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Prof. Yvan NOTAY

Membres du joury :

Prof. Robert BEAUWENS

Prof. Anne DELANDTSHEER

Prof. Pierre-Etienne LABEAU

Prof. Yvan NOTAY

Prof. Cornelis W. OOSTERLEE

Prof. Daniel TUYTTENS

Prof. Stefan VANDEWALLE
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“Understanding is, after all, what science is all about – and science is a great deal

more than mindless computation.”

Sir Roger Penrose

“Of course everything in computerology is new; that is at once its attraction, and its

weakness.”

James H. Wilkinson
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Chapter 1
Introduction

1.1 Preliminaries

In this thesis we consider multigrid methods for the solution of linear systems of equa-

tions. This introductory chapter aims at situating the research material of the thesis

in the general context of numerical analysis and scientific computing. In particular, the

following section sheds some light on (several of the numerous) applications in which

linear systems can arise. A brief overview of solutions techniques for linear systems is

given in Section 1.3. Basic multigrid concepts are introduced in Section 1.4. In Sec-

tion 1.5 we briefly describe the content of the following five chapters, ending up with

some comments on notation.

The reader familiar with basic multigrid concepts can start directly with Section 1.5.

1.2 Why linear systems?

An important number of problems in science and engineering can be formulated in terms

of linear partial differential equations (PDEs). Such equations frequently arise in:

• electrical engineering ,

• computational fluid dynamics (Stokes and Oseen equations) ,

• structural mechanics ,

• transport phenomena ,

• acoustics ,

• chemistry .

To solve numerically these PDE problems, one first performs their discretization; that

is, the initial continuous problem, formulated at every point of the underlying domain,

1



2 Introduction

is reduced to a limited number of equations with usually the same number of unknowns.

If the initial PDE is linear, so are the resulting equations; otherwise, it is a common

practice to linearize the obtained equations using some suitable Newton-like scheme.

In other words, discrete PDEs usually lead to a linear system, stated in vector-matrix

notation as

Ax = b . (1.1)

The main discretization techniques are:

• finite element methods, which use a linear combination of appropriately chosen

shape functions to approximate the solution; the unknowns are the weights of shape

functions and linear system results from application of a minimization principle to

the discretization error [12,76];

• finite volume methods, based on the subdivision of the underlying domain into cells,

on which unknown function(s) (often describing physical quantities) are assumed

constant; linear system is then formed by balance equations that account on sources

inside cells and on the transport of physical quantities between them;

• finite difference methods, which consider unknown function(s) in a given number

of nodes inside or on the boundary of the domain; the linear system arises from

PDE(s) when derivatives of each unknown function are approximated by its dif-

ferences [56,40].

Systems arising from a discretization of PDEs are often sparse; that is, each of their

equations relate together only a small number of unknowns, and the major part of the

entries of A equals zero. It then makes sense to keep in memory only the nonzero

entries and their position in the matrix, which further enables to tackle problems with

an important number of unknowns (107 for a usual PC).

Besides PDE applications, a number of problems are already discrete and formulated

as a linear system of equations. Such problems arise, for instance, in image restoration

or signal processing [43].

1.3 Linear system solvers

The solution of linear system(s) is the most time-consuming process in the majority of

scientific computing applications and therefore should not be neglected. When regular

systems are considered, it can be performed either by direct or by iterative methods.

Direct methods are usually variants of Gaussian elimination. In practice, this latter

is often performed by factorizing the system matrix into a product of lower and upper

triangular matrices (LU factorization), the process being finished by the consecutive

solution of two related triangular systems. Even if the initial system is sparse, the
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triangular factors rarely have the same sparsity: direct methods often have important

memory requirements.

The idea behind iterative methods is to solve the linear system (1.1) approximately

using a suitable procedure, which we formally denote

x̃ = B(b) .

The system is then solved (exactly) if we recover the correction vector e such that

A(x̃ + e) = b ,

or, equivalently,

Ae = r , (1.2)

where r = b−Ax̃ is called residual. This latter equation (also called correction equation)

is equivalent to the initial system (1.1) and can again by solved approximately. The

procedure is repeated until the required precision is reached.

Note that iterative methods rarely give the exact solution of the linear system (1.1).

However, if properly designed, they allow to come closer to the solution at each iteration

step. This feature is particulary relevant since the solution with only a limited accuracy

is often required.

An important characterization of iterative solvers is their optimality with respect to

a given class A(n) of linear system matrices, where n denote the system size. An optimal

iterative method, when applied to systems with system matrix A(n), should have

• its cost per iteration proportional to the system size n ,

• its convergence rate (gain in precision per iteration step) bounded above by a

constant that does not depend on n .

Clearly, if the solution of the linear system (1.1) is determined up to a desired

precision ε with an optimal iterative method, the computational cost is proportional to

n log(ε). Using direct methods for the same purposes amounts to O
(
n3
)

operations if

the matrix is dense (not sparse) and to O
(
n2
)

operations if it arises from discretization

of typical 2-dimensional PDEs [62, p.9] [61, p.14]. Therefore, for system size n large

enough, optimal (and even some suboptimal) iterative methods become more attractive

than direct solvers.

Among the most popular iterative techniques, we should mention:

• Krylov subspace methods, that can be viewed as simple iterative methods where

the approximation B(r) of correction is weighted after each iteration in order to

satisfy some minimization principle. The approximate solution procedure B(·) can

still be chosen freely and is then called preconditioner.
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• Multigrid (multilevel) methods, which we introduce below, have been the first nu-

merical techniques to reach the optimal convergence for usual applications. They

are considered as the most efficient methods for the solution of system arising from

discretization of elliptic PDEs and among the most efficient approaches for other

PDE applications.

• Domain decomposition methods, that correspond to a class of approaches spe-

cially designed for parallel computer architecture. Their main idea is to split the

unknowns into a number of sets such that communication between such sets is

reduced during the solution process.

• Incomplete factorizations (ILU), often used as preconditioners by default for Krylov

subspace methods. The main idea is to reduce the cost and memory requirements

of direct methods that perform complete LU factorization by dropping some en-

tries in the triangular factors. Due to their purely algebraic nature, ILU techniques

can be of interest when applied to problems for which the other methods fail.

For further details on linear system solvers, we refer to corresponding chapters in [24].

Introductory material on iterative methods (including the main variants listed here) can

be found in [54], whereas more advance subjects are treated in [3]. For further informa-

tion on the preconditioning techniques we refer to [7], whereas a broad presentation of

Krylov methods from the historical perspective can be found in [55]

1.4 Multigrid methods

The efficiency of multigrid methods depends on the interplay between its two main

components: smoother and coarse grid correction. The smoother is often a simple

iterative method, and, if used alone, has poor convergence properties. For Poisson-like

problems
∂

∂x

(
αx
∂u

∂x

)
+

∂

∂y

(
αy
∂u

∂y

)
+ βu = f (1.3)

the two well known examples are Jacobi and Gauss-Seidel smoothers [61, Chapters

1-2]; both correspond to a linear approximation procedure B(v) = Bv, where B is,

respectively, the diagonal and (up to some permutations) the lower triangular parts of

A. When applied to the linear system (1.1), such schemes reduce the magnitude of

oscillatory modes in the correction e, while keeping the smooth components unchanged.

