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Abstract

The analysis of preconditioners based on incomplete Cholesky factoriza-
tion in which the neglected (dropped) components are orthogonal to the
approximations being kept is presented. General estimate for the condition
number of the preconditioned system is given which only depends on the
accuracy of individual approximations. The estimate is further improved
if, for instance, only the newly computed rows of the factor are modified
during each approximation step. In this latter case it is further shown to be
sharp. The analysis is illustrated with some existing factorizations in the
context of discretized elliptic partial differential equations.

Key words. incomplete Cholesky, conditioning analysis, convergence analysis,
iterative methods, preconditioner

AMS subject classification. 65F08, 65F35

∗This work was supported by the Director, Office of Science, Office of Advanced Scien-
tific Computing Research of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.



1 Introduction

We consider incomplete Cholesky factorizations for the iterative solution of sym-
metric positive definite (SPD) N ×N linear systems

Au = b . (1.1)

Incomplete Cholesky factorizations are commonly described with the help of Cho-
lesky version of Gaussian elimination, which amounts to compute an upper trian-
gular matrix R such that A = RTR . Incomplete factorization is then obtained by
introducing approximation into the elimination process (see, e.g., [1, 14, 22, 24]).

Here, we are concerned with incomplete factorizations based on low-rank ap-
proximation. These techniques have been successfully applied to linear systems
arising from discretized partial differential equations (PDEs) [3, 4, 13, 26, 25, 27,
16]. Unlike classical incomplete factorization methods [20, 17, 21], which rely on
the dropping of individual entries, the new methods approximate some dense parts
of the factors with low-rank matrices. The resulting approximate factors may then
remain dense but acquire some structure, and the term data-sparse is often used
to describe them. It is now known that for systems arising from discretization of
PDEs, individual low-rank approximations are often possible with almost arbitrary
accuracy for a rank which is independent of, or slowly varying with, the block size
[4, 13, 9] (see also [5, 6] for the related results) . Whereas substantial effort have
been invested in finding the applications where the low-rank property is present,
the impact of the individual approximations on the quality of the preconditioner
is less well understood.

In this paper, we present the analysis which covers two such preconditioners:
[16] and, under a slightly modified form, [27]. Both methods are variants of incom-
plete Cholesky factorization. Whereas they are conceptually different and produce
factors in different data-sparse formats, they both exploit the low-rank property
by “dropping” components which are orthogonal to the low-rank approximations
being kept. This is motivated by the observation that the successively formed
Schur complements then do not decrease (in the SPD sense) when approximation
is performed, which in turn guarantees that the preconditioner can be constructed
for any SPD A.

The analysis in the present paper also applies to any SPD A. The starting point
is a generic incomplete Cholesky factorization algorithm which forms a common
framework for the aforementioned factorizations. It allows approximation on a
large part of the factor and also requiers the orthogonality between the components
rejected during each approximation stage and the approximation that are kept.

The resulting factorization is then considered as a preconditioner to the origi-
nal system. We present a general upper bound on its condition number (i.e., the
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quotient of its largest and smallest eigenvalues), as required to estimate the conver-
gence rate of iterative methods such as conjugate gradient [1, 14, 22]. The bound
involves quantities which only depend on the individual orthogonal approximations
and in a way measure their accuracy.

Now, the algorithms in [16] and [27] modify different groups of rows during the
approximation steps. This may further lead to an improved condition estimate
involving the same accuracy measures if the modified rows (and the rows with
lower indices) are no longer modified for the few following steps. The ideal case
when only the newly computed rows are modified at each step (and, hence, each
row is modified at most once) is of particular interest. This case is referred to as
one-level for reasons which are made clear below. The related estimate is shown
to be sharp in that, for every set of accuracy values, there exist a matrix and a
corresponding incomplete factorization preconditioner, obtained using orthogonal
dropping, that allow to reach the bound.

We note that a related accuracy measure has been introduced in [27]. The
analysis there is however applied in a rather model case when only one approxi-
mation step is performed. In this context, for instance, no distinction can be made
between a general and a “localized” dropping mentioned above, as the bounds in
both cases lead to the same condition number estimate.

Another particular case arises when the approximated blocks of the factor are
set to zero, and the resulting preconditioner corresponds to a block-diagonal part of
A. The accuracy measures then coincide with so-called CBS constants, which are
commonly used in the eigenvalue estimates of a block-diagonally preconditioned
system. Again, the case when the preconditioner has 2 × 2 blockdiagonal form is
well understood [2, 1]; however, the extension to block-diagonal preconditioners
with multiple blocks which arise form our analysis leads to a better bound than
one could obtain by recursively applying the 2 × 2 estimate. In addition, the
above-mentioned sharpness property carries over to the block-diagonal case (and,
for simplicity, we only prove this property for block-diagonal preconditioners).

Eventually, our analysis is illustrated with the factorization algorithms in [27],
[16] and the one-level variant in the context of model problem arising from a low-
order discretization of a second-order PDE. Numerical experiments reveal that all
the considered preconditioners have similar conditioning properties, and further,
that the bound for the one-level variant allows an accurate prediction of their
condition number. On the other hand, based on the analysis, the approximation
schemes are modified to keep the condition number bounded independently of the
problem size; their effectiveness is also assessed in the model problem context.

The reminder of the paper is organized as follows. In Section 2 we introduce
our generic incomplete Cholesky factorization with orthogonal dropping and relate
it to the existing methods. The bounds on the condition number are presented in

3



Section 3 and illustrated on a model problem in Section 4. Concluding remarks
are stated in Section 5.

Notation

[i, j] = {i, i + 1, ..., j} stands for the ordered set of integers ranging from i to j.
I stands for identity matrix and O for zero matrix (matrix with all entries being
zero).

For any vector v, ∥v∥ is its Euclidian norm. For any matrix C, the induced
matrix norm is

∥C∥ = max
v≠0

∥Cv∥
∥v∥ .

For any SPD matrix D, λmax(D) and λmin(D) is, respectively, its largest and its
smallest eigenvalue. Since λmin(D) > 0, the spectral condition number κ(D) =
λmax(D)/λmin(D) is well defined. For any n × n block matrix E = (Ei,j) and any
1 ≤ i ≤ k ≤ n ,

Ei∶k,j = ( ET
i,j ⋯ ET

k,j )T ,
and, for any 1 ≤ j ≤m ≤ n ,

Ei∶k,j∶m = ( Ei∶k,j ⋯ Ei∶k,m ) .

2 Factorization algorithm

2.1 General setting

Let the index set [1,N] be partitioned into n (n > 0) disjoint contiguous subsets
Ii, i = 1, ..., n . The corresponding block partitioning of A is given by

A =
⎛
⎜
⎝

A1,1 ⋯ A1,n

⋮ ⋱ ⋮
An,1 ⋯ An,n

⎞
⎟
⎠
, (2.1)

where Ai,j is a ∣Ii∣ × ∣Ij ∣ matrix and, since A is symmetric, Ai,j = ATj,i , i, j = 1, ..., n .
Before we introduce the incomplete factorization algorithm, we briefly recall

with Algorithm 2.1 a block variant of the (exact) Cholesky factorization as applies
to the above setting. It computes an upper triangular factor

R =
⎛
⎜
⎝

R1,1 ⋯ R1,n

⋱ ⋮
Rn,n

⎞
⎟
⎠
, (2.2)
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such that A = RTR , where Ri,j is a ∣Ii∣ × ∣Ij ∣ matrix, Ri,i is upper triangular and,
for i > j, Ri,j = O , i, j = 1, ..., n . During the step i, the ith block row of the
factor R is computed by first adding to the ith block row of A the corresponding
contributions from the already computed rows of R (line 1a), then factorizing the
pivot block (line 1b), and eventually forming the corresponding block row (line 1c).

Algorithm 2.1 (Block Cholesky) : R = BkChol(A)
1. for i = 1, ..., n
1a. if (i = 1) : R1,1∶n ← A1,1∶n

else Ri,i∶n ← Ai,i∶n −RT
1∶i−1,iR1∶i−1,i∶n

1b. Compute an upper triangular RS such that RT
SRS = Ri,i ;

1c. Ri,i ← RS

Ri,i+1∶n ← R−T
S Ri,i+1∶n

The first i block rows of the factor may be shown to satisfy (see e.g., [1, 12])

A = (
RT

1∶i,1∶i

RT
1∶i,i+1∶n S

(i)
A

)( R1∶i,1∶i R1∶i,i+1∶n

I
) , (2.3)

where
S
(i)
A = Ai+1∶n,i+1∶n −RT

1∶i,i+1∶nR1∶i,i+1∶n

is the Schur complement of A corresponding to the bottom right (n − i) × (n − i)
block.

Now, the incomplete Cholesky factorization is given by Algorithm 2.2. It per-
forms ` approximation steps (` ≥ n). Prior to the step k, some nk−1 block rows
of the factor have already been computed, with n > n` ≥ . . . ≥ n1 > n0 = 0, and nk
block rows are available at the end of this step. Note that several approximation
steps may be performed without computing new rows of the factor, in which case
the corresponding nk are equal. Without loss of generality, we further assume that
n = n` + 1 and either nk = nk−1 + 1 or nk = nk−1 , k = 1, ..., ` .

