
IXPUG15 Berkeley Workshop Submission 1

High-Performance X-Ray Scattering
Data Analysis

Abhinav Sarje
Computer Research Scientist

Lawrence Berkeley National Laboratory
Berkeley, CA

IXPUG15 Berkeley Workshop Submission 2

Background
▪  HipGISAXS:

a massively-parallel
high-performance
grazing incidence small angle
X-ray scattering data analysis
software.

▪  Written in C++ with

MPI + OpenMP [+ CUDA.]

▪  Double-precision complex
number computations.

IXPUG15 Berkeley Workshop Submission 3

An Example Kernel
for(int z = 0; z < nqz; ++ z) { // O(106)
 int y = z % nqy;
 vector3c_t mq = rotate(qx[y], qy[y], qz[z], rot);
 complex_t qpar = sqrt(mq[0] * mq[0] + mq[1] * mq[1]);  

 ... more computations ...  

 complex_t temp_ff(0.0, 0.0);
 for(int i_r = 0; i_r < rsize; ++ i_r) { // O(1) - O(10)
 for(int i_h = 0; i_h < hsize; ++ i_h) { // O(1) - O(10)

 ... more computations ...

 complex_t expo_val = exp(0.5 * mq[3] * h[i_h]);
 complex_t sinc_val = sinc(0.5 * mq[3] * h[i_h]);
 complex_t bess_val = cbessj(qpar * r[i_r], 1) / (qpar * r[i_r]);
 temp_ff += sinc_val * expo_val * bess_val;
 }
 }  

 ... more computations ...  

 complex_t temp2 = exp(temp1);
 ff[z] = temp_ff * temp2;
}

IXPUG15 Berkeley Workshop Submission 4

Optimizing for Intel Processors:
Platforms for Analysis

▪  Edison (Cray XC30) @ NERSC:
▪  Intel Ivy Bridge (Xeon E5-2695). 12 cores.

▪  Babbage @ NERSC:
➢  Intel Xeon Phi (KNC). 60 cores.

IXPUG15 Berkeley Workshop Submission 5

Optimizing for Intel Processors:
Threading

▪  Mostly embarrassingly-parallel computations.
▪  Primary performance analysis tools used:

▪  Intel VTune, TAU, PAPI.

▪  Effective threading using OpenMP:

On Edison:
(Ivy Bridge)

On Babbage:
(MIC/KNC)

IXPUG15 Berkeley Workshop Submission 6

Kernel Vectorization: Attempt 1

▪  Compiler-based auto-vectorization. (Intel compiler 15.0.)
▪  Requirements for auto-vectorization:

▪  Loop should be single-block, typically without branches/jumps.
▪  Loop must be countable.
▪  No backward loop-carried dependencies.
▪  No special functions or subroutine calls (unless inlined.)
▪  Generally inner-most loop in a nest.

IXPUG15 Berkeley Workshop Submission 7

Kernel Vectorization: Attempt 1

▪  Compiler-based auto-vectorization. (Intel compiler 15.0.)
▪  Requirements for auto-vectorization:

▪  Loop should be single-block, typically without branches/jumps.
▪  Loop must be countable.
▪  No backward loop-carried dependencies.
▪  No special functions or subroutine calls (unless inlined.)
▪  Generally inner-most loop in a nest.

✔

✔

✔

✖

✖

IXPUG15 Berkeley Workshop Submission 8

Kernel Vectorization: Attempt 1

▪  Compiler-based auto-vectorization. (Intel compiler 15.0.)
▪  Requirements for auto-vectorization:

▪  Loop should be single-block, typically without branches/jumps.
▪  Loop must be countable.
▪  No backward loop-carried dependencies.
▪  No special functions or subroutine calls (unless inlined.)
▪  Generally inner-most loop in a nest.

▪  Pragmas and explicit directives failed.

✔

✔

✔

✖

✖

IXPUG15 Berkeley Workshop Submission 9

Kernel Vectorization: Attempt 2
▪  Using Intel Math Kernel Library (MKL):

▪  VML and CBLAS (level 1) vector functions.

IXPUG15 Berkeley Workshop Submission 10

Kernel Vectorization: Attempt 2
▪  Using Intel Math Kernel Library (MKL):

▪  VML and CBLAS (level 1) vector functions.

▪  Default VML mode HA (High Accuracy, 1 ulp.)
➢  IvyBridge: Time = 2.91x base [speedup = 0.34], # instructions = 3.81x base.
➢  MIC: Time = 0.82x base [speedup = 1.23].

IXPUG15 Berkeley Workshop Submission 11

Kernel Vectorization: Attempt 2
▪  Using Intel Math Kernel Library (MKL):

▪  VML and CBLAS (level 1) vector functions.

▪  Default VML mode HA (High Accuracy, 1 ulp.)
➢  IvyBridge: Time = 2.91x base [speedup = 0.34], # instructions = 3.81x base.
➢  MIC: Time = 0.82x base [speedup = 1.23].