After several smoothing iterations, the correction becomes geometrically smooth; that is,

it varies slowly from one point to another (see Figure 1.1 for illustration). Other examples

are block smoothers [61, Section 5.1] for anisotropic problems, ILU smoothers [71, 70]

in computational fluid dynamics applications and hybrid smoothers for problems in

electromagnetics [29](see also Chapter 6).
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Figure 1.1: An example of correction e smoothed by Gauss-Seidel scheme; (a) initial
correction (b) correction after 1 iteration (c) correction after 2 iterations. The corre-
sponding linear system A was obtained by discretization of constant-coefficient isotropic

Poisson PDE (1.3) with Dirichlet boundary conditions on rectangular grid 33× 33.

The smooth character of the correction e can then be exploited, approximating it by

a smaller coarse vector ec of size nc < n which still reproduces the essential part of the

correction’s behaviour. This coarse correction vector is obtained by solving a smaller

coarse nc × nc system

Acec = rc (1.4)

that approximates the initial fine correction system (1.2). This solution corresponds to

the second main multigrid ingredient, known as coarse grid correction.

If the coarse grid correction step is performed by a direct solver, its combination with

a smoothing scheme is called two-grid method. Whereas it is often cheaper than a direct

method, the system to be solved is smaller than the fine one only by a modest factor

(4 in usual applications from two-dimensional PDE problems); the two-grid scheme is

therefore still not optimal. The coarse system (1.4) can however be solved approximately

by (recursively) applying γ iterations of the two-grid method; the recursion argument

can be repeated, forming coarser and coarser systems, until a small enough system size

is reached. If γ = 1, the resulting algorithm is called V–cycle whereas if γ = 2, we

talk about W–cycle (these denominations come from the schematic representation of

the recursion calls). Note that if one solves the coarse system (1.4) by γ iterations of a

relevant Krylov scheme using the two-grid method as a preconditioner, one obtains the

so-called K-cycle [49].

So far, we have not specified how to construct the (hierarchy of) coarse system(s)

(1.4). In case of discretized PDE applications, system matrices of various size can often

be generated for the problem at hand. Combining this with geometrical interpolation to

pass from the coarser correction ec to its finer approximation, we obtain the required in-

gredients. This approach is known as geometric multigrid. It is also possible to construct

the multigrid hierarchy in a black box fashion, based only on the knowledge of the system

matrix A. Such setup phase is usually called coarsening and the black-box multigrid

which uses it is algebraic multigrid. Whereas it is slower than its geometric counterpart
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(because of the additional cost of coarsening), algebraic multigrid can be applied to a

variety of problems, even those which have no PDE or geometric background.

An excellent introduction to the multigrid techniques can be found in [19]. For more

details on practical aspects we refer to [61], whereas a more formal presentation can be

found in [67,27].

1.5 Overview

The remaining five chapters of this thesis treat two essentially different subjects: V-

cycle schemes are considered in Chapters 2-4, whereas the aggregation-based coarsening

is analyzed in Chapters 5-6. As a matter of paradox, these two multigrid ingredients,

when combined together, can hardly lead to an optimal algorithm. Indeed, a V-cycle

needs more accurate prolongations than the simple piecewise-constant one, associated

to aggregation-based coarsening. On the other hand, aggregation-based approaches use

almost exclusively piecewise constant prolongations, and therefore need more involved

cycling strategies, K-cycle [49] being an attractive alternative in this respect.

Chapter 2 considers more precisely the well-known V-cycle convergence theories: the

approximation property based analyses by Hackbusch [27] and by McCormick [38] and

the successive subspace correction theory, as presented in [73] by Xu and in [75] by

Yserentant. Under the constraint that the resulting upper bound on the convergence

rate must be expressed with respect to parameters involving two successive levels at a

time, these theories are compared. Unlike [75], where the comparison is performed on

the basis of underlying assumptions in a particular PDE context, we compare directly

the upper bounds. We show that these analyses are equivalent from the qualitative

point of view. From the quantitative point of view, we show that the bound due to

McCormick is always the best one.

When the upper bound on the V-cycle convergence factor involves only two successive

levels at a time, it can further be compared with the two-level convergence factor. Such

comparison is performed in Chapter 3, showing that a nice two-grid convergence (at

every level) leads to an optimal McCormick’s bound (the best bound from the previous

chapter) if and only if a norm of a given projector is bounded on every level.

In Chapter 4 we consider the Fourier analysis setting for scalar PDEs and extend the

comparison between two-grid and V-cycle multigrid methods to the smoothing factor.

In particular, a two-sided bound involving the smoothing factor is obtained that defines

an interval containing both the two-grid and V-cycle convergence rates. This interval

is narrow when an additional parameter α is small enough, this latter being a simple

function of Fourier components.

Chapter 5 provides a theoretical framework for coarsening by aggregation. An upper

bound is presented that relates the two-grid convergence factor with local quantities,
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each being related to a particular aggregate. The bound is shown to be asymptotically

sharp for a large class of elliptic boundary value problems, including problems with

anisotropic and discontinuous coefficients.

In Chapter 6 we consider problems resulting from the discretization with edge finite

elements of 3D curl-curl equation. The variables in such discretization are associated

with edges. We investigate the performance of the Reitzinger and Schöberl algorithm

[52], which uses aggregation techniques to construct the edge prolongation matrix. More

precisely, we perform a Fourier analysis of the method in two-grid setting, showing its

optimality. The analysis is supplemented with some numerical investigations.

All chapters are independent from each other and can be read in any order. We

recommend however the reading of Chapters 2-4 in the ascending order since the results

demonstrated in the earlier chapters are used in the following ones.

Chapters 2 through 5 have appeared as separate papers or reports. Their presenta-

tion have been only slightly modified in this thesis. In particular, Chapter 2 corresponds

to

A. Napov and Y. Notay Comparison of bounds for V-cycle multigrid,

published online in Appl. Numer. Math.

DOI: 10.1016/j.apnum.2009.11.003, 2009,

Chapter 3 is taken from

A. Napov and Y. Notay When does two-grid optimality carry over to the V-

cycle?, accepted for publication in Numer. Lin. Alg. Appl., 2009,

whereas Chapter 4 is a slightly modified version of

A. Napov and Y. Notay Smoothing factor and actual multigrid convergence,

Report GANMN 09-03, Université Libre de Bruxelles, Brussels, Belgium, 2009,

and Chapter 5 reproduces the content of

A. Napov and Y. Notay Algebraic analysis of aggregation-based multigrid,

Report GANMN 09-04, Université Libre de Bruxelles, Brussels, Belgium, 2009.

Regarding the Chapter 6, its content is a result of author’s collaboration with Ronan

Perrussel from Laboratoire Ampère, Ecole Centrale de Lyon. The corresponding paper

is still in preparation and the content of this chapter it the author’s contribution to the

common research. Numerical experiments in the multilevel setting are limited here to

the model problem setting; the algebraic multilevel implementation of the presented ap-

proach and the related numerical experiments correspond to the contribution of Ronan

Perrussel and will appear in the final manuscript.
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1.6 Notation

We use bold lowercase Roman letters (e.g., v) to denote vectors and uppercase Roman

(e.g., A) to denote matrices. Capital calligraphic letters (e.g., V) represent vector sub-

spaces, except O, which stands for Landau big Oh symbol, and symbols in Chapter 6,

which are used to denote Fourier block matrices and index sets.