Computing new rows of the factor (lines 1a-1c) is now supplemented with an
approximation (dropping) stage (line 1d). Because of this latter, the factorization
is no longer exact; it (implicitly) generates a sequence of “approximations” Bk of
A, k = 1, ..., ` , where

Bk =
⎛
⎝
R
(k)
11

T

R̃
(k)
12

T
S̃
(k)
B

⎞
⎠
( R

(k)
11 R̃

(k)
12

I
) , (2.4)

with R
(k)
11 = R1∶nk,1∶nk

, R
(k)
12 = R1∶nk,nk+1∶n being the first nk block rows of the factor

at the end of step k and with

S̃
(k)
B = Ank+1∶n,nk+1∶n − R̃(k)12

T
R̃
(k)
12 (2.5)
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denoting the corresponding Schur complement of Bk. By implicitly we mean that
the product (2.4) is not explicitly formed; for k < ` , it corresponds to an inter-
mediate factorization at step k, whereas B` = RTR is the resulting preconditioner.
Eventually, since n` < n, the algorithm completes the factorization at line 2.

Algorithm 2.2 (Incomplete (block) Cholesky) : R = IBkChol(A)
1. for k = 1, ..., `

if (nk > nk−1) :

1a. if (k = 1) : R1,1∶n ← A1,1∶n

else Rnk,nk ∶n ← Ank,nk ∶n −RT
1∶nk−1,nk

R1∶nk−1,nk ∶n

1b. Compute an upper triangular RS such that RT
SRS = Rnk,nk

;

1c. Rnk,nk
← RS

Rnk,nk+1∶n ← R−T
S Rnk,nk+1∶n

1d. R1∶nk,nk+1∶n ← approxk (R1∶nk,nk+1∶n) .

2. Compute an upper triangular Rn,n such that RT
n,nRn,n = An,n−RT

1∶n,nR1∶n,n ;

Note that, similarly to the exact factorization, the lines 1a-1c do not alter the
current approximation of A; that is, the preconditioner implicitly available at the
end of step k − 1 is the same as the one available prior to line 1d during the step
k. Hence, setting B0 = A, one further has

Bk−1 =
⎛
⎝
R
(k)
11

T

R
(k)
12

T
S
(k)
B

⎞
⎠
( R

(k)
11 R

(k)
12

I
) , k = 1, ..., ` , (2.6)

where R
(k)
12 = R1∶nk,nk+1∶n now corresponds to the rows of the factor prior to the

approximation stage (line 1d) of step k , and where

S
(k)
B = Ank+1∶n,nk+1∶n − R(k)12

T
R
(k)
12 . (2.7)

One further sees from the line 1d that

R̃
(k)
12 = approxk (R(k)12 ) . (2.8)

Regarding this operation, we note that our analysis does not rely on any of its
particular implementations. In what follows, we mainly assume that the dropped
component is orthogonal to the one that is kept; that is, we mainly require

R̃
(k)
12

T
(R(k)12 − R̃(k)12 ) = O ∀ R̃

(k)
12 = approxk (R(k)12 ) (2.9)
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to hold. The only additional assumption we make is on the indices of block rows in
R
(k)
12 that are effectively modified by approxk(⋅) operation. Some examples of ap-

proximation operations that fulfill the above orthogonality condition are discussed
in Section 2.2 below.

Now, as proved in Section 3, the assumption (2.9) further implies that the Algo-
rithm 2.2 always terminates and that the intermediate matrices Bk, k = 1, ..., `−1 ,
as well as the final preconditioner B` = RTR are SPD. Hence, the condition number

κ(R−TAR−1) = λmax(R−TAR−1)
λmin(R−TAR−1) (2.10)

of the preconditioned system is well defined.

2.2 Orthogonal dropping

The approx(⋅) operation is commonly implemented using a truncated version
of an orthogonal decomposition, such as truncated SVD or or rank-revealing QR
[7, 8, 10, 15]. For a given threshold tola, it produces a factorization

R
(k)
12 = ( Q1 Q2 ) ( U1 U2 )T , (2.11)

where Q = ( Q1 Q2 ) is orthogonal and

∥U2∥ ≤ tola .

The approximation then corresponds to a rank deficient (also called low-rank)

term R̃
(k)
12 = Q1UT

1 whose rank rk is given by the number of columns in Q1 . On

the other hand, the truncation error is given by R
(k)
12 − R̃

(k)
12 = Q2UT

2 . Hence,
the condition (2.9) follows directly from QT

1Q2 = O, whereas the orthogonality of
columns in Q2 further implies

∥ R(k)12 − R̃(k)12 ∥ ≤ tola . (2.12)

In the case of truncated SVD the threshold may be chosen explicitly, by dis-
carding the singular values that are lower than the threshold value. This holds for
an absolute truncation threshold tola, but also for a relative one, which amounts
to tola = tolr∥ R(k)12 ∥, since ∥ R(k)12 ∥ then corresponds to the largest singular value.
Regarding the rank revealing factorizations, the threshold is only available indi-
rectly, usually trough an inequality like tolr , tola < p ⋅ tolRRQR , where tolRRQR

is the truncation threshold of the rank-revealing algorithm and p is a low order
polynomial depending on the dimensions of R

(k)
12 [10, 15].
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Now, in practice the approximation is usually not applied to the whole block
R
(k)
12 . For instance, if only a few rows of R

(k)
12 need to be modified, the decompo-

sition (2.11) is applied to those rows only. One then has

R
(k)
12 − R̃(k)12 = Π( O

R(k) − R̃(k) ) ,

where R(k) corresponds to the rows of R
(k)
12 which are approximated by R̃(k), and

Π is a permutation which enumerates those rows last. The “local” condition

R̃(k)
T (R(k) − R̃(k)) = O

is then easily shown to imply (2.9), and, since Π is orthogonal, one has

∥ R(k)12 − R̃(k)12 ∥ = ∥R(k) − R̃(k)∥ .

2.3 Relation to existing methods

The incomplete Cholesky factorization described in Algorithm 2.2 provides a suit-
able framework that covers several existing preconditioners. This is, for instance,
the case of incomplete Cholesky factorizations in [16, 27] (the latter being consid-
ered here under a slightly different form, see below). Both methods are similar in
that they exploit individual low-rank approximations to reduce both the storage
requirement and the operation complexity of the factorization. More precisely,
they require at most O(rmaxN2) operations to factorize a N × N matrix, where
rmax = max1≤k≤` rk is the maximal rank from the approximation step, and need at
most O(rmaxN) storage for the factor; these estimates may further be improved if
the matrix is sparse. Hence, if rmax ≪ N , they compare favorably to the (exact)
Cholesky factorization, which requires O(N3) operations and O(N2) storage.

Now, assuming the same block partition (2.1) of A, these algorithms mainly
differ by the choice of block rows effectively modified by the approxk(⋅) operation.
This is motivated by the data-sparse structure of the resulting factors: sequentially
semi-separable (SSS) in [16] and hierarchically semi-separable (HSS) in [27]. As
will be shown later, this further enables different condition number estimates.

To be more specific, we introduce several possible choices for the block row
indices Pk modified by approxk(⋅), as inspired by the above algorithms. Consid-
ering first the SSS choice, it amounts to perform the approximation on the whole
R
(k)
12 block at every step k. In this case, we set ` = n − 1 (no approximation when

factorizing the last block) and Pk = [1, `] . This situation is illustrated on Figure 1.
Note that the factorization in [16] corresponds to this choice and, moreover, uses
an orthogonal dropping scheme which preserves a given set of vectors.
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k = 1

R11 R12

SB

k = 2

R11 R12

SB

k = 3

R11 R12

SB

k = 4

R11 R12

SB

}P1
}P2

⎫
⎪⎪⎪
⎬
⎪⎪⎪
⎭

P3

⎫
⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪
⎭

P4

Figure 1: SSS index choice for n = 5; note that the R12 block is entirely filled with
dark blue (dark gray), which means that all rows of the block are approximated.

k = 1

R11 R12

SB

k = 2

R11 R12

SB

k = 3

R11 R12

SB

k = 4

R11 R12

SB

k = 5

R11 R12

SB

k = 6

R11 R12

SB

k = 7

R11 R12

SB

}P1

}P2
}P3

}P4

}P5
}P6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

P7

Figure 2: HSS index choice based on a perfect binary tree of height t = 2 (the tree
is given on the bottom rightmost picture); hatched areas correspond to the rows
of R12 which are not modified.

k = 1

R11 R12

SB

k = 2

R11 R12

SB

k = 3

R11 R12

SB

k = 4

R11 R12

SB

}P1

}P2

}P3

}P4

Figure 3: One-level index choice for n = 5 .
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Regarding the HSS choice, it requires an auxiliary tree in which every block
row i = 1, ..., n−1 corresponds to a leaf node. The tree nodes are then ordered in a
postorder (that is, children are numbered before their parent; see the bottom right
picture of Figure 2 for an example) and each approximation step k corresponds
to a tree node with the same number. Note that in this setting ` equals to the
number of nodes. For every step k, one sets Pk = {i} if k is the tree index of ith
leaf, and Pk = ∪i∈children(k)Pi if node k is not a leaf. For simplicity, we only consider
perfect binary trees, with hence n = 2t + 1 and ` = 2t+1 − 1, where t is the height
of the tree. This choice is illustrated on Figure 2 for t = 2 with, hence, n = 5 and
` = 7. Observe that in this latter case the rows modified during the step 1,3 or 4
are not modified during the following step.

