Analysis and Tuning of Libtensor Framework on
Multicore Architectures

Khaled Z. Ibrahim, Samuel W. Williams
Computational Research Division,
Lawrence Berkeley National Laboratory,
Berkeley, CA, USA
{kzibrahim, swwilliams} @1bl.gov

Abstract—Libtensor is a framework designed to implement
the tensor contractions arising form the coupled cluster and
equations of motion computational quantum chemistry equations.
It has been optimized for symmetry and sparsity to be memory
efficient. This allows it to run efficiently on the ubiquitous and
cost-effective SMP architectures. Unfortunately, movement of
memory controllers on chip has endowed these SMP systems
with strong NUMA properties. Moreover, the manycore trend
in processor architecture demands that the implementation be
extremely thread-scalable on node. To date, Libtensor has been
generally agnostic of these effects. To that end, in this paper,
we explore a number of optimization techniques including a
thread-friendly and NUMA -aware memory allocator and garbage
collector, tuning the tensor tiling factor, and tuning the scheduling
quanta. In the end, our optimizations can improve the perfor-
mance of contractions implemented in Libtensor by up to 2Xx on
representative Ivy Bridge, Nehalem, and Opteron SMPs.

Index Terms—tensor algebra, parallel programming, quantum
chemistry software.

I. INTRODUCTION

Quantum chemistry methods are based on the exact
quantum-mechanical principles; they enable predictive stud-
ies of electronic structure, chemical properties, and spec-
troscopy [9l]. Practical methods are based on approximate
solutions of the Schroedinger equations, yet, their cost scales
polynomially rather than linearly with the system size. This
curbs the size of systems that can be studied by these meth-
ods. The time required to perform a certain calculation is
also important; for example, certain types of research (e.g.,
condensed phase) require many thousands of calculations on
relatively small systems. Thus, efficient implementations of
electronic structure methods have always been crucial for
the computational chemistry community. Taking advantage of
parallel architectures mitigates the scaling problem and also
reduces time to perform a given calculation.

Power-efficiency is motivating computer architects to
rapidly increase the number of cores per compute node, instead
of increasing the computational capabilities (e.g. frequency or
instruction-level parallelism) within a core. Similarly, perfor-
mance motivations demand a complex memory hierarchy. In
addition to multi-level caching, the memory systems could
be split across multiple domains, creating a non-uniform
memory access (NUMA) address space. Increasing parallelism
requires rethinking algorithms to eliminate most serialization
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events. Complex memory systems make explicit management
of locality a necessity to achieve a good performance.

Quantum chemistry methods based on many-particle com-
putations typically involve tensor computations. Tensor com-
putation exists in many other physical and computational
sciences. The biggest challenges for such computation are the
large dataset and high computational demands.

In this work, we explore performance analysis and tuning
for the Libtensor [S)] framework. This framework provides an
efficient engine for quantum chemistry computation using the
shared-memory programming model. In order to solve larger
problems in a constrained physical memory, Libtensor takes
advantage of tensor sparsity that arises from spin and point
symmetry. To load balance the workload, Libtensor uses
a task-based computational model. The library outperforms
other efficient implementations, such as Molpro [18] for the
same class of problems as detailed in [J5]].

This paper tackles the challenge of improving the scala-
bility of Libtensor framework with respect to thread concur-
rency. Nominally, this framework typically attains a sublinear
speedup and reduced efficiency as one increases the core
count. The work presented in this paper analyzes the break-
down of execution time and explains the reasons for impaired
scaling. This framework faces challenges in exploiting locality,
load-balancing the computation, and avoiding serialization. In
this work, we devise solutions to tackle such challenges and
achieve better performance and scaling behavior.

This paper makes the following contributions. It provides an
in-depth analysis of the computational constraints of the tensor
contractions in Libtensor framework. We specifically provide
analysis for the locality management challenges and the load-
balancing difficulties. We present a new memory management
system that allows better control of locality and also reduces
the overhead of memory management under high concurrency.
Additionally, we demonstrate how to achieve better scaling by
tuning several key parameters. The presented strategy achieves
a 2x performance gain over the tuned baseline implementation
on a 32-core AMD opteron-based systems as well as a 24-core
Intel Ivy-bridge.