We use I to denote the identity matrix and O the zero matrix. When the dimensions

are not obvious from the context, we write more specifically Im for the m×m identity

matrix, and Om×l for the m× l zero matrix.

For any real α, bαc is the largest integer not greater than α. For any set Γ, |Γ| is

its size. For any real matrix B, R(B) is the range of B and N (B) is its null space; BT

stands for its transpose and BH for its transpose complex conjugate. For any square

real matrix C, ρ(C) is its spectral radius (that is, its largest eigenvalue in modulus),

‖C‖ =
√
ρ(CTC) is the usual 2–norm and ‖C‖F =

√∑
i,j C

2
ij the Frobenius norm. For

an SPD matrix D, ‖v‖D =
(
vTDv

)1/2 = ‖D1/2v‖ is the associated D-norm of a vector

v (if D = A, it is also called energy norm) and

‖C‖D = max
v

‖Cv‖D
‖v‖D

= ‖D1/2CD−1/2‖

is the induced matrix D-norm.

We finish this section by giving the list of acronyms and the list of symbols below.

List of Acronyms

Acronym Meaning

ARPACK Arnoldi package [36]

FCG flexible conjugated gradient

GS Gauss-Seidel (smoother)

PDE partial differential equation

RS Reitzinger and Schöberl multigrid method [52]

SPD symmetric positive definite

SSC successive subspace correction
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List of Symbols

Symbol Meaning Reference

A generic system matrix e.g., (1.1)

Ac, Ak coarse grid matrix, coarse grid matrix on level k p.86, p.13

cA approximation property constant in Hackbush’s theory (2.31)

E
(k)
MG V-cycle multigrid iteration matrix on kth grid e.g., (2.2)

ETG, E(k)
TG two-grid iteration matrix (between kth and (k − 1)th grid) e.g., (3.3)

Gk auxiliary matrix inducing a decomposition in SSC theory p.15

h mesh size on a regular grid

J index of the finest level in multilevel setting p.13

K parameter in SSC convergence theory (2.10)

M Chap. 6: mass matrix in edge-element discretization of (6.2) p.116

M (·) Chap. 2-4: equivalent pre– or post–smoothing matrix e.g., (2.3)

n, nk size of A, size of Ak
n(k) Chap. 5: size of kth aggregate p.86

N Chap. 2-3 and 5-6: number of grid unknowns in one direction

N (·) Chap. 4: I −N (ν)
k Ak = (I −R−1

k Ak)ν (4.3)

P, Pk prolongation matrix (from kth and (k − 1)th grid ) e.g., p.13

R smoother matrix of elementary smoothers (e.g., Gauss-Seidel) e.g., p.13

S Chap. 5-6: smoothing iteration matrix e.g., p.119

X Chap. 5-6: equivalent pre– and post–smoothing matrix (5.6), (6.13)

α, β Chap. 4: V-cycle convergence parameters e.g., (4.14),

(4.16)

Chap. 5-6: PDE coefficients (5.37),(6.1)

Γ auxiliary matrix in SSC convergence theory (2.11)

Γk, Γk aggregate k or k p.117, p.125

δ approximation property constant in McCormick’s theory e.g., (2.34)

θ Chap. 2-4, 6: “frequency” in Fourier analysis

µ, µ(k) Chap. 4: smoothing factor (on kth grid) p.60

Chap. 5: two-grid quality (of kth aggregate) p.87, (5.19)

ν number of smoothing steps p.13

πC projector, generally of the form P (P TCP )−1P TC e.g., (3.5)

ω(·) parameter in V-cycle convergence theories (2.4)

ω, ωJac smoother weighting

Ω PDE domain





Chapter 2
Comparison of bounds for V-cycle multigrid

Summary

We consider multigrid methods with V-cycle for symmetric positive definite linear sys-

tems. We compare bounds on the convergence factor that are characterized by a constant

which is the maximum over all levels of an expression involving only two consecutive

levels. More particularly, we consider the classical bound by Hackbusch, a bound by

McCormick, and a bound obtained by applying the successive subspace correction con-

vergence theory with so-called a-orthogonal decomposition. We show that the constants

in these bounds are closely related, and hence that these analyses are equivalent from

the qualitative point of view. From the quantitative point of view, we show that the

bound due to McCormick is always the best one. We also show on an example that it

can give satisfactory sharp prediction of actual multigrid convergence.

2.1 Introduction

We consider multigrid methods for solving symmetric positive definite (SPD) n×n linear

systems:

Ax = b. (2.1)

Multigrid methods are based on the recursive use of a two–grid scheme. A basic two–

grid method combines the action of a smoother, often a simple iterative method such

as Gauss-Seidel, and a coarse grid correction, which involves solving a smaller problem

on a coarser grid. A V–cycle multigrid method is obtained when this coarse problem is

solved approximately with 1 iteration of the two–grid scheme on that level, and so on,

until the coarsest level, where an exact solve is performed. Other cycles may be defined,

including the W–cycle based on two recursive applications of the two-grid scheme at

each level; see, e.g., [61].

11
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When the system (2.1) stems from the discretization of an elliptic PDE, the V-cycle

multigrid has often optimal convergence properties; that is, the convergence is indepen-

dent of the number of levels and of the mesh discretization parameter h. There are two

classical ways for proving this. One way consists in checking the so-called smoothing and

approximation properties [10,13,26,27,37,38,53]. Another possibility consists in defining

an appropriate subspace decomposition and then analyze the constants involved in the

successive subspace correction (SSC) convergence theory [50, 51, 25, 73, 75, 74]. So far,

these approaches have only been compared (e.g., in [75]) on the basis of the regularity

assumptions that an elliptic boundary value problem should fulfill in order to guarantee

optimal bounds for the multigrid method applied to its finite element discretization.

This allows only qualitative conclusions which are further restricted to a specific con-

text. For instance, such comparison does not cover V-cycle multigrid for structured

linear systems [1]. In fact, a detailed comparison of the convergence theories for V-cycle

is difficult because they may be (and have been) formulated diversely. There is some

freedom in choosing the subspace decomposition for the SSC convergence theory and

there is no unique definition of the smoothing and approximation properties.

The smoothing and approximation property ideas form the basis of the early proofs

[10,13,26] of h-independent V-cycle convergence. For the case when A is SPD, the clas-

sical proof is presented in [27, Theorem 7.2.2] by Hackbusch. The convergence estimate

is then characterized by the approximation property constant cA, which is a maximum

over all levels of an expression involving only two consecutive levels.

An alternative approach has been developed by McCormick in [38] (see also [37,53]).

Here again, the convergence estimate depends on a constant δ which is a minimum over

all levels of an expression involving two consecutive levels.