Note that the preconditioner in [27] differs from the Algorithm 2.2 with HSS

choice for Pk in that some dropping may also occur in the R
(k)
11 part of the factor.

All in all, this additional dropping slightly increase the cost of the factorization (in
fact, dropping applies to larger matrices) but is likely to improve the storage re-
quirements (an implementation similar to the one in [27] requiresO(rmaxN log(N))
memory if all rk are the same). The last but not the least, the numerical ex-
periments below indicate that the performance of both methods is similar. We
therefore recommend to use the method in [27], while stating that the analysis of
HSS choice provide some insight for this method as well.

It should be noted that the complexity estimates mentioned in this subsection
require the dimension of blocks in the partition (2.1) of A to be of the order of
rmax. In a favorable situation when rmax is small, this in turn imply that n is of
the same order of magnitude as N , and the number of ` approximation steps may
become important (see, e.g., Table 1 from Section 4 for an example).

Now, we also consider the case where only newly computed rows are approx-
imated. This amounts to set ` = n − 1 and Pk = {k} for all 1 ≤ k ≤ ` . Since it
corresponds to the HSS choice of Pk where only the steps k corresponding to leafs
are kept, we call it one-level choice (see Figure 3 for an example).

Note that a situation when all the entries in R
(k)
12 are dropped at every step;

that is, when R̃
(k)
12 = O (or, equivalently, approxk(⋅) = O) for all k, may also be

regarded as a one-level choice. In this latter setting, (2.5) further entails S̃
(k)
B =

Ank+1∶n,nk+1∶n and hence R = blockdiag(Rii), where RT
iiRii = Aii . In other words,

the resulting preconditioner is given by the block-diagonal part of A as induced
by the partitioning (2.1). As a result, the incomplete Cholesky algorithm and the
corresponding analysis below also cover these block-diagonal preconditioners.

Eventually, for all the above choices we further set nk = max(Pk), k = 1, .., ` .
This means that all the rows computed during the step k (lines 1a-1c of the Algo-
rithm 2.2) will be modified during the subsequent approximation step (line 1d).
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3 Analysis

We first recall in the following lemma some basic facts about the Schur comple-
ment. In particular, the first statement relates the Schur complement as appearing
for instance in (2.3) to its more common form.

Lemma 3.1. Let A be N ×N and satisfy

A = ( RT
11

RT
12 SA

)( R11 R12

I
) (3.1)

for some R11, R12 and SA of order M ×M , M ×(N −M) and (N −M)×(N −M),
respectively.

(a) If

A = ( A11 A12

AT12 A22
) (3.2)

is the 2 × 2 block partition induced by the partition in (3.1) and if R11 is
invertible, then

SA = A22 −AT12A
−1
11A12 .

(b) A is SPD if and only if both RT
11R11 and SA are SPD.

(c) If R11 and SA are invertible, then

A−1 = ( ∗ ∗
∗ S−1

A

) .

Proof. The first statement follows by direct computation, noting that A11 =
RT

11R11 is invertible if R11 is. To proof the second we first note that, as stems
from (3.1), A is symmetric if and only if SA is. The proof then follows from [1,
Corrolary 3.8]. The last statement is obtained from equation (3.4) in the same
reference.

Now, we make use of the following relation between the Schur complements
S
(k)
B , S̃

(k)
B before and after the approximation step, and the corresponding ap-

proximation error R
(k)
12 − R̃(k)12 :

S̃
(k)
B = S

(k)
B + (R(k)12 − R̃(k)12 )

T
(R(k)12 − R̃(k)12 ) . (3.3)

It follows directly from the definitions (2.7), (2.5) of S
(k)
B and S̃

(k)
B together with

the orthogonality condition (2.9). As an important consequence, we note that
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all Bk , k = 1, ..., ` , are SPD and the Algorithm 2.2 is breakdown free; that is, it
always produces a preconditioner in the factored form. This property was already
observed in [16, 27] for the related variants, and we briefly recall it in Lemma 3.2
below, together with some auxiliary results.

Lemma 3.2. Let A be SPD and partitioned as in (2.1). Let Bk, S̃
(k)
B and S

(k)
B ,

k = 1, ..., ` , be defined by (2.4), (2.5) and (2.7), respectively, where R
(k)
11 and R̃

(k)
12

stand for, respectively, R1∶nk,1∶nk
and R1∶nk,nk+1∶n, as defined at the end of step k of

Algorithm 2.2 applied to A, and where R
(k)
12 stands for R1∶nk,nk+1∶n as defined prior

to the line 1d of the same step. Let (3.3) hold for all 1 ≤ k ≤ `.
Then

(a) Bk, k = 1, ..., `, is SPD.

(b) Algorithm 2.2 does not breakdown.

(c) There holds

blockdiag(Bk) = ( A1,1 , ⋯ , Ank,nk
, Ank+1∶n,nk+1∶n ) , k = 1, ..., ` . (3.4)

Proof. To prove the first statement, we note that, if Bk−1 is SPD, then so

are R
(k)
11

T
R
(k)
11 and the Schur complement S

(k)
B , as follows from Lemma 3.1(b)

applied to (2.6). It further follows from (3.3) that S̃
(k)
B is SPD, and applying

again Lemma 3.1(b) to (2.4) shows that Bk is also SPD. Now, the statement (a)
follows from this recursive argument and the fact that B0 = A.

Regarding the second statement, we note that Algorithm 2.2 may only break
down at line 1b, failing to find RS such that RT

SRS = Rnk,nk
. However, one may

check that Rnk,nk
is the leading block of the Schur complement S̃

(k−1)
B , and, since

the latter is SPD, its leading block may always be factorized.
Eventually, we prove (3.4). Let Bk = ((Bk)i,j) be the partitioning into n × n

blocks induced by (2.1). Then, there holds

Bk = ( (Bk−1)1∶nk,1∶nk
∗

∗ Ank+1∶n,nk+1∶n
) ,

where the top left block follows from the comparison of (2.4) and (2.6), whereas
the bottom right stems from (2.4) together with (2.5). Applying the above result
for k = 1, ..., ` and using B0 = A finish the proof of (3.4).

We are now ready to prove our main theorem. It assumes that the first nk block
rows of the factor, computed during the first k steps, are not modified over the
following p steps (this is always true if p = 0). The extreme eigenvalues of B−1

k+pBk−1
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are then related to those of B−1
k+pBk with the help of an additional parameter γk

as defined in (3.7). Note that this latter involves the Schur complement of Bk and
the truncation error of the kth approximation stage, and in some sense measures
the approximation accuracy.

Theorem 3.3 (main theorem). Let A be SPD and let Bk and S̃
(k)
B , k = 1, ..., ` ,

be defined by (2.4) and (2.5), respectively, where R
(k)
11 and R̃

(k)
12 stand for, respec-

tively, R1∶nk,1∶nk
and R1∶nk,nk+1∶n, as defined at the end of step k of Algorithm 2.2

applied to A ; let R
(k)
12 be given by R1∶nk,nk+1∶n as defined prior to the line 1d of

the same step. For some k > 0 and p ≥ 0 such that k + p ≤ ` let approxs(⋅) ,
k+1 ≤ s ≤ k+p , satisfy the orthogonality condition (2.9) and only modify the block

rows of R
(s)
12 with indices below nk.

Then, setting λ
(k, k+p)
max = λmax (B−1

k+pBk) and λ
(k−1, k+p)
max = λmax (B−1

k+pBk−1) and
using similar notation for the minimal eigenvalues, there holds

λ
(k, k+p)
max ≤ λ(k−1, k+p)

max ≤ λ
(k, k+p)
max + g(λ(k, k+p)max , γk ) , (3.5)

λ
(k, k+p)
min ≥ λ(k−1,k+p)

min ≥ λ
(k,k+p)
min − g(λ(k, k+p)min , γk ) , (3.6)

where

γk = ∥(R(k)12 − R̃(k)12 ) S̃(k)B

−1/2
∥ < 1 , (3.7)

and

g(λ, γ) = max
β>0

2γβ − ∣λ − 1∣β2

β2 + λ−1
. (3.8)

Moreover, if p = 0, right inequalities (3.5), (3.6) become equalities.