The rest of this paper is organized as follows. Section in-
troduce a brief review of related work. In Section we
present the experimental setup. In Section[[V] we briefly intro-



TABLE I
TEST CASES FOR CCSD CALCULATIONS.
P1 P2 P3
Problem  Uracil methylated uracil methylated uracil
water dimer water cluster
cc-pVTZ (mU—H20) (mU)2—H>0
6-311+G(d,p) 6-31+G(d,p)
Basis functions 296 302 489
Symmetry Cl Cs C1

duce Libtensor framework and its computational constraints.
In depth analysis for computation constraints in Libtensor is
introduced in Section Our performance optimization and
tuning efforts are detailed in Section Section con-
cludes our paper.

II. RELATED WORK

Tensor computations, being a natural extension of matrix
computations to many dimensions, are used to solve many-
body problems in physics, in particular in quantum chemistry
and nuclear physics. Most of the tools previously developed
are specific to their applications and lack transferability.
Among those targeting large-scale distributed systems are
TCE [10], the ACES/SIAL framework [15]. CFOUR [17]
and MRCC [13] target both distributed and shared-memory
architectures, but also remain application-specific. Recently,
general-purpose tensor tools started to receive more attention,
for example CTF [16] and TiledArray [4].

Generally speaking, there are two primary challenges that all
of these tensor tools face when converting a physical problem
into an efficient computer program. First, they need to provide
an interface that allows one to describe the physical problem
as a set of tensor equations, and second, there needs to be
a runtime environment that is capable of computing those
equations. TCE and SIAL handle the complexity by enabling
one to write an electronic structure operator and compute
its tensor representation. Programming is done through code
generation in Fortran (TCE) or a domain-specific program-
ming language (SIAL). CTF and TiledArray provide a general
programming interface making them open to applications
outside of electronic structure theory.

From the parallel communication standpoint, the packages
mentioned here use either a one-sided model, for instance the
use of global arrays in NWChem, or a two-sided model such
as MPI in CTF. While providing attractive solutions for large-
scale runs, they typically suffer large overheads on small ma-
chines. Moreover, they typically rely on the aggregation of the
physical memory of many light-weight compute nodes in order
to accommodate a large problem. Working in a distributed
memory environment influences many of their design choices.
For instance, exploitation of some form of symmetry and
sparsity can lead to complex communication patterns. In such
cases, scaling (parallel) efficient implementations can dictate
some performance inefficient consequences. These packages
face similar challenges, including how to load-balance the
computation, how to manage locality, and how to efficiently
execute computation while providing an easy interface.

TABLE I
SYSTEMS USED IN THIS STUDY.

Edison Trestles Carver
Core Arch Intel AMD Intel
Ivy Bridge Magny-Cours Nehalem-EX
Clock (GHz) 24 2.4 2.0
Cores 24 32 32
DP Gflops 461 307 256
D$/core(KB) 32+256 644512 32+256
LL$/chip(MB) 30 5 18
NUMA domains 2 8 4
Memory (GB) 64 64 1000
System Software
Complier Intel icc 14.0.2 Intel icc 13.0.1 Intel icc 13.0.1

BLAS Routine Intel mkl 13.0.3 Intel mkl 13.0.1 Intel mkl 13.0.1

Libtensor [J5] is a general-purpose tensor algebra library that
targets problems that can be solved within a single node. It
adopts the shared-memory programming model and exploits
multiple forms of symmetry including permutational symme-
try, spin symmetry, and point group symmetry to minimize
memory usage and floating point operation count.

III. EXPERIMENTAL SETUP
A. Test configurations

Table [l summarizes three canonical test cases used in this
study. These examples represent typical mid-size systems
amenable to high-level electronic structure calculations. All
three cases are of a closed-shell type; thus, they exploit both
permutational and spin symmetries that reduce the size of
unique data. Examples 1 and 2 also feature moderate point-
group symmetry.

B. Evaluated Systems

In this study, we used the three systems listed in Table
These systems have 24-32 cores per compute node. They also
exhibit different levels of NUMA locality, core count, caching
systems, and physical memory. The strongest NUMA effects
are associated with Trestles which is based on the AMD
Magny-Cours architecture and presents 8§ NUMA domains.
Carver nodes, based on Intel Nehalem-EX, have 1TB of phys-
ical memory and may thus run the large problems efficiently
(without paging). The Edison nodes, based on Intel Ivy Bridge,
are the most computationally capable, and also have the largest
cache capacity of the three computing systems.

As the computations were dominated by DGEMM calls, on
all systems, we used Intel MKL implementations of BLAS
routines to maximize performance.