The SSC convergence theory is more recent and also more general, since by tuning

the choice of the space decomposition one can prove some results for elliptic PDEs

without requiring regularity assumptions [14]. The comparison with other approaches

is not easy because this theory is traditionally formulated in an abstract setting. In this

chapter, we first develop an algebraic formulation of the theory, resulting in a bound

which also depends on freely chosen quantities. Next, we justify that this degree of

freedom seemingly disappears if one adds the constraint that one must be able to assess

the main constant in the bound considering only two levels at a time. Note that this

latter constraint is not only mandatory to develop the comparison with the other two

approaches. It is also very sensible in view of a quantitative analysis, where, as we

illustrate on an example, the Fourier analysis setting is used to numerically calculate

the bounds and compare them with the actual convergence factor.

Transferred back into the original SSC setting, the choice for which this two-level

assessment is possible corresponds to the so-called a-orthogonal decomposition, which

is also the decomposition that has been most extensively used when analyzing multigrid
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methods for the class of (H2-) regular problems. Then, the bound depends mainly on

a constant K and, in this chapter, we show that the three constants cA, δ and K are in

fact closely related, namely

K = max(1, cA)

and

δ−1 = c
(2)
A ,

where c(2)
A is a Hackbusch approximation property constant for the number of smoothing

steps being doubled. Hence the three approaches are qualitatively equivalent, in the

sense that they simultaneously succeed or fail to prove optimal convergence. From the

quantitative point of view, it further turns out that McCormick’s bound is the best one.

The reminder of this chapter is organized as follows. In Section 2.2, we state the

general setting of this study and gather the needed assumptions. In Section 2.3, we

develop our algebraic variant of the SSC theory and recall the results of Hackbusch and

McCormick. The comparison is performed in Section 2.4, and an example is analyzed

in Section 2.5.

2.2 General setting

We consider a multigrid method with J + 1 levels (J ≥ 1); index J refers to the finest

level (on which the system (2.1) is to be solved), and index 0 to the coarsest level. The

number of unknowns at level k , 0 ≤ k ≤ J , is denoted nk (hence nJ = n).

Our analysis applies to symmetric multigrid schemes based on the Galerkin principle

for the SPD system (2.1); that is, restriction is the transpose of prolongation and the

matrix Ak at level k , k = J − 1, . . . , 0 , is given by Ak = P Tk Ak+1Pk , where Pk is the

prolongation operator from level k to level k+ 1 ; we also assume that the smoother Rk
is SPD and that the number of pre–smoothing steps ν (ν > 0) is equal to the number

of post–smoothing steps. The algorithm for V–cycle multigrid is then as follows.

Multigrid with V–cycle at level k: xn+1 = MG(b, Ak,xn, k)

(1) Relax ν times with smoother Rk : xn ← Smooth(xn, Ak, Rk, ν,b)

(2) Compute residual: rk = b−Akxn
(3) Restrict residual: rk−1 = P Tk−1rk
(4) Coarse grid correction: if k = 1 , e0 = A−1

0 r0

else ek−1 = MG(rk−1, Ak−1, 0, k − 1)
(5) Prolongate coarse grid correction: xn ← xn + Pk−1ek−1

(6) Relax ν times with smoother Rk : xn+1 ← Smooth(xn, Ak, Rk, ν,b)

When applying this algorithm, the error satisfies

A−1
k b− xn+1 = E

(k)
MG

(
A−1
k b− xn

)
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where the iteration matrix E(k)
MG is recursively defined from

E
(0)
MG = 0 and, for k = 1, 2, . . . , J :

E
(k)
MG = (I −R−1

k Ak)ν
(
I − Pk−1(I − E(k−1)

MG )A−1
k−1P

T
k−1Ak

)
(I −R−1

k Ak)ν
(2.2)

(see, e.g., [61, p. 48]). Our main objective is the analysis of the spectral radius of E(J)
MG ,

which governs convergence on the finest level. Our analysis makes use of the following

general assumptions.

General assumptions

• n = nJ > nJ−1 > ... > n0 ;

• Pk is an nk+1 × nk matrix of rank nk , k = J − 1, . . . , 0 ;

• AJ = A and Ak = P Tk Ak+1Pk , k = J − 1, . . . , 0 ;

• Rk is SPD and such that ρ(I −R−1
k Ak) < 1 , k = J, . . . , 1 .

Note also that most of our results do not refer explicitly to the smoother Rk , but are

stated with respect to the matrices M (ν)
k defined from

I − M
(ν)
k

−1
Ak = (I −R−1

k Ak)ν . (2.3)

That is, M (ν)
k is the smoother that provides in 1 step the same effect as ν steps with

Rk . The results stated with respect to M
(ν)
k may then be seen as results stated for the

case of 1 pre– and 1 post–smoothing step, which can be extended to the general case

via the relations (2.3).

Most results depend on the following parameter:

ω(ν) = max

(
1 , max

1≤k≤J
max

wk∈Rnk

wT
kAkwk

wT
k M

(ν)
k wk

)
. (2.4)

From ρ(I −R−1
k Ak) < 1, it follows that ω(1) < 2, whereas (2.3) implies

ω(ν) =

{
1 if ν is even

1 + (ω(1) − 1)ν if ν is odd.
(2.5)

Hence one has also ω(ν) < 2 for all ν. Further, if ω(1) = 1, then ω(ν) = 1 for all ν.

We close this subsection by introducing the projector πAk which plays an important

role throughout this chapter:

πAk = Pk−1A
−1
k−1P

T
k−1Ak . (2.6)



Comparison of bounds for V-cycle multigrid 15

2.3 Bounds on the V-cycle multigrid convergence factor

2.3.1 SSC theory

We consider the SSC convergence analysis as presented in Theorem 4.4 and Lemma 4.6

in [73], and Theorem 5.1 in [75]. Of course, there are more recent versions of this theory,

e.g., in [74] an identity (known as XZ-identity) is obtained which provides the exact

convergence factor. However, we do not see how to transform these further versions so

that, according to the focus of this chapter, they deliver a bound that could be assessed

considering only two levels at a time (while being significantly different from the bound

given by Theorem 2.1 together with Theorem 2.3). In particular, it seems clear that

the exact convergence factor is a global quantity whose knowledge necessarily involves

information from all levels. Note that SSC ideas are also treated in an algebraic setting

in [65, Section 5], where both the XZ-identity and approximation property approaches

are presented, without however comparing them.

Now, we first develop in Theorem 2.1 below an algebraic version of Theorem 5.1

in [75]. We give a complete proof since this version slightly improves the original for-

mulation, which uses a matrix Γ with the same entries in the strict upper part, but

non-negative entries in the strict lower part and positive entries on the diagonal.

Observe that in Theorem 2.1 below the freedom left in choosing the pseudo restric-

tions Gk corresponds, in the original formulation, to the freedom associated with the

choice of the space decomposition. More precisely, given a set of Gk, k = 0, . . . , J−1, we

can construct a corresponding space decomposition as defined in [75]. In Appendix A

we show that the converse is also true; that is, with any admissible space decomposition

in the original theory, one may associate a set of pseudo restrictions Gk such that The-

orem 2.1 will yield the same bound as Theorem 5.1 in [75], except for the improvement

associated with the refined definition of Γ.