Proof. We only prove inequalities in (3.5), the proof of (3.6) follows the same
lines. Considering first right inequality (3.5), we recall that Bk−1, Bk which satisfy
the assumptions of the theorem also satisfy (2.6), (2.4), which amount to

Bk−1 =
⎛
⎝
R
(k)
11

T

R
(k)
12

T
S
(k)
B

⎞
⎠
( R

(k)
11 R

(k)
12

I
) , Bk =

⎛
⎝
R
(k)
11

T

R̃
(k)
12

T
S̃
(k)
B

⎞
⎠
( R

(k)
11 R̃

(k)
12

I
) ,

where R
(k)
11 is nk ×nk, R(k)12 is nk × (n−nk) and S

(k)
B , S̃

(k)
B are (n−nk) × (n−nk) ,

all dimensions being considered blockwise. Since the first nk block rows are not
modified during the following p steps, we also have

Bk+p =
⎛
⎝
R
(k)
11

T

R̃
(k)
12

T
S

⎞
⎠
( R

(k)
11 R̃

(k)
12

I
)
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for some S of order (n−nk)×(n−nk) . Note that either S = S̃(k)B or both matrices
have the same 1 × 1 leading block, which is not modified after the step k of the
algorithm. In either case, one further has

λmax(S
−1
S̃
(k)
B ) ≥ 1 . (3.9)

Now, letting

J = ( R
(k)
11

−1
− R(k)11

−1
R̃
(k)
12

I
) ,

the next equalities follow by direct computation

JTBkJ = diag( I , S̃(k)B ) ,
JTBk+pJ = diag( I , S ) . (3.10)

Using (3.9), this further entails

λ
(k, k+p)
max = λmax(B−1

k+pBk) = λmax ( (JTB−1
k+pJ)−1JTBkJ ) = λmax(S

−1
S̃
(k)
B ) . (3.11)

On the other hand, direct computation together with the use of (3.3) (following
itself from (2.9)) for the bottom right block leads to

JTBk−1J =
⎛
⎝
I R

(k)
12 − R̃(k)12

R
(k)
12

T
− R̃(k)12

T
S̃
(k)
B

⎞
⎠
. (3.12)

Hence, using this latter together with (3.10) and

vT1 (R(k)12 − R̃(k)12 )v2 ≤ γk∥v1∥
√

vT2 S̃
(k)
B v2 , (3.13)

which follow from the definition (3.7) of γk, there holds

λ
(k−1, k+p)
max = max

v

vTJBk−1JTv

vTJBk+pJTv

= max
v1 , v2

vT1 v1 + vT2 S̃
(k)
B v2 + 2vT1 (R(k)12 − R̃(k)12 )v2

vT1 v1 + vT2 Sv2

(3.14)

≤ max
β>0

β2 + 1 + 2γkβ

β2 + λ−1
max (S

−1
S̃
(k)
B )

. (3.15)

where we have set β2 = vT1 v1 (vT2 S̃
(k)
B v2)

−1
. Right inequality (3.5) then follows

from (3.15), (3.11) and (3.9), combined with

λ + g(λ, γ) = max
β>0

β2 + 1 + 2γβ

β2 + λ−1

14



for any λ ≥ 1.
Now, left inequality (3.5) stems from (3.14) and (3.11) by setting v1 = 0 . On

the other hand, note that JTBk−1J is SPD, and, therefore, the inequality (3.13)
holds for some γk < 1 .

Eventually, setting p = 0 we note that S = S̃(k)B , and, hence, the vectors v1, v2

that lead to an equality in (3.13) also allow to reach an equality between (3.15)
and (3.14). This is however the only approximation committed in the proof of
right inequality (3.5), which therefore becomes an equality.

The next corollary provides with (3.16) a general condition number estimate
based solely on the orthogonality assumption (2.9). It corresponds to a repeated
application of the above theorem in the case where p = 0. Note that since no
additional assumption is made on the indices of the modified rows, the result may
be applied to all of the index choices described in Section 2.3; however, it suits the
best the description of the SSS index choice, as this latter do not intent to leave
some rows untouched. Now, this result may also be viewed as an extension of the
Proposition 2.1 in [27] to ` > 1.

The corollary also introduces the parameter γ` = ∑`k=1 γk which, if bounded
away from 1, implies a bounded condition number (see (3.17)). Note that, in most
cases, the above condition may be relaxed by requiring that γ` is bounded away
from a small integer c. This is possible, for instance, if one may subdivide the
interval [0, `] into few, say c, contiguous subintervals [ki, ki+1] , i = 1, ..., c−1 , such
that the corresponding ∑ki+1ki+1 γk are all bounded away from 1. Then, from

κ(R−TAR−1) = κ(B−1
` A) ≤ κ(B−1

` Bkc−1) ⋯ κ(B−1
k1
A)

and the observation that each term may be bounded similarly to (3.17) it follows
that the overall condition number remains bounded above.

Corollary 3.4 (SSS bound). Let R be an upper triangular matrix obtained by
applying Algorithm 2.2 to an SPD matrix A, with approxk(⋅), k = 1 , . . . , ` , sat-
isfying the orthogonality condition (2.9). Let γk, k = 1 , . . . , ` , be given by (3.7),

with S̃
(k)
B defined by (2.5), and with R

(k)
12 , R̃

(k)
12 standing for R1∶nk,nk+1∶n as given,

respectively, prior to the line 1d of step k of Algorithm 2.2 , and at the end of this
step.

Then

κ(R−TAR−1) ≤
`

∏
k=1

1 + γk
1 − γk

, (3.16)

If ` = 1, inequality (3.16) becomes an equality.
Moreover, if γ` ∶= ∑`k=1 γk < 1, then

κ(R−TAR−1) ≤ eγ`

1 − γ` . (3.17)
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Proof. We first prove inequality (3.16). For this, note that setting p = 0 in

Theorem 3.3 entails λ
(k, k+p)
max = λ(k, k+p)min = 1, and, since g(1, γk ) = γk, it follows from

(3.5), (3.6) that

λmax (B−1
k Bk−1) = 1 + γk , (3.18)

λmin (B−1
k Bk−1) = 1 − γk , (3.19)

the equalities stemming from the last statement of the theorem. The repeated
application of the above result further leads to

λmax(R−TAR−1) = λmax(B−1
` B0) ≤ ∏`

k=1
λmax (B−1

k Bk−1) = ∏`

k=1
(1 + γk)

λmin(R−TAR−1) = λmin(B−1
` B0) ≥ ∏`

k=1
λmin (B−1

k Bk−1) = ∏`

k=1
(1 − γk)

and the inequality (3.16) readily follows.
Eventually, observing that 1 − γk ≤ eγk and (1 − γk)(1 − γs) ≥ 1 − γk − γs for all

γk, γs > 0, the estimate (3.17) follows directly from (3.16) .

Before we consider in more details the case where p > 0; that is, the case where
some block rows of the factor are not modified for several consecutive steps, we
sheds some light in Lemma 3.5 below on how the function g(λ, γ) from our main
theorem depends on λ . Considering first λ ≈ 1, it shows that g(λ, γ) ≈ γλ (as may
be concluded from the second term in the right hand sides of (3.20), (3.21) ). The
estimates (3.5), (3.6) then amount to

λ
(k−1, k+p)
max ≤ (1 + γk)λ(k, k+p)max ,

λ
(k−1, k+p)
min ≥ (1 − γk)λ(k, k+p)min ,

where the notation for λ
(k, k+p)
max = λmax (B−1

k+pBk), λ
(k, k+p)
min = λmin (B−1

k+pBk) is the
same as in Theorem 3.3. The contribution of each truncation accuracy γk to the
bound on the condition number is then essentially the same as obtained by setting
p = 0 (see Corollary 3.4).

On the other hand, if λ is either large (λ
(k, k+p)
max case) or small (λ

(k, k+p)
min case), we

observe that g(λ, γ) ≈ γ2λ/∣λ−1∣ (this follows from the first term in the right hand

sides of (3.20), (3.21) ). In particular, if λ
(k, k+p)
min is small, the lower bound (3.6)

on λ
(k−1, k+p)
min is essentially given by (1 − γ2

k)λ
(k, k+p)
min which compares favorably to

the estimate (1−γk)λ(k, k+p)min from the above inequalities. The improvement is even

more important when λ
(k, k+p)
max is large, since the upper bound (3.5) on λ

(k−1, k+p)
min

then essentially corresponds to λ
(k, k+p)
min + γ2

k instead of (1 + γk)λ(k, k+p)min .
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Lemma 3.5. Let λ and γ ≤ 1 be real and positive, and g(λ, γ) be defined by (3.8).
Then, g(1, γ) = γ and, for λ ≠ 1,

g(λ, γ) ≤ min(γ2 λ

∣λ − 1∣ , γλ) , (3.20)

g(λ, γ) ≥ max(c1(λ, γ) ⋅ γ2 λ

∣λ − 1∣ , c2(λ, γ) ⋅ γλ) , (3.21)

where c1(λ, γ) = ∣λ − 1∣2(∣λ − 1∣2 + γ2λ)−1 → 1 for either λ → 0 or λ → ∞ and
c2(λ, γ) = (2 − ∣λ − 1∣/γ)(2 + λ − 1)−1 → 1 for λ→ 1.

Proof. The proof of g(1, γ) = γ is straightforward. Now, setting β̃ = γ∣λ − 1∣−1,
the first term in the maximum (3.21) follows from

g(λ, γ) = max
β>0

2γβ − ∣λ − 1∣β2

β2 + λ−1
≥ 2γβ̃ − ∣λ − 1∣β̃2

β̃2 + λ−1
= γ2λ∣λ − 1∣

∣λ − 1∣2 + γ2λ
.

Using the same reasoning with β̃ = 1 instead leads to the second term.
To prove (3.20), note that 2γβ − ∣λ− 1∣β2 ≤ γ2∣λ− 1∣−1 holds for all β, and the

first term in the minimum (3.20) follows from

g(λ, γ) = max
β>0

2γβ − ∣λ − 1∣β2

β2 + λ−1
≤ γ2 max

β>0

∣λ − 1∣−1

β2 + λ−1
= γ2 λ

∣λ − 1∣ .

Noting that ∣λ − 1∣ ≥ γ(1 − λ) , the second term follows from

g(λ, γ) = max
β>0

2γβ − ∣λ − 1∣β2

β2 + λ−1
≤ max

β>0

2γβ − γ(1 − λ)β2

β2 + λ−1

= max
β>0

−γ(β − 1)2 + γλ(β2 + λ−1)
β2 + λ−1

≤ γλ .

