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Background 
▪  HipGISAXS: 

a massively-parallel 
high-performance 
grazing incidence small angle 
X-ray scattering data analysis 
software. 

 
▪  Written in C++ with 

MPI + OpenMP [+ CUDA.] 

▪  Double-precision complex 
number computations. 
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An Example Kernel 
for(int z = 0; z < nqz; ++ z) { // O(106) 
    int y = z % nqy;
    vector3c_t mq = rotate(qx[y], qy[y], qz[z], rot);
    complex_t qpar = sqrt(mq[0] * mq[0] + mq[1] * mq[1]);  
 

    ... more computations ...  
 

    complex_t temp_ff(0.0, 0.0);
    for(int i_r = 0; i_r < rsize; ++ i_r) { // O(1) - O(10) 
        for(int i_h = 0; i_h < hsize; ++ i_h) { // O(1) - O(10) 
 

            ... more computations ...
 

            complex_t expo_val = exp(0.5 * mq[3] * h[i_h]);
            complex_t sinc_val = sinc(0.5 * mq[3] * h[i_h]);
            complex_t bess_val = cbessj(qpar * r[i_r], 1) / (qpar * r[i_r]);
            temp_ff += sinc_val * expo_val * bess_val;
        }
    }  
 

    ... more computations ...  
 

    complex_t temp2 = exp(temp1);
    ff[z] = temp_ff * temp2;
}
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Optimizing for Intel Processors: 
Platforms for Analysis 

▪  Edison (Cray XC30) @ NERSC: 
▪  Intel Ivy Bridge (Xeon E5-2695). 12 cores. 

▪  Babbage @ NERSC: 
➢  Intel Xeon Phi (KNC). 60 cores. 
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Optimizing for Intel Processors: 
Threading 

▪  Mostly embarrassingly-parallel computations. 
▪  Primary performance analysis tools used: 

▪  Intel VTune, TAU, PAPI. 

▪  Effective threading using OpenMP: 

On Edison: 
(Ivy Bridge) 

On Babbage: 
(MIC/KNC) 
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Kernel Vectorization: Attempt 1 

▪  Compiler-based auto-vectorization. (Intel compiler 15.0.) 
▪  Requirements for auto-vectorization: 

▪  Loop should be single-block, typically without branches/jumps. 
▪  Loop must be countable. 
▪  No backward loop-carried dependencies. 
▪  No special functions or subroutine calls (unless inlined.) 
▪  Generally inner-most loop in a nest. 
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Kernel Vectorization: Attempt 1 

▪  Compiler-based auto-vectorization. (Intel compiler 15.0.) 
▪  Requirements for auto-vectorization: 

▪  Loop should be single-block, typically without branches/jumps. 
▪  Loop must be countable. 
▪  No backward loop-carried dependencies. 
▪  No special functions or subroutine calls (unless inlined.) 
▪  Generally inner-most loop in a nest. 

 

▪  Pragmas and explicit directives failed. 

✔ 

✔ 

✔ 

✖ 

✖ 
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Kernel Vectorization: Attempt 2 
▪  Using Intel Math Kernel Library (MKL): 

▪  VML and CBLAS (level 1) vector functions. 
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Kernel Vectorization: Attempt 2 
▪  Using Intel Math Kernel Library (MKL): 

▪  VML and CBLAS (level 1) vector functions. 
 

▪  Default VML mode HA (High Accuracy, 1 ulp.) 
➢  IvyBridge: Time = 2.91x base [speedup = 0.34], # instructions = 3.81x base. 
➢  MIC: Time = 0.82x base [speedup = 1.23]. 

▪  VML mode LA (Low Accuracy, 4 ulp.) 
➢  IvyBridge: Time = 2.68x base [speedup = 0.37], # instructions = 3.49x base. 
➢  MIC: Time = 0.42x base [speedup = 2.41]. 

▪  VML mode EP (Enhanced Performance, 50% bits accurate.) 
➢  IvyBridge: Time = 0.50x base [speedup = 1.98], # instructions = 0.61x base. 

➢  MIC: Time = 0.086x base [speedup = 11.64]. 
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Kernel Vectorization: Attempt 3 

▪  Using Intel AVX instrinsics. 
▪  Implemented complex number operations with instrinsics. 
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▪  Using Intel AVX instrinsics. 
▪  Implemented complex number operations with instrinsics. 
▪  Used hybrid AoS and SoA. E.g.: 

inline avx_m256c_t avx_mul_ccp(avx_m256c_t a, avx_m256c_t b) {
    avx_m256c_t v;
    avx_m256_t temp1 = _mm256_mul_pd(a.real, b.real);
    avx_m256_t temp2 = _mm256_mul_pd(a.imag, b.imag);
    avx_m256_t temp3 = _mm256_mul_pd(a.real, b.imag);
    avx_m256_t temp4 = _mm256_mul_pd(a.imag, b.real);
    v.real = _mm256_sub_pd(temp1, temp2);
    v.imag = _mm256_add_pd(temp3, temp4);
    return v;
}

typedef struct {  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Kernel Vectorization: Attempt 3 

▪  Using Intel AVX instrinsics. 
▪  Implemented complex number operations with instrinsics. 
▪  Used hybrid AoS and SoA. E.g.: 

▪  Performance: 
➢  Time = 0.35x base [speedup = 2.86], # instructions = 0.28x base. 

inline avx_m256c_t avx_mul_ccp(avx_m256c_t a, avx_m256c_t b) {
    avx_m256c_t v;
    avx_m256_t temp1 = _mm256_mul_pd(a.real, b.real);
    avx_m256_t temp2 = _mm256_mul_pd(a.imag, b.imag);
    avx_m256_t temp3 = _mm256_mul_pd(a.real, b.imag);
    avx_m256_t temp4 = _mm256_mul_pd(a.imag, b.real);
    v.real = _mm256_sub_pd(temp1, temp2);
    v.imag = _mm256_add_pd(temp3, temp4);
    return v;
}

typedef struct {  
    __mm256d real;  
    __mm256d imag;  
} avx_m256c_t;
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Conclusions and Insights 
▪  Auto-vectorization does not always work. 

▪  Intrinsics are best for DP/complex computations. 
▪  Provide most flexibility in achieving higher performance for non-typical computes. 

▪  Biggest surprises: Intel MKL performance, e.g. v?Exp()
• DP complex, average MKL time = 0.93x base [speedup = 1.08] 

• DP real, average MKL time = 0.53x base [speedup = 1.87] 

• SP complex, average MKL time = 0.34x base [speedup = 2.97] 

• SP real, average MKL time = 0.25x base [speedup = 4.07] 

▪  Would be great if efficient implementations of special 
functions like Bessel, Sinc were available. 

▪  Already taking Intel’s help. 
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