IV. COMPUTATIONAL CHEMISTRY USING
LIBTENSOR FRAMEWORK

This section provides a brief overview of Libtensor frame-
work, depicted in Figure [I] The framework is composed of a
layered stack of libraries. At the top of the stack, the LibCC
library provides an easy interface to express computational
chemistry equations including coupled cluster (CC) and equa-
tion of motion (EOM). LibCC uses Libtensor to implement the
tensor contractions. In turn, Libtensor uses multiple libraries
to manage threading and dynamic memory management. For
further details refer to [5]].
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Fig. 1. A simplified depiction of Libtensor framework. The top library
(LibCC) facilitates the expression of computational chemistry equations.
Tensor computations are done by the Libtensor library using underlying
libraries to manage memory and tasking.

A. Computational Chemistry and Libtensor

Computational methods in electronic structure theory range
from relatively unsophisticated mean-field methods to state-
of-the-art many-body approaches [9]]. Coupled cluster (CC)
theory offers an hierarchy of practical and systematically
improvable many-body computational methods that are most
conveniently formulated in terms of tensor operations. Early
implementations of CC methods used equations based on ex-
plicit matrix multiplication, an approach that requires explicit
data manipulation and makes it very hard to develop new
methods. This motivated the development of computational
tools for tensors that address both the complexity of equations
and computational performance. Libtensor provides a natural
programming interface that resembles actual mathematical
expressions, and a modular internal structure that allows one
to adapt the algorithms to new computer architectures without
affecting high-level codes. Libtensor powers a family of CC
methods in Q-Chem, a popular general-purpose electronic
structure package [14]. While offering a convenient API,
Libtensor’s efficiency is competitive with the best codes based
on explicit matrix multiplication and data handling.

B. Block-Tensor

In currently practical CC calculations, tensor sizes are in
the gigabyte to terabyte range.To manipulate these arrays of
data Libtensor assumes the block-tensor format for the tensor
objects. In this representation tensors are broken down into
tiles along each dimension such that each resulting small block
represents a window in the original tensor and has the same
number of dimensions. Tiling size determines the total size of
each multi-dimensional block thus affecting the size of the data
elements operated on in the divide-and-conquer algorithms for
block-tensor algebra.

C. Handling Symmetry and Sparsity

Symmetries in the physical model in many-body theories
lead to structure in the tensors used for model description.
It is computationally advantageous to account for these sym-
metries, which at the tensor level manifest as symmetry
between tensor entries and sparsity. The block-tensor data
structure stores only non-zero symmetry-unique (canonical)
blocks and symmetry metadata for obtaining blocks related
by symmetry. All block-tensor algorithms must therefore be
aware of symmetry and sparsity, and usually a tensor operation
is performed in two steps: first the symmetry and sparsity of
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Fig. 2. Baseline Libtensor tasking model. Dependent subtasks are grouped
together into a task. Task independence reduces scheduling overhead.

result is computed, and second the computation of canonical
output blocks is performed.

D. Tasking Model

Libtensor uses a simple tasking model, shown in Figure 2]
in which the “master” thread is responsible for generating a
series of task lists based on the tensor operations. The task
lists, generated by the master, are placed into a shared queue
for all “worker” threads. The master notifies workers with the
availability of tasks and relinquishes its use of the compute
resources. Upon notification of task availability, worker threads
start moving tasks from the shared queue to local (thread-
private) queues. Workers execute their local tasks, and upon
completion they check for the availability of more tasks. If
more tasks are available, they simply repeat the previous steps.
Upon finishing all tasks, the master is awaken to generate the
next operation’s tasks and the workers sleep.

V. ANALYSIS OF THE COMPUTATIONAL CONSTRAINTS
FOR LIBTENSOR FRAMEWORK

Tensor frameworks have a complex set of constraints that
make performance tuning a challenge. The Libtensor frame-
work tries to solve computational chemistry problems with
large datasets using shared memory machines. The challenge
is to achieve efficient execution within constrained resources.
This section discusses the constraints that Libtensor considers.

A. Computational Composability and Productivity

One of the major computational challenges that most tensor
frameworks face is the numerous computational patterns that
the framework needs to support. Most frameworks provide
an easy interface for computational scientists to express their
mathematical formulations in a productive way. The computa-
tion is not only affected by the operation type, but also by the
data content attributes, for instance symmetry and sparsity.

To ease the problem representation, data manipulation and
storage properties are handled in a decoupled fashion. Com-
putation always uses the dense representation of tensors. The
storage of a tensor can be optimized based on the symmetry
and sparsity properties, which is specified by separate APIs.
This makes most of the information about the computation
available only at runtime. Obviously, this reduces the chance
for static analysis or static tuning. The computation is typically
composed of multiple independent steps. Ideally, tuning for a



Fig. 3. The impact of tiling size on the exploitation of symmetry. Larger tiles
cause explicit storage of non-canonical elements. For simplicity, we show the
two-dimensional case.

particular step should not negatively affect other steps. Obvi-
ously, composition of locally optimized steps does necessarily
guarantee global optimal performance.