Now, we make the above discussion more specific by assuming that ` = n − 1,
nk = k for all k = 1, ..., ` , and further, that only the block row nk; that is, only
the block row of the factor computed during the step k, is modified during this
step. Corollary 3.6 then shows (see (3.22)) that the condition number is bounded
(up to a “penalization” factor 2 + γ̃2`) by a quotient of two quantities, one being
essentially a sum of γ2

k, the other roughly corresponding (if c∗ ≈ 1) to a product
of 1 − γ2

k (with, however, 1 − γ2
max instead of 1 − γ2

1). Note that, although this
estimate is asymptotically better, it may be less accurate than (3.16) for small `;
in particular, it is always less accurate for ` = 1.

Next, the inequality (3.23) further highlights the role played by the parameter
γ̃2` = ∑`k=1 γ

2
k: if this latter is bounded away from 1, then the condition number is
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also bounded. Note that this condition is less restrictive that the one required by
Corollary 3.4, namely that γ` = ∑`k=1 γk should be away from 1; this comes with the
additional assumption on the indices of the modified rows. On the other hand, as
in Corollary 3.4, the requirement of γ̃2` being bounded away from one may often
be relaxed by using essentially the same arguments as stated there.

Eventually, we note that the corollary below may only be applied to the one-
level index choice. Whereas it provides some insight on how the condition num-
ber behaves in this case, we still advocate the direct use of eigenvalue bounds
(3.5), (3.6) if one needs to obtain an accurate estimate of the condition num-

ber; in the one-level case, this amounts to compute, for instance, λ̃
(`−1, `)
max using

λ̃
(`, `)
max = 1 and γ`, then compute λ̃

(`−2, `)
max using λ̃

(`−1, `)
max and γ`−1, and so on, until

λmax(R−TAR−1) = λ̃(0, `)max is obtained. This procedure is used, in particular, for the
numerical experiments in Section 4 . Note that the use of tilde emphasizes that λ̃
is just a bound on the actual eigenvalue λ .

Corollary 3.6 (one-level bound). Let the assumption of Corollary 3.4 hold. In
addition, let ` = n − 1, nk = k and approxk(⋅), k = 1, .., ` , only modify the block
row nk.

Then, setting γ̃2` ∶= ∑`k=1 γ
2
k and γmax = max1≤k≤` γk , there holds

κ(R−TAR−1) ≤ (2 + γ̃2`) ⋅
(1 +

√
γ̃2`)

2

(1 − γ2
max)∏`

k=2 (1 − γ2
k

c∗
)
, (3.22)

where c∗ = (1 + γ̃2`)/(1 + γ̃2` + 1 − γ2
max) → 1 when γ̃2`→∞ .

Moreover, if γ̃2` < 1 , then

κ(R−TAR−1) ≤
⎛
⎝

1 +
√
γ̃2`

1 −
√
γ̃2`

⎞
⎠

2

. (3.23)

Proof. We first show that the results follow from

λmax(R−TAR−1) = λ(0,`)max < (1 +
√
γ̃2`)

2
, (3.24)

λmin(R−TAR−1) = λ(0,`)min ≥ max
1 > c ≥ γmax

(1 − c)
`

∏
k=2

(1 − γ
2
k

c
) , (3.25)

proving these inequalities later. The estimate (3.22) follows from (3.24), (3.25)
setting c = c∗ and using

1 − c∗ ≥
1 − γ2

max

1 + γ̃2` + 1 − γ2
max

> 1 − γ2
max

2 + γ̃2`
> 0 .
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This latter further shows that c∗ < 1, whereas c∗ ≥ γmax follows from

c∗ − γmax = (1 − γmax)
1 − γmax + γ̃2 − γ2

max`

2 + γ̃2` − γ2
max

> 0 .

On the other hand, estimate (3.23) is obtained setting c+ = (γ̃2`)1/2 > γmax. Note
that c+ < 1 by assumption, whereas (3.25) further implies

λmin(R−TAR−1) ≥ (1 − c+)
`

∏
k=1

(1 − γ
2
k

c+
) ≥ (1 − c+)(1 −

`

∑
k=1

γ2
k

c+
) = (1 −

√
γ̃2`)

2
.

Now, note that the assumptions on approxk(⋅) made here satisfy the require-
ments of Theorem 3.3 for all possible values of k and p; that is, for all 1 ≤ k ≤ `
and 0 ≤ p ≤ ` − k .

We begin with the prove of (3.24). First observe that the upper bound in (3.5)

is an increasing function of λ
(k, k+p)
max . Hence, setting λ̃

(`, `)
max = b > 1 (instead of 1) and

applying the recursion (3.5) to define the remaining λ̃
(k−1, `)
max ,k = 1, ..., ` , as follows

λ̃
(k−1, `)
max = λ̃(k, `)max + g(λ̃(k, `)max , γk) , (3.26)

one concludes that λ̃
(0,`)
max > λ(0,`)max . On the other hand, (3.26) also entails

λ̃
(0,`)
max ≥ ⋯ ≥ λ̃

(`,`)
max = b ,

which, together with (3.26) and g(λ, γ) ≤ γ2λ∣λ − 1∣−1 (as follows from (3.20))
implies

λ̃
(k−1,`)
max ≤ λ̃(k,`)max + γ2

k

b

b − 1
,

and hence

λ
(0,`)
max ≤ λ̃(0,`)max ≤ b + b

b − 1
∑`

k=1
γ2
k = b + b

b − 1
γ̃2` . (3.27)

Setting b = 1 + (γ̃2`)1/2 finishes the proof of (3.24). One may further check that
this choice of b maximizes the bound in (3.27).

The proof for the lower bound (3.25) follows similar lines. First, set λ̃
(`−1,`)
max =

1 − c, and observe that λ̃
(`−1,`)
max ≥ λ(`−1,`)

max since c ≥ maxk=1,...,` γk . Further, define

λ̃
(k−1,`)
min = λ̃(k,`)min − g(λ̃(k,`)min , γk) ,

with, hence, λ
(0,`)
max ≥ λ̃(0,`)max and λ̃

(k,`)
min ≤ 1−c , k = 1, ..., `−1 . Using this latter together

with g(λ, γ) ≤ γ2λ∣λ − 1∣−1 (see (3.20)) entails

λ̃
(k−1,`)
min ≥ λ̃(k,`)min (1 − γ

2
k

c
) ,
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and hence

λ
(0,`)
max ≥ λ̃(0,`)max ≥ (1 − c)

`

∏
k=2

(1 − γ
2
k

c
) , (3.28)

and the inequality (3.25) follows.

Now, regarding the HSS choice, we note that the derivation of an analyti-
cal bound similar to (3.22) seems more involved and would perhaps provide less
insight. However, by analogy to the one-level choice, such a bound may be com-
puted numerically, using again the estimates from Theorem 3.3. Since a proper
use of these latter (which allows a better estimate than that given by (3.16)) is
less straightforward in the HSS case, we outline the main ideas below. To begin
with, observe that the indices Pk of block rows approximated during the step k of
Algorithm 2.2 (and associated to the node k in the corresponding HSS tree, see,
e.g., Figure 2) are modified again only during the parent step; that is, during the
step kp associated to the parent of the node k in the tree. Hence, the estimates
(3.5), (3.6) may be applied for this k with p ≤ kp − k − 1. This allows to use the
recursive procedure summarized in Algorithm 3.1, which yields an upper bound
λ̃
(k−1, k+s)
max on λ

(k−1, k+s)
max for any k ≥ 1 and s ≥ −1 (the algorithm for the lower bound

λ̃
(k−1, k+s)
min is similar, with line 5 based on (3.6) instead of (3.5)). Note that the

procedure implicitly relies on the fact that λ + g(λ, γ) is an increasing function of
λ ≥ 1.

Algorithm 3.1 (HSS Bound on λ
(k−1, k+s)
max ) : λ̃

(k−1, k+s)
max = cond (k−1 , k+s)

1. if (s = −1) : return 1

2. if (s = 0) : return 1 + γk
3. p = min( parent (k) − k − 1 , s )
4. λ̃

(k, k+p)
max = cond (k , k + p)

5. λ̃
(k−1, k+p)
max = λ̃

(k, k+p)
max + g(λ̃(k, k+p)max , γk)

6. λ̃
(k+p, k+s)
max = cond (k + p , k + s)

7. return λ̃
(k−1, k+p)
max λ̃

(k+p, k+s)
max

Let us now turn to the preconditioner corresponding to the block-diagonal part
of A. It has been observed in Section 2.3 that this preconditioner may be obtained
with Algorithm 2.2 by setting R̃

(k)
12 = O and that it corresponds to the one-level

index choice. We now compare the results in this paper with the existing analysis
of the block-diagonal preconditioners as summarized in [1, Chapter 9]. Assuming
that A has a block partition (2.1), this latter analysis relies at step k on the 2 × 2
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partitioning of A(k) = Ak∶n,k∶n given by

A(k) = ( Ak,k Ak,k+1∶n

ATk,k+1∶n A(k+1) ) .

The corresponding block-diagonal preconditioner is then defined by

Dk = ( Ak,k
A(k+1) ) ,

and it is known that

κ(D−1
k A

(k)) = 1 + γCBS
k

1 − γCBS
k

, (3.29)

where

γCBS
k = max

v1,v2

vT1 Ak,k+1∶nv2

{vT1 Ak,kv1 ⋅ vT2 A(k+1)v2}1/2
,

is the so-called Cauchy–Bunyakovsky–Schwarz (CBS) constant for the partitioning.