Theorem 2.1. Let E(J)
MG be defined by (2.2) with Pk , k = 0, . . . , J−1 , Ak , k = 0, . . . , J ,

and Rk , k = 1, . . . , J , satisfying the general assumptions stated in Section 2.2. For

k = 1, . . . , J , let M (ν)
k be defined by (2.3), and set M (ν)

0 = A0 .

Let Gk , k = 0, . . . , J − 1 , be nk × nk+1 matrices, and, for k = 0, . . . , J , let P̌k and

Ǧk be defined by, respectively,

P̌J = I

P̌k = P̌k+1 Pk , k = J − 1, . . . , 0 ,
(2.7)

and

ǦJ = I

Ǧk = Gk Ǧk+1 , k = J − 1, . . . , 0 ,
(2.8)
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with P−1 = G−1 = O .

There holds

ρ(E(J)
MG) ≤ 1− 2− ω(ν)

K(ν)(1 + ‖Γ‖)2
, (2.9)

where ω(ν) is defined by (2.4),

K(ν) = max
v∈Rn

∑J
k=0 vT ǦTk (I − Pk−1Gk−1)T M (ν)

k (I − Pk−1Gk−1)Ǧkv
vTAv

, (2.10)

and

Γ =



0 γ01 · · · γ0J

0 · · · γ1J

. . .
...

0 γ(J−1)J

0


, (2.11)

with, for k = 0, . . . , J − 1 and l = k + 1, . . . , J ,

γkl = max
wk∈Rnk

max
v∈Rn

vT ǦTl (I − Pl−1Gl−1)T P̌Tl AP̌kwk

(wT
k M

(ν)
k wk)1/2(vT ǦTl (I − Pl−1Gl−1)T M (ν)

l (I − Pl−1Gl−1)Ǧlv)1/2
.

(2.12)

Moreover,

‖Γ‖ ≤ ω(ν)
√
J(J + 1)/2 . (2.13)

Proof. In what follows, we omit the superscript (ν) in M
(ν)
k . We first gather some

useful definitions:

Qk = (I − Pk−1Gk−1)Ǧk , k = 0, . . . , J ; (2.14)

Tk = P̌k(Mk)−1P̌ Tk A , k = 0, . . . , J ; (2.15)

Fk = (I − Tk)(I − Tk−1) · · · (I − T1)(I − T0) , k = 0, . . . , J . (2.16)

In addition we set F−1 = I .

As shown in [65, Proposition 5.1.1] there holds

E
(J)
MG = (I − TJ)(I − TJ−1) . . . (I − T1)(I − T0)(I − T1) . . . (I − TJ−1)(I − TJ) .

Further, since A−1(I − Tk)T = (I − Tk)A−1 and (I − T0)2 = I − T0 , one has E(J)
MG =

FJA
−1F TJ A , showing that

ρ(E(J)
MG) = ‖FJ‖2A = max

v∈Rn
‖FJv‖2A
vTAv

. (2.17)
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Using this relation, we first show that (2.9) holds if

vTAv ≤ K (1 + ‖Γ‖)2

(
J∑
l=0

vTF Tl−1ATlFl−1v

)
∀v ∈ Rn . (2.18)

Indeed, since ATk = T Tk A and using (2.4), one has, ∀v ∈ Rn ,

||Fk−1v||2A − ||Fkv||2A = (Fk−1v)TAFk−1v − (Fk−1v)T (I − Tk)TA(I − Tk)Fk−1v

= 2vTF Tk−1ATkFk−1v − (Fk−1v)TT Tk ATk(Fk−1v)

= 2vTF Tk−1ATkFk−1v − (Fk−1v)TAP̌kM−1
k P̌ Tk AP̌kM

−1
k P̌ Tk A(Fk−1v)

= 2vTF Tk−1ATkFk−1v − (Fk−1v)TAP̌kM−1
k AkM

−1
k P̌ Tk A(Fk−1v)

≥ 2vTF Tk−1ATkFk−1v − ω(ν) (Fk−1v)TAP̌kM−1
k P̌ Tk A(Fk−1v)

= (2− ω(ν)) vTF Tk−1ATkFk−1v .

Summing both sides for k = 0, . . . , J shows that, ∀v ∈ Rn ,

‖v‖2A − ‖FJv‖2A ≥ (2− ω(ν))

(
J∑
l=0

vTF Tl−1ATlFl−1v

)
,

and it is straightforward to check that this relation, together with (2.18) and (2.17),

implies (2.9).

We now prove (2.18). Observe that, using (2.14), there holds

J∑
l=0

P̌lQl =
J∑
l=0

P̌l(I−Pl−1Gl−1)Ǧl =
J∑
l=0

(
P̌lǦl − P̌l−1Ǧl−1

)
= P̌JǦJ−P̌−1Ǧ−1 = I .

For any v ∈ Rn , one may then decompose vTAv as the sum of two terms (remembering

that F−1 = I):

vTAv =
J∑
l=0

vTAP̌lQlv =
J∑
l=0

vTF Tl−1AP̌lQlv +
J∑
l=1

vT (I − F Tl−1)AP̌lQlv . (2.19)

In order to prove (2.18), we bound separately the two terms in the right hand side of

(2.19).

Regarding the first term, one has, applying twice the Cauchy-Schwartz inequality,

J∑
l=0

vTF Tl−1AP̌lQlv ≤
J∑
l=0

(vTQTl MlQlv)1/2(vTF Tl−1AP̌lM
−1
l P̌ Tl AFl−1v)1/2

≤

(
J∑
l=0

vTQTl MlQlv

)1/2( J∑
l=0

vTF Tl−1ATlFl−1v

)1/2

. (2.20)
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To estimate the second term, first observe that

I − Fl−1 = I − (I − Tl−1)Fl−2 = (I − Fl−2) + Tl−1Fl−2 = · · · =
l−1∑
k=0

TkFk−1 .

Therefore,
J∑
l=1

vT (I − F Tl−1)AP̌lQlv =
J∑
l=1

l−1∑
k=0

vTF Tk−1T
T
k AP̌lQlv ,

whereas, for any 0 ≤ k < l ≤ J , using successively (2.15) and (2.12) with wk =

M−1
k P̌ Tk AFk−1v ,

vTF Tk−1T
T
k AP̌lQlv = (vTF Tk−1AP̌kM

−1
k )P̌ Tk AP̌lQlv

≤ γkl(vTQTl MlQlv)1/2(vTF Tk−1AP̌kM
−1
k P̌ Tk AFk−1v)1/2

= γkl(vTQTl MlQlv)1/2(vTF Tk−1ATkFk−1v)1/2 .

Hence, since ‖Γ‖ = maxy
‖Γy‖
‖y‖ = maxx,y

xTΓy
‖x‖ ‖y‖ and using the definition (2.11) of Γ,

there holds

J∑
l=1

vT (I − F Tl−1)AP̌lQlv ≤
J∑
l=1

l−1∑
k=0

γkl(vTQTl MlQlv)1/2(vTF Tk−1ATkFk−1v)1/2

≤ ‖Γ‖

(
J∑
l=0

vTQTl MlQlv

)1/2( J∑
k=0

vTF Tk−1ATkFk−1v

)1/2

.

