
q  Develop correctness tools for a large spectrum of
programming and execution models: PGAS, MPI,
dynamic parallelism"
q  Explore state-of-the-art techniques that use dynamic

analysis"
q  Develop precise tools with no more than 2x run-time

overhead at large scale!

q  Novel approaches to assist with debugging"
q  Use minimal amount of concurrency to reproduce bug"
q  Support two-level debugging of high-level abstractions"
q  Detect causes of floating-point anomalies and determine

the minimum precision needed to fix them"

q  Reproducible concurrency bugs and floating-point
behavior"
q  Identify sources of non-determinism in executions"
q  Concurrency bugs include data races, atomicity violations,

and deadlocks"

"

Message Passing Concurrency!
"

q  MPI is ubiquitous"
q  MPI processes communicate with messages only"
q  Usually no data races between processes"

q  Data races may occur"
q  Between local memory accesses and communication

operations (ISend/IRecv)"
q  Between communication operations (Send/Recv)"

q  MPI-3 introduces one-sided communication and
non-blocking collectives"

Example: Dynamic Analysis of UPC Programs !
(See our SC’11 paper)!
"

q  Efficient Data Race Detection for UPC"
q  Thread Interposition Library and Lightweight Extensions"
q  Framework for active testing UPC programs"

q  Instrument UPC source code at compile time"
q  Using macro expansions, add hooks for analyses"

q  Phase 1: Race detector"
q  Observe execution and predict which accesses may

potentially have a data race"
q  Filtering and sampling to reduce communication costs"

q  Phase 2: Race tester"
q  Re-execute program while controlling the scheduler to

create actual data race scenarios predicted in phase 1"

Extensions to Hybrid Programming Models!
"

q  PGAS (or MPI) for inter-node, shared-memory
for intra-node"

q  Challenge: tracing all memory accesses!
q  Research heuristics for reducing impact of

instrumentation"

Current Techniques for Finding Anomalies!
!

q  Altering rounding mode of floating-point
arithmetic hardware"
q  May not normally be usable to remedy the problems"

q  Extending precision of floating-point
computation"
q  May increase run-time significantly"

q  Using interval arithmetic"
q  Produces a certificate, but run-time cost is the greatest"

Common Anomalies!
!

q  Rounding error accumulations"
q  Conditional branches involving floating-point

comparisons"
q  May go astray due to the subtleties of floating-point

arithmetic (e.g., NaN values)"
q  Convergence misbehavior"

q  Under/overflows, resolution of ill-conditioned
problems"
q  Result may be wrong"

q  Benign vs. catastrophic cancellations"

Corvette: Program Correctness, Verification and Testing for Exascale
Koushik Sen and James Demmel (UC Berkeley) Costin Iancu (LBNL)

1. Motivation

q  High performance scientific computing"
q  Exascale: O(106) nodes, O(103) cores per node"
q  Productivity requires asynchrony and “relaxed” memory

consistency "
q  Non-deterministic execution is likely to cause hard to

diagnose correctness and performance bugs"

q  Limited usage of testing and correctness tools"
q  Tools are hard to find and use for HPC "
q  Tools for multi-threaded programs ported to distributed

systems do not scale"

q  Scientific applications are also difficult to debug"
q  Floating-point programs in particular"
q  Numerical exceptions (anomalies) can cause rare but

critical bugs that are hard for non-experts to detect and fix "

4. Floating-Point Support 3. Distributed Memory Support

2. Goals

Approach: Automated Delta Debugging!
!

!

q  Like binary search"
q  Find a local minimal set

of changes so that the
result remains within a
given threshold"