On the other hand, combining Lemma 3.2(c) and the fact that R̃
(k)
12 = O,

k = 1, ..., ` , yields

Bk = blockdiag ( A1,1 , ⋯ , Ak,k , A
(k+1) ) ,

and, hence,

1 + γk
1 − γk

= κ(B−1
k Bk−1) = κ(D−1

k A
(k)) = 1 + γCBS

k

1 − γCBS
k

,

where the first equality follows from the last statement of Theorem 3.3 and g(1, γk) =
γk . Clearly, this is only possible if γk = γCBS

k . Note that the repeated use of the
2 × 2 bound (3.29) leads to the same estimate as (3.16). However, the assymptot-
ically sharper bound (3.22) is also applicable here, and an even sharper estimate
may be obtained by repeated application of (3.5), (3.6) with p = `−k , both requir-
ing the same CBS constants. To the best of our knowledge, this improved bounds
are seemingly presented here for the first time.

Note that one can hardly find a better estimate for the one-level case that the
one based on (3.5), (3.6), and which would only involve individual accuracy mea-
sures γk, k = 1, ..., ` , since this latter is sharp. More precisely, Theorem 3.7 below
states that for any set γk, k = 1, ..., ` , of positive values smaller than 1 there is a
matrix A = A(γ1,⋯, γ`) for which the incomplete Cholesky factorization algorithm
performs approximations with accuracies γk and produce a squene B1, ...,B` such
that right inequalities (3.5), (3.6) simultaneously become equalities for all k. In

21



other words, for any possible bound which may be obtained using (3.5), (3.6) there
is a matrix which allows to reach it.

Now, Theorem 3.7 is formulated in the context of block-diagonal precondition-
ers, that is, it assumes that Algorithm 2.2 is considered with approxk(⋅) = O.
This allows to show that the sharpness property holds for this subclass of one-
level preconditioners. The above assumption on the approximation operation is
however not restrictive in practice since known approximation procedures, and in
particular those based on the orthogonal decomposition as described in Section 2.2,
amount to all-zero approximation if the corresponding threshold is chosen small
enough.

Theorem 3.7. For any set of positive values γ̃k < 1, k = 1, ..., ` , there exist an
SPD matrix A = A(γ̃1,⋯, γ̃`) partitioned as in (2.1) such that the application of
Algorithm 2.2 to A(γ̃1,⋯, γ̃`−1) with approxk(⋅) = O, k = 1 , . . . , ` , returns an
upper triangular R and there holds:

(a) γk = γ̃k , for k = 1 , . . . , ` ,

where γk is given by (3.7), with S̃
(k)
B being defined by (2.5), with R̃

(k)
12 stand-

ing for R1∶nk,nk+1∶n at the end of step k of the algorithm and with R
(k)
12 standing

for R1∶nk,nk+1∶n being defined prior to the line 1d of the same step;

(b) setting λ
(k, `)
max = λmax(B−1

` Bk) and λ
(k, `)
min = λmin(B−1

` Bk) , k = 1, . . . , ` , where

Bk is defined by (2.4), with R̃
(k)
12 defined as in (a) and with R

(k)
11 standing

for R1∶nk,1∶nk
at the end of step k of the algorithm, there holds

λ
(k−1, `)
max = λ

(k, `)
max + g(λ(k, `)max , γ̃k ) , (3.30)

λ
(k−1, `)
min = λ

(k, `)
min − g(λ(k, `)min , γ̃k ) . (3.31)

Proof. We prove the theorem by induction for the case when A has order
(2`+2)×(2`+2) and is partitioned into (`+1)×(`+1) blocks of size 2. Moreover, the
block-diagonal part of A is chosen to be identity matrix, with hence B` = RTR = I .

First, the basic case ` = 1 is proved using

A(γ̃1) = ( I −γ̃1I
−γ̃1I I

) ,

since γ1 = γ̃1 and, by Theorem 3.3, we have λ
(0,1)
max = λmax (A(γ̃1) ) = 1 + γ̃1 and

λ
(0,1)
min = λmin (A(γ̃1) ) = 1 − γ̃1 .

Now, let A(γ̃2,⋯, γ̃`) be the matrix which satisfy the assumption of the theorem
for ` − 1 and the values γ̃2, . . . , γ̃` . We prove below that the theorem holds for `
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and the values γ̃1, . . . , γ̃` using a matrix A(γ̃1,⋯, γ̃`) = A with

A =
⎛
⎜⎜
⎝

1 γ̃1σ
1/2
maxvTmax

1 γ̃1σ
1/2
minv

T
min

γ̃1σ
1/2
maxvmax γ̃1σ

1/2
minvmin A(γ̃2,⋯, γ̃`)

⎞
⎟⎟
⎠
,

where vTmax, vTmin are two orthogonal unit norm vectors satisfyingA(γ̃2,⋯, γ̃`)vmax =
vmaxσmin and A(γ̃2,⋯, γ̃`)vmin = vminσmax .

First, we show that γ1 = γ̃1 . Note that

R
(1)
12 = ( γ̃1σ

1/2
maxvmax γ̃1σ

1/2
minvmin )T

whereas, since approxk(⋅) = O , it follows from (2.8) that R̃
(1)
12 = O and, further

from (2.5) that S̃
(1)
B = A(γ̃2,⋯, γ̃`) . Hence, using the definition (3.7) of γk, we

have

γ2
1 = ∥R(1)12 S̃

(1)
B

−1/2
∥

2

= ∥R(1)12 A(γ̃2,⋯, γ̃`)−1 R
(1)
12

T
∥ = ∥diag(γ̃2

1 , γ̃
2
1) ∥ = γ̃2

1 .

The proof of γk = γ̃k, k = 2, ..., ` stems from the induction assumption.
Second, we prove (3.30) for k = 1 ( the proof for k = 2, ..., ` follows from

induction assumption, and the proof of (3.31) is similar). Since B0 = A and
B` = I , there holds

λ
(0, `)
max = max

w

wTAw

wTwT
= max

w1,w2

wT
1 w1 + 2wT

1 R
(1)
12 w2 +wT

2 A(γ̃2,⋯, γ̃`)w2

wT
1 w1 +wT

2 w2

. (3.32)

On the other hand, B1 = diag(I , A(γ̃2,⋯, γ̃`)), and hence λ
(1, `)
max = σmax. Therefore,

using w1 = β( 1 0 )T and w2 = σ−1/2
max vmax in (3.32) leads to

λ
(0, `)
max ≥ max

β

β2 + 2βγ̃1 + 1

β2 + λ(1, `)max

−1 = λ
(1, `)
max + g(λ(1, `)max , γ̃1) .

The proof is finished by noting that Theorem 3.3 applies in this setting with k = 1 ,
p = ` − 1 ; hence, using (3.5) the above inequality becomes an equality.

On the other hand, the following counterexample shows that the condition
number estimate obtained in the one-level case by repeated application of (3.5),
(3.6) with p = ` − k, k = 1, ..., ` , may not hold assuming only (2.9); that is, the
additional assumption on the indices of modified block rows (as made for the one-
level case) is really necessary. The counterexample also demonstrates that a system
preconditioned by the incomplete Cholesky factorization may in principle be more
ill-conditioned than the original system; compare κ(A) = 7 with κ(R−TAR−1) ≈
8.61 .
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Example 3.1. Let n1 = 1, n2 = 2, n = 3 and ` = 2. Set

A =
⎛
⎜
⎝

1 .4 .4
.4 1 −.4
.4 −.4 1

⎞
⎟
⎠
, B1 =

⎛
⎜
⎝

1
1 −.4
−.4 1

⎞
⎟
⎠
,

and B2 = RTR with

R =
⎛
⎜
⎝

1 −.16
1 −.32√

.872

⎞
⎟
⎠
.

One may check that γ2
1 = 8/15 and γ2

2 = 4/109 and hence

λ̃max = 1 + γ2 + g(1 + γ2, γ1) ⪅ 1.9 ,

λ̃min = 1 − γ2 − g(1 − γ2, γ1) ⪆ .24 ,

whereas

κ(R−TAR−1) = κ(B−1
2 A) ⪆ 8.61 > 7.92 ⪆ λ̃max

λ̃min

.

Eventually, we provide some practical upper bounds for the accuracy mea-
sure γk. One obvious way to obtain such an bound is to split the norm of a
product of two factors in (3.7) into a product of two norms:

γk ≤ ∥R(k)12 − R̃(k)12 ∥ ∥ S̃(k)B

−1/2
∥ . (3.33)

As noted in Section 2.2, the fist factor may be easily controlled by imposing a given
threshold tola . However, the impact of the second factor is less obvious, since S̃

(k)
B

depends on all the approximations made in the generic Cholesky algorithm before
and during the step k . The next theorem is helpful in this respect, since it relates
S̃
(k)
B (and, hence, its norms) to the corresponding Schur complement S

(k)
A of A

(and their norms), as well as the bottom right subblock of A.