Combining the latter result with (2.20), one gets

vTAv ≤ (1 + ‖Γ‖)

(
J∑
l=0

vTQTl MlQlv

)1/2 ( J∑
l=0

vTF Tl−1ATlFl−1v

)1/2

.

Taking the square of both sides, and using (2.10) (which amounts to
∑J

l=0 vTQTl MlQlv ≤
K vTAv) straightforwardly leads to (2.18), which completes the proof of (2.9).

It remains to prove (2.13). Note that ‖Γ‖ ≤ ‖Γ‖F =
(∑J

l=1

∑l−1
k=0 γ

2
kl

)1/2
. Further,

for any 0 ≤ k < l ≤ J and for any w ∈ Rn and wk ∈ Rnk ,

wTQTl P̌
T
l AP̌kwk ≤ (wTQTl P̌

T
l AP̌lQlw)1/2(wT

k P̌
T
k AP̌kwk)1/2

= (wTQTl AlQlw)1/2(wT
kAkwk)1/2

≤ ω(ν) (wTQTl MlQlw)1/2 (wT
kMkwk)1/2 ,

showing that γkl ≤ ω(ν) . The required result straightforwardly follows.

Now, in this chapter, we focus on bounds that can be estimated considering only two

consecutive levels at a time. The following theorem helps to see when the main constant
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K(ν) in Theorem 2.1 can be set in that form.

Theorem 2.2. Let P̌k and Ǧk be defined by (2.7) and (2.8) with Pk , k = 0, . . . , J − 1

and Ak , k = 0, . . . , J , satisfying the general assumptions stated in Section 2.2. Then,

for all v ∈ Rn

vTAv =
J∑
k=0

vT ǦTk (I − Pk−1Gk−1)TAk(I − Pk−1Gk−1)Ǧkv (2.21)

+ 2
J∑
k=0

vT ǦTk−1P
T
k−1Ak (I − Pk−1Gk−1) Ǧkv

=
J∑
k=0

vT ǦTk (I − Pk−1Gk−1)TAk(I + Pk−1Gk−1)Ǧkv . (2.22)

Moreover, if Pk−1Gk−1 is a projector, then

(I − Pk−1Gk−1)TAk(I + Pk−1Gk−1) (2.23)

is nonnegative definite if and only if

Gk−1 = A−1
k−1P

T
k−1Ak. (2.24)

Proof. We begin, noting that vTkAkPk−1Gk−1vk = (vTkAkPk−1Gk−1vk)T =

vTk (Pk−1Gk−1)TAkvk holds for all vk ∈ Rnk . Using this relation with vk = Ǧkv, equa-

tions (2.21) and (2.22) follow from

J∑
k=0

vT ǦTk (I + Pk−1Gk−1)TAk(I − Pk−1Gk−1)Ǧkv

=
J∑
k=0

(
vT ǦTk P̌

T
k AP̌kǦkv − vT ǦTk−1P̌

T
k−1AP̌k−1Ǧk−1v

)
= vTAv .

Next, (I − Pk−1Gk−1)TAk(I + Pk−1Gk−1) is nonnegative definite if and only if

vTk (I − Pk−1Gk−1)TAk(I + Pk−1Gk−1)vk ≥ 0 ∀vk ∈ Rnk

which in turn is equivalent to

vTkAkvk ≥ vTk (Pk−1Gk−1)TAkPk−1Gk−1vk ∀vk ∈ Rnk ,
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this latter being nothing else but

‖Pk−1Gk−1‖Ak ≤ 1.

Hence, if Pk−1Gk−1 is a projector, it has to be orthogonal, and, hence, symmetric with

respect to the ( · , Ak · ) inner product (see [39, Section 5.13]); that is, Pk−1Gk−1 = BkAk

for some symmetric Bk. This implies Gk−1 = Ck−1P
T
k−1Ak with Ck−1 symmetric. Since

Pk−1 has full rank, Pk−1Gk−1 is then a projector if and only if Ck−1 = A−1
k−1; hence the

required result.

Now, consider the definition (2.10) of K(ν). To obtain an expression that can be

assessed considering only two levels at a time, the only possibility we have found is

to express the denominator vTAv as a sum over all levels similar to the sum in the

numerator, and, assuming each term involved to be non-negative, to bound the ratio of

both these sums
∑

k ak/
∑

k bk by the maximum of the ratios maxk(ak/bk). The first

result of Theorem 2.2 tells us that such a splitting of vTAv always exists, but the second

result tells us that it is exploitable only with Gk−1 = A−1
k−1P

T
k−1Ak, since otherwise there

would be negative terms in the sum of the denominator, at least for certain v.1 Note that

these Gk are such that Pk−1Gk−1 = πAk and correspond to the so-called a-orthogonal

decomposition in the original abstract theory. This choice is further analyzed in the

following theorem, where we prove in particular that one has then Γ = 0. Note that

with the original formulation of [75, Theorem 5.1], one could only prove ‖Γ‖ ≤ ω(ν).

Theorem 2.3. Let the assumptions of Theorem 2.1 hold, and let Gk , k = 0, . . . , J − 1 ,

be defined by (2.24). Then, K(ν) and Γ , defined as in Theorem 2.1, satisfy, respectively

K(ν) = max

(
1, max

1≤k≤J
max

wk∈Rnk

wT
k (I − πAk)T M (ν)

k (I − πAk)wk

wT
k (I − πAk)TAk(I − πAk)wk

)
(2.25)

= max

(
1, max

1≤k≤J
max

wk∈Rnk

wT
k (I − πAk)T M (ν)

k (I − πAk)wk

wT
kAkwk

)
(2.26)

and

Γ = 0 , (2.27)

where πAk is defined by (2.6).

1Theorem 3.2 proves this under the additional assumption that PkGk is a projector, but we did not
found any usable bound based on Gk for which PkGk would not be a projector.
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Proof. We first prove (2.27). Note that (2.24) implies Ǧl = A−1
l P̌ Tl A, l = 0, ..., J−1.

Hence, for any 0 ≤ k < l ≤ J and all wk ∈ Rnk , v ∈ Rn ,

wT
k P̌

T
k AP̌l(I − Pl−1Gl−1)Ǧlv = wT

k P̌
T
k AP̌lA

−1
l P̌ Tl Av −wT

k P̌
T
k AP̌l−1A

−1
l−1P̌

T
l−1Av

= wT
k P

T
k · · ·P Tl−1

(
P̌ Tl AP̌lA

−1
l

)
P̌ Tl Av

−wT
k P

T
k · · ·P Tl−2

(
P̌ Tl−1AP̌l−1A

−1
l−1

)
P̌ Tl−1Av

= wT
k P

T
k · · ·P Tl−1P̌

T
l Av −wT

k P
T
k · · ·P Tl−2P̌

T
l−1Av

= wT
k P̌

T
k Av −wT

k P̌
T
k Av

= 0 ;

γkl = 0 and therefore Γ = 0 readily follows.