B. Memory Requirements

The memory requirements of storing a tensor grow rapidly
with the basis set size, associated with molecular orbitals in
the studied problems, because of the high dimensionality of
tensors (typically in the order of 4 to 6 in the presented
cases). Fitting the dataset in the physical memory is critical to
performance. The alternative is to swap the dataset in and out
of the slow disk system and incur the large I/O latency and
limited bandwidth.

The typical technique is to exploit the physical properties
of the dataset to save storage. For instance, symmetry can
be used to save space by storing only canonical blocks and
use metadata to construct the remaining data. Similarly, data
sparsity (with zero values) are not stored explicitly. Instead,
they are replaced by meta data.

The high-level description of the problem equations typi-
cally use the dense format for representing the equations. The
symmetry properties of the data are provided by the user using
separate APIs. Although this leads to a clean description of the
problem, it imposes the following challenges. The processing
time for similar computations can differ at runtime depending
on the number of encountered zero or symmetric blocks.
Zero blocks reduce processing, while non-explicitly stored
symmetric blocks require additional processing to allocate a
buffer and to apply the symmetry operator.

The symmetry and sparsity properties are specified at the
block level as opposed to the natural element-wise level.
The objective is to reduce the ratio of meta data to the
actual floating-point data. The memory management, involving
frequent allocation and deallocation of the memory, is a
critical component of the system. This helps in reducing
the volume of the active dataset at runtime. This reduction
impacts the processing time for identical computations, thus
leading to load imbalance, and requiring the adoption of a
tasking runtime. In Figure [3] we show the implication of the
choice of the tile size on the exploitation of symmetry. The
larger the tile-size, the less saving based on symmetry. Larger
tiles typically lead to explicitly storing un-needed elements
especially across the diagonal blocks. On the other hand, the
smaller the tile size, the larger the meta-data needed for non-
explicitly stored blocks.
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Fig. 4. Contribution of different task granularities (visits) to the execution
time (total visits).

C. Load Balancing

The use of master/worker tasking model in Libtensor frame-
work stems from the difficulty to predict the computation
cost of a tensor operation, especially if storage optimization
are used. Typically a tensor contraction can be split into
logically independent tasks. Even for equally sized tasks,
the computation time depends on contents of the blocks
(sparsity) and whether they are explicitly stored (symmetry).
This creates a load-balance problem that a tasking model could
handle. Libtensor groups dependent computation into larger
logical tasks. Therefore, all tasks in the execution queues are
always independent. This alleviates the need for managing
dependency by the tasking runtime.

The load imbalance is problematic, whether we consider
the task level or subtasks (BLAS routines within a task). In
Figure 4] we show a histogram of different task granularities
as a ratio of the total execution time (red) as well as the cor-
responding number of visits (blue) to these task granularities
during a typical computatiorﬂ As shown, the task granularity
(run time) varies greatly in size, without a dominant task size.
This shows why load balancing is critical to performance. The
more alarming fact is that the vast majority of the task visits
are for fine-grained tasks. Many tasks need just a few thousand
cycles to complete. The implication is that the tasking runtime
should not incur a large overhead in making the scheduling
decision while dealing with severe load imbalance lest it
become the performance bottleneck.

Unfortunately, targeting subtasks (the BLAS routines) does
not lead to a less imposing task distribution. As shown in
Figure [5] the same trends for task distribution and visits are
experienced, except that they are associated with finer-grained
tasks. If subtasks are considered as the base scheduling quanta,
the scheduler should explicitly manage task dependencies.
Currently, Libtensor scheduler can handle only independent
tasks. This allows low-overhead scheduling decisions.

D. Data locality

The performance of BLAS routines, typically used in tensor
contractions, depends on the locality of the data. In most
architectures, cache hierarchies try to capture temporal locality
when repeatedly accessing data. Additionally, to scale the core

IThis experiment is done for problem P1 on Edison node with 24-way
parallelism.
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count while allowing a high bandwidth to the memory, archi-
tects design compute nodes with multiple memory domains,
creating non-uniform memory access (NUMA).

The location of the input data set influences the performance
of executing the BLAS routines. Obviously, if the input data
already resides in cache, then the time required to perform
the computation is greatly reduced. If data does not reside in
cache and the computation is memory latency bound, then
it is more efficient to fetch data from the same NUMA
domain. Conversely, if the computation is memory bandwidth
limited, then the distribution of data across multiple NUMA
domains can improve the performance by ensuring all memory
controllers are utilized. Ideally, we assign executing threads
tasks that maximize locality.