Theorem 3.8. Let A be SPD and partitioned as in (2.1). Let S̃
(k)
B be defined by

(2.5), with R̃
(k)
12 standing for R1∶nk,nk+1∶n at the end of step k of the Algorithm 2.2

applied to A.
Then

vTS
(k)
A v ≤ vT S̃

(k)
B v ≤ vTAnk+1∶n,nk+1∶nv ∀v , k = 1, ..., ` (3.34)

where S
(k)
A = Ank+1∶n,nk+1∶n −AT1∶nk,nk+1∶nA

−1
1∶nk,1∶nk

A1∶nk,nk+1∶n . Moreover,

γk ≤ ∥R(k)12 − R̃(k)12 ∥ ∥S(k)A

−1
∥

1/2

≤ ∥R(k)12 − R̃(k)12 ∥ ∥A−1∥1/2
. (3.35)
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Proof. We prove left inequality (3.34) by induction. For k = 1, vT S̃
(1)
B v ≥

vTS
(1)
B v = vTS

(1)
A v , where the first inequality stems from (3.3) and the equality

follows since by (2.6) S
(1)
B is a Schur complement of B0 = A.

Now, assume that (3.34) holds for a given k. First, note that both S
(k+1)
B and

S̃
(k)
B are the Schur complements of Bk, k = 1, ..., `−1, as follows from (2.6) and (2.4),

respectively. Hence, according to Lemma 3.1(c), S
(k+1)
B is a Schur complement of

S̃
(k)
B . Similarly, S

(k+1)
A is a Schur complement of S

(k)
A . Next, note that for two

SPD matrices A and B, wTAw ≤ wTBw for all w implies wTA−1w ≥ wTB−1w
for all w, and (using Lemma 3.1(c)) the same relations holds for their respective

Schur complements. Hence, vTS
(k+1)
A v ≤ vTS

(k+1)
B v . On the other hand, (3.3)

implies vTS
(k+1)
B v ≤ vT S̃

(k+1)
B v , and the combination of both inequalities proves

the assertion for k + 1.
Now, right inequality (3.34) follows from (2.5), whereas left inequality (3.35)

stems from (3.33) together with left inequality (3.34) and ∥S1/2∥ = ∥S∥1/2 for any
SPD S. Eventually, the right inequality (3.35) follows from

∥S(k)A

−1
∥ ≤ ∣∣A−1∣∣ ,

which itself stems from Lemma 3.1(c) .

4 Numerical experiments

4.1 Model problem

We consider the linear system arising from the five-point finite difference discretiza-
tion of

− ∆u + εu = f in Ω = (0,1)2

∂u
∂n = 0 on ∂Ω

(4.1)

on a uniform grid Ωh of mesh size h = 1/(N − 1). Let the grid be partitioned into
three disjoint subsets

Ω
(I)
h = { (ih, jh) ∣ 0 ≤ i ≤ N − 1 , 0 ≤ j < ⌊N/2⌋ }, (4.2)

Ω
(II)
h = { (ih, jh) ∣ 0 ≤ i ≤ N − 1 , ⌊N/2⌋ < j ≤ N − 1 } , (4.3)

Ω
(Γ)
h = { (ih, jh) ∣ 0 ≤ i ≤ N − 1 , j = ⌊N/2⌋ } , (4.4)

such that the first two are disconnected. Assuming the lexicographical ordering of
unknowns inside subsets and ordering those in Ω

(I)
h first, those in Ω

(II)
h next, and
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those in Ω
(Γ)
h last, the N2 ×N2 system matrix is given by

AΩ =
⎛
⎜
⎝

AI AI,Γ

AII AII,Γ

ATI,Γ ATII,Γ AΓ

⎞
⎟
⎠
. (4.5)

For ε > 0 the matrix AΩ is symmetric and strictly diagonally dominant; hence, it
is SPD.

Often, the unknowns corresponding to Ω
(I)
h , Ω

(II)
h are further eliminated. This

happens, for instance, prior to the last stage of the (exact) Cholesky factorization
method based on nested dissection [11, 19]. The N ×N system matrix

A = AΓ −ATI,ΓA−1
I AI,Γ −ATII,ΓA−1

II AII,Γ (4.6)

of the resulting reduced system corresponds to the Schur complement of AΩ with
respect to its bottom rightmost block. It follows from Lemma 3.1(b) that A is also
SPD if ε > 0.

Note that A is usually not sparse and its Cholesky factorization requires O(N3)
operations. An iterative solution may therefore be an attractive alternative for
large N . In particular, the HSS and SSS variants of Algorithm 2.2 as described in
Section 2.3 only require O(rmaxN2) operations to construct the preconditioner B` =
RTR of A and, as we shell see below, the maximal rank rmax in the approximations
remains bounded (or, at least, grows slowly with N). Hence, if the condition
number of the resulting system is bounded as well, the overall complexity is also1

O(rmaxN2). Note that the preconditioner for the original (i.e., non reduced) system
may be chosen as BΩ = RT

ΩRΩ, where

RΩ =
⎛
⎜
⎝

RI R−T
I AI,Γ

RII R−T
II AII,Γ

R

⎞
⎟
⎠
,

with RI, RII being upper triangular and such that RT
I RI = AI, RT

IIRII = AII . In
this case

κ(B−1
Ω AΩ) = κ(R−TAR−1)

and, hence, our conditioning analysis for the reduced system also applies to the
original one.

1This comes with the fact that one application of the preconditioner requires at most O(N2
),

even for the exact Cholesky factor. For HSS and SSS variants the complexity is linear in N .
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4.2 Fixed threshold experiments

We now investigate how accurately the bounds derived in Section 3 reproduce
the condition number of the preconditioners described by Algorithm 2.2 . More
precisely, we consider the HSS, SSS and one-level variants of the algorithm, as
well as the algorithm from [27]; approx(⋅) operation corresponds in all cases to
the truncated SVD decomposition with relative threshold tolr, as presented in
Section 2.2.

The matrix A is subdivided into the n × n block form (2.1), with block size
∣Ii∣ = 10, i = 1, .., n and, hence, with N = 10n . Next, to use HSS variant with
binary trees as described in Section 2.3, we set n = 2t+1, where t is the tree depth.
Here we consider t from 0 to 6, which corresponds to matrix sizes N ranging
from 20 to 650; the size N2 of the unreduced matrix AΩ is then between 400 and
422500 . For every such N2 we list in Table 1 the number of approximation steps `
performed during the factorization; this number is approximately two times larger
for HSS variant an the method in [27] compared to SSS and one-level variants.
Further, we are interested in matrices A that are ill-conditioned; to achieve this
we set ε = 10−4, with κ(A) then ranging from 1.2 106 to 3.7 107 .

Now, we report on Figure 4 for different values of unreduced system size N2 and
of relative dropping threshold tolr the exact condition number for the considered
preconditioners as well as the corresponding upper bounds. More precisely, the
bound for the one-level variant is computed by repeatedly applying (3.6), (3.5)
with p = ` − k , whereas (3.16) is used for the SSS variant and Algorithm 3.1 for
the HSS one. In all cases, the values of γk , k = 1, ..., ` , are computed using the
definition (3.7). The figure also highlight the parameters γ` and γ̃2` for different
tolr and N2 . Maximal and minimal ranks for a given threshold are reported in
Table 2 .

First, we note that the condition numbers of all the preconditioners remain
close to each other; for the same problem size and threshold value they differ at
most by a factor of 11 (this factor reduces to 5 for the largest size). Note that the
method from [27] achieves this with the double of the ranks values in the other
cases; this is mainly due to the fact that the matrices compressed effectively during
each step are then larger than in the other cases. We also note that these results
are analogous to what is usually observed for similar problems with multigrid
methods [23, 18], for which a simple two-grid scheme (analog of a one-level variant
here) behaves similarly to more practical multigrid methods (alike SSS/HSS/[27]
variants here).

Second, the one-level estimate follows closely the corresponding condition num-
ber, even for large values of N2, where the number ` of approximation steps is large.
On the other hand, the estimates for the other two approaches are less accurate,
especially when the corresponding condition number is away from 1. Note that
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N2 400 900 2500 8100 28900 108900 422500
one-level/SSS 1 2 4 8 16 32 64

HSS/[27] 1 3 7 15 31 63 127

Table 1: Number ` of approximation steps.

one-level/SSS/HSS method in [27]
tolr 10−1 10−3 10−1 10−3

rank 2–2 3–5 2–4 3–10

Table 2: Maximal and minimal ranks for all considered values of N .

the HSS bound obtained with Algorithm 3.1 is close to the SSS bound, despite the
higher number ` of approximation steps; this comes with additional assumptions
in HSS case on the indices of the modified rows. Eventually, pushing further the
multigrid analogy, we note that the one-level condition estimate reproduce cor-
rectly the convergence behavior of the other approaches, and therefore may be
used to estimate their convergence rate; it is similar to the two-grid analysis in
this respect.

Now, regarding the accuracy parameters γ` = ∑`k=1 γk and γ̃2` = ∑`k=1 γ
2
k we note

that, as suggested by the analysis in Section 3 (see the comments for Corollaries
3.4 and 3.6), the condition numbers and the related estimates of, respectively,
SSS/HSS and one-level variants remain nicely bounded if these parameters remains
below or around 1. The converse seems also true for γ̃2`; namely, the values of
this parameter substantially larger than 1 come with the high values of all upper
bounds, but also of all the condition numbers.