▪  VML mode LA (Low Accuracy, 4 ulp.)
➢  IvyBridge: Time = 2.68x base [speedup = 0.37], # instructions = 3.49x base.
➢  MIC: Time = 0.42x base [speedup = 2.41].

IXPUG15 Berkeley Workshop Submission 12

Kernel Vectorization: Attempt 2
▪  Using Intel Math Kernel Library (MKL):

▪  VML and CBLAS (level 1) vector functions.

▪  Default VML mode HA (High Accuracy, 1 ulp.)
➢  IvyBridge: Time = 2.91x base [speedup = 0.34], # instructions = 3.81x base.
➢  MIC: Time = 0.82x base [speedup = 1.23].

▪  VML mode LA (Low Accuracy, 4 ulp.)
➢  IvyBridge: Time = 2.68x base [speedup = 0.37], # instructions = 3.49x base.
➢  MIC: Time = 0.42x base [speedup = 2.41].

▪  VML mode EP (Enhanced Performance, 50% bits accurate.)
➢  IvyBridge: Time = 0.50x base [speedup = 1.98], # instructions = 0.61x base.

➢  MIC: Time = 0.086x base [speedup = 11.64].

IXPUG15 Berkeley Workshop Submission 13

Kernel Vectorization: Attempt 3

▪  Using Intel AVX instrinsics.
▪  Implemented complex number operations with instrinsics.

IXPUG15 Berkeley Workshop Submission 14

Kernel Vectorization: Attempt 3

▪  Using Intel AVX instrinsics.
▪  Implemented complex number operations with instrinsics.
▪  Used hybrid AoS and SoA. E.g.:

typedef struct {  
 __mm256d real;  
 __mm256d imag;  
} avx_m256c_t;

IXPUG15 Berkeley Workshop Submission 15

Kernel Vectorization: Attempt 3

▪  Using Intel AVX instrinsics.
▪  Implemented complex number operations with instrinsics.
▪  Used hybrid AoS and SoA. E.g.:

inline avx_m256c_t avx_mul_ccp(avx_m256c_t a, avx_m256c_t b) {
 avx_m256c_t v;
 avx_m256_t temp1 = _mm256_mul_pd(a.real, b.real);
 avx_m256_t temp2 = _mm256_mul_pd(a.imag, b.imag);
 avx_m256_t temp3 = _mm256_mul_pd(a.real, b.imag);
 avx_m256_t temp4 = _mm256_mul_pd(a.imag, b.real);
 v.real = _mm256_sub_pd(temp1, temp2);
 v.imag = _mm256_add_pd(temp3, temp4);
 return v;
}

typedef struct {  
 __mm256d real;  
 __mm256d imag;  
} avx_m256c_t;

IXPUG15 Berkeley Workshop Submission 16

Kernel Vectorization: Attempt 3

▪  Using Intel AVX instrinsics.
▪  Implemented complex number operations with instrinsics.
▪  Used hybrid AoS and SoA. E.g.:

▪  Performance:
➢  Time = 0.35x base [speedup = 2.86], # instructions = 0.28x base.

inline avx_m256c_t avx_mul_ccp(avx_m256c_t a, avx_m256c_t b) {
 avx_m256c_t v;
 avx_m256_t temp1 = _mm256_mul_pd(a.real, b.real);
 avx_m256_t temp2 = _mm256_mul_pd(a.imag, b.imag);
 avx_m256_t temp3 = _mm256_mul_pd(a.real, b.imag);
 avx_m256_t temp4 = _mm256_mul_pd(a.imag, b.real);
 v.real = _mm256_sub_pd(temp1, temp2);
 v.imag = _mm256_add_pd(temp3, temp4);
 return v;
}

typedef struct {  
 __mm256d real;  
 __mm256d imag;  
} avx_m256c_t;

IXPUG15 Berkeley Workshop Submission 17

Conclusions and Insights
▪  Auto-vectorization does not always work.

▪  Intrinsics are best for DP/complex computations.
▪  Provide most flexibility in achieving higher performance for non-typical computes.

▪  Biggest surprises: Intel MKL performance, e.g. v?Exp()
• DP complex, average MKL time = 0.93x base [speedup = 1.08]

• DP real, average MKL time = 0.53x base [speedup = 1.87]

• SP complex, average MKL time = 0.34x base [speedup = 2.97]

• SP real, average MKL time = 0.25x base [speedup = 4.07]

▪  Would be great if efficient implementations of special
functions like Bessel, Sinc were available.

▪  Already taking Intel’s help.

IXPUG15 Berkeley Workshop Submission 18

Acknowledgements

▪  This work was performed as part of the “Lawrence Berkeley
National Lab Intel Parallel Computing Center.”

▪  This work used resources at NERSC supported by the Office of
Science of the U.S. DoE under Contract No. DE-
AC02-05CH11231.

▪  Inputs/suggestions were obtained from Intel folks:
Marius Cornea, Jingwei Zhang, CJ Newburn, Hideki Saito.