We next prove (2.25) and (2.26). Using (2.22) and Pk−1Gk−1 = πAk together with

(I + πAk)T Ak (I − πAk) = (I − πAk)TAk(I − πAk) in the definition (2.10) of K(ν),

one has

K(ν) = max
v∈Rn

∑J
k=0 vT ǦTk (I − Pk−1Gk−1)T M (ν)

k (I − Pk−1Gk−1)Ǧkv∑J
k=0 vT ǦTk (I − Pk−1Gk−1)TAk(I − Pk−1Gk−1)Ǧkv

(2.28)

= max
v∈Rn

∑J
k=1 vT ǦTk (I − πAk)T M (ν)

k (I − πAk)Ǧkv + vT ǦT0 A0Ǧ0v∑J
k=1 vT ǦTk (I − πAk)TAk(I − πAk)Ǧkv + vT ǦT0 A0Ǧ0v

≤ max

(
1 , max

1≤k≤J
max

wk∈Rnk

wT
k (I − πAk)T M (ν)

k (I − πAk)wk

wT
k (I − πAk)TAk(I − πAk)wk

)
.

This proves that the right hand side of (2.25) is an upper bound on K(ν) ; the right hand

side of (2.26) is a further upper bound since

max
wk∈Rnk

wT
k (I − πAk)TM (ν)

k (I − πAk)wk

wT
kAkwk

≥ max
vk∈Rnk

vTk (I − πAk)TM (ν)
k (I − πAk)vk

vTk (I − πAk)TAk(I − πAk)vk
,

as seen by restricting the maximum in the left hand side to wk = (I − πAk)vk (taking

into account that (I − πAk)2 = (I − πAk)).

To prove that the right hand sides of (2.25), (2.26) are also lower bounds on K(ν) ,

let, for k = 0, . . . , J , Q̌k = (I − Pk−1Gk−1)Ǧk . Then rewrite (2.28) as

K(ν) = max
v∈Rn

∑J
k=0 vT Q̌Tk M

(ν)
k Q̌kv∑J

k=0 vT Q̌TkAkQ̌kv
. (2.29)

Since GkPk = Ink for k = 0, . . . , J − 1 , Lemma 2.1 in Appendix B proves that, for

0 ≤ l, k ≤ J with k 6= l ,

Q̌lP̌lQ̌l = Q̌l and Q̌kP̌lQ̌l = Onk×n .
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Restricting the maximum in (2.29) to v = P̌lQ̌lw for some 0 ≤ l ≤ J yields

K(ν) ≥ max
w∈Rn

wT Q̌Tl M
(ν)
l Q̌lw

wT Q̌Tl AlQ̌lw

= max
w∈Rn

wT ǦTl (I − Pl−1Gl−1)T M (ν)
l (I − Pl−1Gl−1)Ǧlw

wT ǦTl (I − Pl−1Gl−1)TAl(I − Pl−1Gl−1)Ǧlw

= max
wl∈Rnl

wT
l (I − Pl−1Gl−1)T M (ν)

l (I − Pl−1Gl−1)wl

wT
l (I − Pl−1Gl−1)TAl(I − Pl−1Gl−1)wl

,

the last equality stemming from the fact that Gl, and hence Ǧl, has full rank (from

(2.24), (2.8), and because Pk has full rank by virtue of our general assumptions). The

conclusion follows because

wT
l (I − Pl−1Gl−1)TAl(I − Pl−1Gl−1)wl = wT

l (I − πAl)
TAl(I − πAl)wl

= wT
l (Al −AlPl−1A

−1
l−1P

T
l−1Al)wl

≤ wT
l Alwl .

2.3.2 Hackbusch bound

The bound from [27, Theorem 7.2.2] is recalled in the following theorem. Note that

this analysis requires ω(ν) = 1. This condition is however not too restrictive since the

smoother can be scaled to satisfy it. Note also that, according to (2.5), ω(ν) = 1 always

holds for ν even, and that ω(1) = 1 entails ω(ν) = 1 for all ν.

Theorem 2.4. Let E(J)
MG be defined by (2.2) with Pk , k = 0, . . . , J−1 , Ak , k = 0, . . . , J ,

and Rk , k = 1, . . . , J , satisfying the general assumptions stated in Section 2.2. For

k = 1, . . . , J , let M (ν)
k and ω(ν) be defined, respectively, by (2.3) and (2.4).

Then, if ω(ν) = 1,

ρ(E(J)
MG) ≤

c
(ν)
A

c
(ν)
A + 2

, (2.30)

where

c
(ν)
A = max

1≤k≤J
max

vk∈Rnk

vTk (A−1
k − Pk−1A

−1
k−1P

T
k−1)vk

vTk M
(ν)
k

−1
vk

. (2.31)

Moreover, if ω(1) = 1,

ρ(E(J)
MG) ≤

c
(1)
A

c
(1)
A + 2ν

. (2.32)

Note that Theorem 7.2.2 in [27] considers only (2.32). The bound (2.30) is a straight-

forward extension (through the replacement of M (1)
k = Rk by M (ν)

k ) that will make easier

the comparison with other approaches. It is not really useful in practice since, as will

be seen, (2.32) is always better than (2.30). Note, however, that (2.30) is more general

since one may have ω(ν) = 1 while ω(1) > 1.



Comparison of bounds for V-cycle multigrid 23

Note also that in [27] some bounds based on cA are also proved for the W and two-

grid cycle, that are better than those obtained by using just the V-cycle bound as a

worst case estimate.

2.3.3 McCormick’s bound

We recall in the following theorem the bound obtained in [38, Lemma 2.3, Theorem 3.4

and Section 5] (see also [37], or [53] for an alternative proof).

Theorem 2.5. Let E(J)
MG be defined by (2.2) with Pk , k = 0, . . . , J−1 , Ak , k = 0, . . . , J ,

and Rk , k = 1, . . . , J , satisfying the general assumptions stated in Section 2.2. For

k = 1, . . . , J , let M (ν)
k be defined by (2.3).

Then,

ρ(E(J)
MG) ≤ 1− δ(ν) , (2.33)

where

δ(ν) = min
1≤k≤J

min
vk∈Rnk

‖vk‖2Ak − ‖(I − M
(ν)
k

−1
Ak)vk‖2Ak

‖(I − πAk)vk‖2Ak
(2.34)

with πAk defined by (2.6).

Moreover,

δ(ν)−1 ≤ 1
ν

(
δ(1)−1

+ ν − 1
)
. (2.35)

2.4 Comparison

We first state our main result, which relates the constants K(ν) , c(ν)
A and δ(ν) .

Theorem 2.6. Let K(ν) , c(ν)
A and δ(ν) be defined respectively by (2.25), (2.31) and

(2.34) where Pk , k = 0, . . . , J − 1 , Ak , k = 0, . . . , J , and Rk , k = 1, . . . , J satisfy

the general assumptions stated in Section 2.2. For k = 1, . . . , J , let M (ν)
k be defined by

(2.3).