Programmers can reason about these constraints if the code
is statically scheduled. The challenge for our tensor computa-
tions is that tasks are assigned dynamically to improve the load
balance. Another challenge is that while a thread may reason
about the efficiency of executing a task, it cannot resolve
its relative merit compared with other threads. Resolving
competing efficiencies will require centralized decision for
global optimality, leading to a non-scalable scheme.

The tension between managing locality and load balance
is partly solved in this study by improving the memory
management system as discussed in Section [VI]

E. Parallelism and Task Granularity

The task granularity can be controlled by using the tiling
factor of the tensors. For most of the computation we present
in this study, the virtual orbits have the largest base values.
Thus, their data structures dominate the dataset.

Clearly, larger tiles increase the task granularity, but the
number of tasks is reduced. A larger task count allows for
increased opportunity for load balancing and for scaling across
multiple cores. On the other hand, it increases the sensitivity
to scheduling overheads. The tradeoffs are difficult to resolve
statically. Whether an application benefits from the increased
parallelism or reduced scheduling overheads, is a question that
we will try to answer through runtime space exploration with
different scheduling parameterizations.

The task creation in Libtensor is inherently a serial operation
that is performed solely by the master thread. Additionally,
scheduling decisions are also inherently serial, with the caveat
that workers may move multiple tasks from the main queue
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Fig. 6. Base memory allocation systems. Multithreaded access is serialized
to provide mutually exclusive access to the shared heap.

to their local queues to make the serialization events brief.
Memory management (allocation and deallocation) events
need to be serialized if the memory pool is shared across all
threads. These serialization instances can limit the maximum
attainable speedup based on Amdahl’s law [1]].

VI. PERFORMANCE TUNING AND REFINEMENT

Performance tuning for tensor contractions is a challenging
task because the computational pattern is influenced by many
runtime conditions. In this section, we discuss some of the
techniques we adopted to improve the performance tensor
computations in Libtensor.

A. Explicit Locality Management

The base Libtensor implementation does not handle locality
in any fashion because of the difficulty in performing static
analysis and the requirement of load balancing. Runtime
locality analysis can increase scheduling overheads and load
balancing can conflict with locality-based scheduling. Given
that the allocation heap is a shared resource, allocation and
deallocation must be serialized to maintain a consistent state.
This serialization is either explicitly done by the memory
management library or by the threading library, for instance,
pthreads. The advantage of using a shared heap is the better
utilization of memory resources under allocation imbalance.

In this work, we aim to achieve multiple objectives. First,
we wish to improve the locality through a better memory
allocation strategy. Second, we wish to reduce the serialization
associated with the allocation and de-allocation events. To
achieve that, we introduce a new memory management system,
depicted in Figure The new system creates a separate
memory pool for each thread. As allocations are performed
using a common object, we resolve the mapping between
threads and the allocators using an identifier stored in the
thread private data. Thus, concurrent allocations by workers
do not involve any serialization. The master thread has also a
separate memory resource pool which is typically much larger
than those assigned to threads. The system configurations are
discovered dynamically at runtime.

The introduced memory management system is built on
top of our modified version of mmalloc library [6] in order
to provide multiple separate heaps using the functionality
provided by libnuma [12] library to manage NUMA-aware



allocations. The memory manager controls the association
between threads, the allocator instances, NUMA policy, and
garbage collection mechanisms. Some allocators, such as TC-
Malloc [8] reduces the overhead of serialization for threaded
applications using cached allocations. This allocator targets
limited object sizes (typically small) that fits in a small cache,
otherwise it uses the central allocator. It does not also provide
control over NUMA placement.

In Libtensor, an object allocated by a thread can be used
or deallocated by another worker thread or by the master
thread. Therefore, while freeing objects, we cannot use the
thread id to guide the selection of the allocator. Instead we
use the affinity of the object to select the allocator. The
challenge with this approach is that to have a consistent state
we need to serialize the access by using a lock as one thread
may be allocating while another is deallocating. To avoid
such serialization, we created a simple garbage collection
mechanism in which one thread, trying to free an object not
allocated by its allocator, places the deallocated object in a
recycle buffer for the allocator thread. We allocate recycle
buffers such that each pair of threads has a unique one, thus
no serialization is involved during deallocation.

