, free energy grids are routinely calculated in the course
of their characterization. For that reason, our energy maps
can be obtained at almost no additional cost. The usefulness
of our approach in studies of other similar systems will have
to be verified by chemists.

The two examples presented in Section 4, have involved
datasets defined in up to four dimensions. Our visualiza-
tion method can handle a much higher number of dimen-
sions; however, the number is currently limited in practice
to six to eight dimensions by the size and cost of calculat-
ing the energy defined on a reasonably discretized configu-
ration space. The time required to calculate the energy at one
point may vary between tenths of a second (classical force
field) to weeks (accurate ab initio quantum mechanics (QM).
We expect that one can generate three-dimensional energy
grids using ab initio QM, four- to five-dimensional grids us-
ing semi-empirical QM, and six- to eight-dimensional grids
using force fields.

We plan to further improve our approach to include ad-
ditional information, e.g., indicate lowest energy pathways
with distinct color. We also explore to further simplifica-
tion for large and/or complex graphs. For example, (i) dis-
play only selected fragment of a graph; (ii) simplification of
graphs, for example by partial clustering of nodes. Finally,
we intend to develop a user interface to interactively adjust
persistence and upper thresholds.
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Disclaimer

This document was prepared as an account of work spon-
sored by the United States Government. While this docu-
ment is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the
Regents of the University of California, nor any of their em-
ployees, makes any warranty, express or implied, or assumes
any legal responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific com-
mercial product, process, or service by its trade name, trade-
mark, manufacturer, or otherwise, does not necessarily con-
stitute or imply its endorsement, recommendation, or favor-
ing by the United States Government or any agency thereof,
or the Regents of the University of California. The views
and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any
agency thereof or the Regents of the University of Califor-
nia.
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