4.3 Adaptive threshold strategies

Another observation illustrated in Figure 4 is that the condition numbers, their
estimates and the corresponding accuracy parameters γ`, γ̃2` tend to increase
with N , independently of the value tolr of the truncation threshold. In the case of
accuracy parameters, this grows has two contributions: the increasing number ` of
the approximation steps as well as the increase in the norm of S̃

(k)
B which enters

the definition (3.7) of γk.
Let us now determine the conditions under which the condition number remains

bounded independently of N . Clearly, if we require

γk ≤ c

`
, (4.7)
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Figure 4: Condition number κ(R−TAR−1) for various strategies and the related
upper bounds (top and middle), together with the corresponding accuracy param-
eters γ` , γ̃2` (bottom) for truncation threshold tolr set to 10−1 (left) and 10−3

(right) and for different values of N2 . Markers ○ (blue) corresponds to one-level
variant, ⋆ (magenta) to SSS, ▵ (green) to HSS, and ◇ (red) to [27] . On the top
and middle plots, isolated markers correspond to κ(B−1A), dashed lines connect
their upper bounds and ● (orange) connected by a solid line represent κ(A) . On
the bottom plots, dotted lines depict γ` (see Corollary 3.4) and solid ones stand
for γ̃2` (see Corollary 3.6).
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Figure 5: Condition numbers κ(R−TAR−1), their upper bounds (top and center)
and the corresponding accuracy parameters γ` , γ̃2` (bottom) for tola given by
(4.9) (left) and (4.10) (right).
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for some c < 1, then γ` ≤ c and the SSS estimate (3.17) will remain bounded. As
mentioned in Section 3, relaxing the requirement on c to c = O(1) should still
guarantee a bounded condition number for all the considered methods. Now, to
estimate γk we use right inequality (3.35) where, as shown in Appendix A,

∥A−1∥ ≤ c−1
N ⋅ N − 1

ε
(4.8)

with cN → 1
2e

−4
√
ε for N → ∞; for simplicity, we use c∞ instead of cN . Hence,

combining (3.35), (2.12) with the above inequalities (4.7), (4.8), and using the fact
that ` = O(N) further yields

tola ≤ c

`

√
c∞ε

N − 1
= O(N−3/2) . (4.9)

Note the use of absolute threshold here, as opposite to a more common relative
threshold in the previous subsection.

On the other hand, as may be concluded from the previous subsection, the one-
level bound based on the repeated application of (3.6), (3.5) with p = `−k provides
an accurate condition number estimate for the considered methods. In this case,
it is for instance enough to require γ̃2` ≤ c , as follows from Corollary 3.6; that is,

γk ≤
√
c

`

must hold for some c = O(1). Combining this latter with (3.35), (2.12) and (4.8)
entails a less restrictive condition

tola ≤
√
c

`

√
c∞ε

N − 1
= O(N−1) . (4.10)

Now, the results for both strategies are given for c = 10 on Figure 5. Note that
both strategies are effective in keeping the condition number bounded above. Since
the strategy based on controlling γ̃2` is less restrictive, it should be preferred.

5 Concluding remarks

We have presented a conditioning analysis of incomplete Cholesky factorizations
based on orthogonal dropping. The analysis covers several existing preconditioners
and provides an upper bound which only depends on the accuracy γk of individual
approximations. Whereas no assumption on the indices of rows modified during
each approximation step is required for the analysis to hold, such assumptions may
further improve the resulting estimate.
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Now, the best improvement is obtained for the preconditioners based on the
one-level index choice. The corresponding bound is further shown sharp for any
possible set γk, k = 1, ..., ` , of accuracy measures. Moreover, numerical experiments
reveal that one-level bound allows an accurate estimation of the condition number
for various index choices, including one-level, SSS and HSS.

Regarding the accuracy measure γk, one may estimate its value (as shown

in Theorem 3.8) by assessing the norm ∥R(k)12 − R̃(k)12 ∥ of the dropped component
and, for instance, the norm ∥A−1∥ of the inverse of the system matrix. The later
parameter may be obtained with few iterations of the conjugate gradient method,
whereas the former is directly controlled via the threshold value tola of a truncated
orthogonal decomposition. Hence, the analysis offers a practical way to control
the condition number of the resulting preconditioners. The potentialities of such
approach are highlighted in our numerical experiments with adaptive threshold
strategies. We do not pursue this discussion here, however, since it is subject to
further research.
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Appendix A

Here we show that
A ≥ cN ⋅ ε

N − 1
I ,

where limN→∞ cN = 1
2e

−4
√
ε and where the Schur complement A is defined by (4.6),

with AΩ of the form (4.5) corresponding to the five-point discretization of the
boundary value problem (4.1) with ε ≤ 1 . First, for the considered discretization
one has

Am =
⎛
⎜⎜⎜
⎝

1
2T0 −T1

−T1 T0 ⋱
⋱ ⋱ −T1

−T1 T0

⎞
⎟⎟⎟
⎠
, Am,Γ =

⎛
⎜⎜⎜
⎝ −T1

⎞
⎟⎟⎟
⎠
, AΓ = T0 , m = I, II ,

where T1 = 1
2diag(1,2, ...,2,1) and T0 = (4 + εN)T1 + tridiag(−1 0 − 1) , εN =

ε (N − 1)−2 . Note that T0, T1 are SPD and satisfy

1

2
I ≤ T1 ≤ I , (A.1)

T0 ≥ (2 + εN)T1 , (A.2)
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both inequalities (as well as the matrix inequalities below) holding in SPD sense;
in what follows we use only these inequalities, not the matrices T0, T1 themselves.

We begin with the observation that

ATm,ΓA
−1
mAΓ,m = T1S

−1
smT1 , m = I, II , (A.3)

where sI = ⌊N/2⌋ and sII = N − ⌊N/2⌋ − 1 are the block dimension of AI, AII

respectively and where Ssm is the Schur complement of the right bottom block of
Am,Γ that satisfy

Si = T0 − T1S
−1
i−1T1 , S0 = 1

2
T0 . (A.4)

The latter recursion may be obtained, for instance, by repeated application of
Lemma 3.1(c). Together with (4.6) it further implies

A = T0 − T1(S−1
sI
+ S−1

sII
)T1 . (A.5)

Now, we show the desired result by deriving a lower bound on Ssm , m = I, II and
using it in (A.5). First, note that Si as defined by (A.4) is an increasing function
of T0; hence, it follows from (A.2) that, setting

S̃i = (2 + εN)T1 − T1S̃
−1
i−1T1 , S̃0 = 1

2
(2 + εN)T1 , (A.6)

there holds Ssm ≥ S̃sm . Next, one has

S̃1 − S̃0 = (2 + εN
2

− 2

2 + εN
)T1 = c̄N εNT1 . (A.7)

with c̄N = (4 + εN)/(4 + 2εN) → 1 as N → ∞. Hence, S̃1 ≥ S̃0 and further, by
recursive application of (A.6), there holds

S̃∞ ≥ ⋯ ≥ S̃i ≥ ⋯ ≥ S̃0 = 1

2
(2 + εN) , (A.8)

where S̃∞ exists (the sequence S̃i is increasing and bounded above by (2 + εN)T1 ,
as follows from (A.6)) and satisfy

S∞ = (2 + εN)T1 − T1S
−1
∞ T1 .

Hence,

S̃∞ =
(2 + εN) +

√
(2 + εN)2 − 4

2
T1 ≤ (1 + 1 +

√
5

2

√
εN)T1 ≤ (1 + 2

√
εN)T1 ,
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where the first inequality follows from ε2
N ≤ εN ≤ √

εN ≤ 1 . Now, using this latter

together with (A.8), (A.6) and the fact that S̃i ≤ S̃∞ has the same eigenbasis as T1

further entails

S̃i−S̃i−1 = T1(S̃−1
i−2−S̃−1

i−1)T1 ≥ T1S̃
−1
i−1(S̃i−1−S̃i−2)S̃−1

i−1T1 ≥ 1

(1 + 2
√
εN)2

(S̃i−1−S̃i−2) .

Repeated application of this latter in combination with (A.7) gives

S̃i − S̃i−1 ≥ c̄N
εN

(1 + 2
√
εN)2i−2

T1 .

Further, adding up the above contributions and using

e4i
√
εN ≥ (1 + 2

√
εN)2i ≥ 1 + 4i

√
εN

yields

S̃i ≥ S̃0 + (S̃1 − S̃0) +⋯ + (S̃i − S̃i−1)

≥ T1 + c̄NεN (1 + 1

(1 + 2
√
εN)2

+⋯ + 1

(1 + 2
√
εN)2i−2

) T1

= T1 +
c̄NεN

(1 + 2
√
εN)2i−2

(1 + 2
√
εN)2i − 1

(1 + 2
√
εN)2 − 1

T1

= T1 +
c̄N

√
εN

(1 + 2
√
εN)2i−2

(1 + 2
√
εN)2i − 1

4(1 +√
εN) T1

≥ (1 + c̄N iεN
e4
√
εN (i−1)(1 +√

εN)) T1 .

Now, noting that εN = ε (N − 1)−2 and iI , iII ≈ N/2 , and that c̄N → 1 as N → ∞ ,
one has

Sim ≥ S̃im ≥ (1 + c̃N
ε

N − 1
) T1 , m = I, II ,

where c̃N → 1
2e

−4
√
ε for N →∞ . Together with (A.5), (A.2) this further entails

A = T0−T1(S−1
iI
+S−1

iII
)T1 ≥ (2− 2

1 + c̃Nε
N−1

)T1 = c̃N

1 + c̃Nε
N−1

ε

N − 1
2T1 = cN

ε

N − 1
2T1 ,

where cN → 1
2e

−4
√
ε for N →∞ , and the result then follows from (A.1).
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