The other objective of having these separate allocation pools
is to control the NUMA locality. To achieve that, we restrict
the migration of worker threads to cores attached to a single
NUMA domain. Then, we control the allocation policy to favor
the physical memory attached to the thread NUMA domain.
Managing NUMA locality while load-balancing workload is
typically achieved either through migrating data to workers [3]]
or assigning workers based on their proximity to data [2]. For
Libtensor, a large fraction of the working set is created after
task assignment making traditional techniques not directly
applicable.

The master thread in our implementation receives a special
treatment. Its migration is not bound to a single NUMA do-
main. Additionally, its memory pool is spread across multiple
NUMA domains in a round-robin fashion. The motivation of
this choice is that any thread can access objects allocated
by the master, thus we cannot optimally reason about the
locality. Instead we can maximize performance by balancing
the load on the memory controllers. The data allocated by the
master typically persist during the run and are less likely to
be deallocated. The placement of the master thread depends
on the availability of cores. Although this mechanism does
not guarantee optimal locality placement, we will show in the
next sections its effectiveness in improving the performance.
It also does not involve sophisticated analysis at runtime.

B. Space Exploration for Performance Tuning Parameters

As discussed earlier, it is difficult to statically reason about
the performance impact of alternative parameterizations or
implementations given the dynamic nature of the workload.

We decided to tackle this challenge using space exploration
in which we study the impact of changing multiple tuning
parameters on performance. For the purpose of this study, we
focus on two parameters. The first is the tiling factor, which is
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Fig. 7. New memory management system that handles NUMA locality and
reduce contention while acquiring or releasing the memory resources.

expressed as a scaling applied to a base block size of four. As
the default tile size in Libtensor is 16, the base tile factor is 4.
Tiling can be applied to multiple dimensions including virtual
orbit, occupied orbits, etc. We have chosen the exploration
of different tiling factors for the virtual orbits because they
are typically associated with the largest base function, making
them the dataset size dominant. Additionally, tensor operations
involving virtual orbits dominate the execution time. Never-
theless, the tiling exploration could be performed for other
dimensions as well.

We decide also to explore the scheduling quanta, which
is used by the worker threads to move tasks en masse from
the main queue to their thread local queues. The default
quantum in the base implementation is four. This base value
is considered to reduce the lock contention during scheduling
without severely impacting the load balance.

VII. PERFORMANCE RESULTS AND ANALYSIS

In this section, we show the performance with the base vs.
the new memory management systems with space exploration
of tiling and scheduling parameters.

A. Space Exploration

In Figure [§] we present the performance improvement
relative to the tuned baseline implementation for different
scheduling quanta and tiling sizes on Trestles system using
the original (top) and new (bottom) memory management
schemes. The default tasking and tiling factors are both 4.

The first trend we observe is that increasing the tile size gen-
erally improves performance when we have a small scheduling
quantum (y-axis =1). The reason is that the scheduling over-
head is reduced with the fewer scheduling instances. Large
tile size also reduces the level of parallelism, which will be
quantified later. Combining large scheduling quanta with large
tile size leads to a irrecoverable load imbalance thus degrading
the performance degrades on the right-bottom corners of the
figures. Additionally, larger tiles lead to more computation and
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Fig. 8. Performance improvement with space exploration using multiple tiling
factors and scheduling quanta (P1 on Trestles using 32 threads) using either
the original (top) or new (bottom) memory management schemes

larger dataset. Therefore, these configurations further stress
the memory and floating-point units. The second observation
is that the performance improvement for the right side of the
figure (subfigure b—the new memory system), outperforms the
base system. The performance difference ranges between 20%
to 60%. Overall, we achieve by combining space exploration
with the new memory management system more than 2Xx
improvement.

In Figure 0] we show the same problem running on an
Edison node. While, we generally see similar trends to those
on Trestles, we see a couple of distinct behaviors. First, the
improvement is more monotonic with the new memory system.
As such, the top-right corner is delivering the best perfor-
mance. Second, combining large tile-size with large scheduling
quantum leads to an imbalance that leads to exhausting the
local allocator in which one runs out of memory (OoM). Please
note that threads are allocated equal amount of memory and
we do not implement any heap stealing or dynamic resizing
at runtime. The monotonic improvement on Edison attests for
its powerful compute node, its ability to handle higher flop
rates, and its ability to sustain more memory traffic. Please
note the absolute performance for Edison is about 1.8 x better
than Trestles.

The optimal configuration for performance differs from
one machine to the other. On Trestles a tiling factor of 6
and smallest scheduling quanta delivers the best performance,
while on Edison the tile factor has to be 8. This suggests a
need for auto-tuning if we wish to relieve the user from the
burden of manually searching for the best configuration.

Edison and Trestles stress two different aspects of the new
memory systems. Trestles has a strong NUMA locality (8
NUMA domains and a more than 2x difference in access
latency between the domains). Edison has only 2 NUMA

Tasking queue size (def:4)

1 1 1 1 1 1 1

2.0

1 153 166 1.68 r
X
g 15
8 29 154 157 155 OoM r
o
] 10
3 44 131 128 133 OoM
j=2)
£
% 05
& 8 103 099 105 OoM r

T T T T T T T

2 3 4 5 6 7 8

Tiling factor (def:4)
Fig. 9. Performance improvement with space exploration using multiple tiling
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domains, with much smaller sensitivity to NUMA locality.
Edison benefits more from reducing the serialization in the
allocation and deallocation processes, while Trestles benefits
more from the better NUMA management.

Figure[I0]shows the performance across the tuning space for
a relatively large problem with a dataset of several hundred
GBs. We ran this problem on a special compute node with
1TB physical memory (Carver). The first observation is that,
while we observe similar performance improvement trends,
but the improvement is smaller, at most 29%. We attribute the
difference between the improvement on Edison and Carver to
the computational power of the cores. The higher the perfor-
mance, the more likely to be impacted by the serialization
events. Carver uses an older generation of SSE-based Intel
Nehalem-EX processors, while Edison uses modern AVX-
based Intel Ivy-bridge processors. The large memory node
also has a much slower memory system. The Ivy bridge has
a larger L3 cache (30MB per chip compared with 18MB
for the Nehalem-EX). The larger dataset is not a big factor
in the performance difference because the task size is more
influenced by the tile size than the whole dataset. We conclude
that the importance of having a distributed allocator increases
with the improvement in processor performance.
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Fig. 11. Performance improvement with space exploration using multiple

tiling factors and scheduling quanta for the new memory management system
(P2 on Edison using 24 threads).

In Figure [IT] we present the space exploration for P2 on
Edison. This problem also achieves significant performance
improvements, up to 1.94x. These results suggest that the
gains arising from our optimizations and tuning are indepen-
dent of the problem. The improvement trends are consistent
across multiple problems.

B. Execution Time Decomposition

In Figure [I2] we show the execution time decomposition
for the master and the worker threads for different run con-
figuration. The first set of configurations correspond a vertical
cut at Figure [9] bottom at a tile size of six. The second set of
configurations corresponds to a horizontal cut at a scheduling
quantum of one. For the master we split the execution time
between task creation and wait for the worker. For the worker
the execution time is split between BLAS computation (using
Intel MKL implementation [[11]]), queue management, and load
imbalance.

The fixed-tile configuration (top) shows that increasing the
scheduling quantum increases the load imbalance. The imbal-
ance almost doubles the worker execution time. The fixed-
schedule configuration (bottom) shows that the scheduling
overhead (worker other) increases as we decrease the tile
size. The load imbalance increases by having a small tile
size. As the overheads decrease, we start exposing some
of the algorithmic limitations of the Libtensor framework.
For instance, the master overhead for creating tasks starts
becoming a scaling bottleneck. In the current implementation,
the master does not overlap the task creation with workers
executing them. Additionally, the tasking library does not
handle dependencies, thus one cannot enqueue tasks from
multiple dependent computational steps and have the tasks
execute in a correct order.

C. Parallelism and Memory Requirements

Figure [13] shows the frequency of allocation and dealloca-
tion during the execution of the P1 problem by the master
and the worker threads. Despite the fact that this problem
executes in relatively short period of time (12-30 seconds),
we observe that the allocation events have high frequency. For
instance for a tiling factor of 4, the application generates 468K
instances of allocations and deallocation events with more than
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and the worker threads.

90% occurring dynamically during the computation. This data
shows that any serialization, for instance due to the use of a
shared heap, can significantly impact the performance.

The increase in the tiling size reduces the frequency of
allocations. For instance, increasing the tiling factor from 4 to
8 reduces the frequency of allocations by 5.6 x. This suggests
that increasing the tiling factor is beneficial for reducing the
serialization, with the use of a centralized allocator.

The other observation is that the worker threads execute
most of the allocations, and the master executes most of the
deallocations. Typically, threads deallocate less than one third
of their allocations. Therefore, a garbage collection mechanism
is needed to break any dependency.

While these results suggest that increasing tiling factor
benefits performance, there are performance limiting factors
associated with increasing the tile size. In Figure [T4 we
show that impact of increasing the tiling size on the vol-
ume of allocation by noting the high watermark (memory
allocated) on Edison. For the worker threads, we aggregate
values across all workers. The increase in tiling factor that
typically improves the performance leads to an increase in
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memory usage. Doubling the tile size from 4 to 8 increases
the memory requirement of the workers by 2.2x. We note
that the master allocation requirement is fixed for all tiling
factors. These results show that the performance improvement
from tuning the tiling size is conditional upon fitting the
dataset within the physical memory. If we cause the memory
requirements to exceed the physical memory, an out-of-core
memory management will severely impact the performance.
Consequently, improving the performance for different tiling
sizes is of critical importance because physical memory could
dictate the operating point.

Figure [I5] highlights that impact of increasing the tiling
size on the level of parallelism in addition to the corre-
sponding memory requirements. We consider a problem with
large dataset, P3. We focused only on coarse-grained tasks
(needing at least 10ms for execution). Fine-grained tasks do
not typically improve the scaling across many cores because
of the overhead of scheduling. As we increase the tiling factor
from 4 to 8, the memory requirements increase by 1.6x . The
alarming trend is the decrease in the degree of parallelism by
3.6x. Obviously, this is due to combining smaller tasks into
larger ones. This decrease in parallelism can pose a challenge
if the number of cores increases. It also makes load-balancing
more challenging. The increase in core count may force the
library to deal with small tile-size. In such cases, reducing the
scheduling overhead and removing any serialization become
of crucial importance.

D. Strong Scaling

Figure [16] shows the scaling behavior for two problems
Pl & P2. In these figures we show the performance of
the base implementation, the performance with task stealing
(tuned), the performance with our new memory management
system (with the best of space exploration). We additionally
show a theoretical limit based on linear scaling of the base
implementation, and the the theoretical limit based on the

master serial time (Amdahl’s Limit). The performance im-
proves for all concurrency levels compared with the tuned
version by up to 2x. For P1, we see that we achieve the best
possible performance allowed by Amdahl’s law. To improve
the performance further, we need to change the tasking library
such that tasks from dependent computations are put in the
master queue concurrently. This put an additional requirement
of handling dependency between tasks at runtime. The reason
this has not been explored so far is the large count of visits
to the small tasks, shown in Figure |4, Managing dependency
at runtime is likely to increase the scheduling overhead across
all task sizes.

The data for P2 shows what appears to be an anomaly with
respect to scaling. The problem exhibits a superlinear speedup.
The reason for such behavior is that the problem exhibits a
speedup over the base scheme even for the serial execution
(by about 20%). This speedup is due to the distribution of
the dataset across multiple NUMA domains, which improves
the bandwidth to the memory by using multiple memory
controllers. The problem also benefits from the increased cache
size from the second chip as worker threads get distributed
across both sockets. Consequently, the performance exceeds
the linear scaling of the base. We noticed the same behavior
on Trestles systems for this problem. The performance of this
problem is sublinear with respect to the serial run with our
optimizations and space search. We explored the distribution
of the dataset for multiple NUMA domains for the P1 problem
with single thread, but the performance degrades. Having the
need to have a common way to compare the scaling, we have
chosen the base implementation as a reference.

Ultimately, to attain linear speedups, a major redesign is
necessary. First, we need to incorporate task dependencies
into the task scheduling. We need to execute bookkeeping
operations done by the master threads more efficiently. The
viability of such a design shift is still under-investigation
mainly because of the large percentage of small tasks involved
in the computations.

E. Complexity Hiding and Tuning Space

So far, we showed that performance improvement can be
obtained using a better memory management and space explo-
ration. While the new memory management proves to provide
advantage to all configurations, the space exploration can be
tricky due to the possibility to exhaust the physical memory. To
hide this complexity from the user, the Libtensor library needs
to embody this information into the library. This information
can be stored as tuning experiences, analogous to FFTW
wisdoms [7]]. This feature can be considered in future releases
of Libtensor.

VIII. CONCLUSIONS

In this paper, we present our efforts to analyze and tune
the Libtensor framework for quantum chemistry computations.
Our analysis shows that load-balancing the computation is
challenged by the large variability in task granularity and dom-
inance of small tasks. We show that memory management is
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also a major bottleneck for scaling because of the serialization
associated with the frequent dynamic allocations. We devise
a new memory management system that provides NUMA-
aware allocations. This system breaks the serialization between
threads during allocation through thread-specific heaps and
during deallocation using a garbage collector. We show also
that space exploration is needed to find optimal tiling and
scheduling decisions. Future work will target automating this
process. Overall, the studied benchmarks observed more than
2x improvement over the base implementation.
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