Then

K(ν) = max( 1, c(ν)
A ) , (2.36)

and

δ(ν) =
1

c
(2ν)
A

. (2.37)

Proof. Let

P̃k = A
1/2
k Pk−1A

−1/2
k−1 , k = 1, . . . , J .
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One has

c
(ν)
A = max

1≤k≤J
max
v∈Rnk

vT (A−1
k − Pk−1A

−1
k−1P

T
k−1)v

vT M
(ν)
k

−1
v

= max
1≤k≤J

max
v∈Rnk

vT (I −A1/2
k Pk−1A

−1
k−1P

T
k−1A

1/2
k )v

vTA1/2
k M

(ν)
k

−1
A

1/2
k v

= max
1≤k≤J

max
v∈Rnk

vT (I − P̃kP̃ Tk )v

vTA1/2
k M

(ν)
k

−1
A

1/2
k v

= max
1≤k≤J

max
v∈Rnk

vT M
(ν)
k

1/2
A
−1/2
k (I − P̃kP̃ Tk )2A

−1/2
k M

(ν)
k

1/2
v

vTv

= max
1≤k≤J

max
v∈Rnk

vT (I − P̃kP̃ Tk )A−1/2
k M

(ν)
k A

−1/2
k (I − P̃kP̃ Tk )v

vTv
.

Since (I − P̃kP̃ Tk )A−1/2
k = (I − A1/2

k Pk−1A
−1
k−1P

T
k−1A

1/2
k )A−1/2

k = A
−1/2
k (I − πAk)T , this

leads to

c
(ν)
A = max

1≤k≤J
max
v∈Rnk

vT (I − πAk)T M (ν)
k (I − πAk)v

vTAkv
,

hence (2.36).

On the other hand, observing that M (2ν)
k satisfies

I − M
(2ν)
k

−1
Ak = (I − M

(ν)
k

−1
Ak)2 , k = 1, . . . , J ,

one has

δ(ν) = min
1≤k≤J

min
v∈Rnk

||v||2Ak − ||I − M
(ν)
k

−1
Akv||2Ak

||(I − πAk)v||2Ak

= min
1≤k≤J

min
v∈Rnk

vTAkv − vT
(
I − M

(ν)
k

−1
Ak

)T
Ak

(
I − M

(ν)
k

−1
Ak

)
v

vT (I − πAk)TAk(I − πAk)v

= min
1≤k≤J

min
v∈Rnk

vTAkv − vTAk

(
I − M

(ν)
k

−1
Ak

)2

v

vT (I − πAk)TAk(I − πAk)v

= min
1≤k≤J

min
v∈Rnk

vTAkv − vTAk

(
I − M

(2ν)
k

−1
Ak

)
v

vT (I − πAk)TAk(I − πAk)v

= min
1≤k≤J

min
v∈Rnk

vTAk M
(2ν)
k

−1
Akv

vTAk(I − πAk)v

= min
1≤k≤J

min
v∈Rnk

vT M (2ν)
k

−1
v

vT (I − πAk)A−1
k v

=
1

c
(2ν)
A

.
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We are now ready to compare the bounds (2.9), (2.30), (2.32) and (2.33). This is

done in the following theorem.

Theorem 2.7. Let E(J)
MG be defined by (2.2) with Pk , k = 0, . . . , J−1 , Ak , k = 0, . . . , J ,

and Rk , k = 1, . . . , J , satisfying the general assumptions stated in Section 2.2.For

k = 1, . . . , J , let M (ν)
k and ω(ν) be defined, respectively, by (2.3) and (2.4). Moreover,

let K(ν) , c(ν)
A and δ(ν) be defined respectively by (2.25), (2.31) and (2.34).

Then

ρ(E(J)
MG) ≤ 1− δ(ν) ≤ 1− 2− ω(ν)

K(ν)
. (2.38)

Further, if ω(ν) = 1,

ρ(E(J)
MG) ≤ 1− δ(ν) ≤

c
(ν)
A

c
(ν)
A + 2

, (2.39)

and, if ω(1) = 1,

ρ(E(J)
MG) ≤ 1− δ(ν) ≤

c
(1)
A

c
(1)
A + 2ν

≤
c

(ν)
A

c
(ν)
A + 2

. (2.40)

Moreover,

1− 2− ω(ν)

K(ν)
≤ 1− 2− ω(ν)

2
δ(ν) , (2.41)

and, if ω(ν) = 1,
c

(ν)
A

c
(ν)
A + 2

≤ 1
δ(ν) + 1

= 1− δ(ν)

δ(ν) + 1
. (2.42)

Proof. Let us first prove two intermediate results:

c
(ν)
A

2
≤ c(2ν)

A ≤
c

(ν)
A

2− ω(ν)
(2.43)

and, if ω(µ) = 1,
c

(µ)
A

ν
≤ c(µν)

A ≤ 1
ν

(
c

(µ)
A + ν − 1

)
, µ ∈ N+

0 . (2.44)

The first intermediate result (2.43) follows from

M
(2ν)
k = M

(ν)
k

(
2 M (ν)

k −Ak
)−1

M
(ν)
k

combined with

2vTk M
(ν)
k vk ≥ 2vTk M

(ν)
k vk − vTkAkvk ≥ (2− ω(ν))vTk M

(ν)
k vk , ∀vk ∈ Rnk .

We prove the second intermediate result (2.44) for µ = 1; its generalization to µ > 1

is performed replacing Rk by M
(µ)
k in the proof below. First, the right inequality (2.44)
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is a consequence of (2.35) since, using (2.37) one has

c
(ν)
A = δ(ν/2)−1 ≤ 1

ν

(
δ(1/2)−1

+ ν − 1
)

=
1
ν

(
c

(1)
A + ν − 1

)
where δ(1/2) corresponds to the V-cycle algorithm with a smoother R̃k such that

I −R−1
k Ak = (I − R̃−1

k Ak)2 .

Such R̃k is indeed well defined since ω(1) = 1 entails that I −A1/2
k R−1

k A
1/2
k is symmetric

nonnegative definite. On the other hand, the left inequality (2.44) is a straightforward

consequence of

vTk M
(ν)
k

−1
vk ≤ ν vTkR

−1
k vk , ∀vk ∈ Rnk

which we prove as follows. This relation holds if and only if

vTkA
1/2
k M

(ν)
k

−1
A

1/2
k vk ≤ ν vTkA

1/2
k R−1

k A
1/2
k vk , ∀vk ∈ Rnk

which, in view of (2.3) and when ω(1) = 1, is satisfied if

1− (1− x)ν ≤ νx ∀x ∈ [0, 1];

that is, if, ∀λ = 1− x ∈ [0, 1),
1− λν

1− λ
≤ ν ,

which is readily checked from 1−λν
1−λ =

∑ν−1
i=0 λ

i < ν .

Now, the second inequality (2.38) follows from the right inequality (2.43) combined

with (2.36) and (2.37). The second inequalities (2.39) and (2.40) are equivalent to,

respectively

c
(ν)
A c

(2ν)
A ≥ (c(ν)

A + 2)(c(2ν)
A − 1)

and

c
(1)
A c

(2ν)
A ≥ (c(1)

A + 2ν)(c(2ν)
A − 1) .

These inequalities follow from the right inequality (2.44), used with (µ , ν) = (ν , 2) and

(µ , ν) = (1 , 2ν), respectively, combined with (2.37). Next, the last inequality of (2.40)

is a consequence of the left inequality of (2.44) used with (µ , ν) = (1 , ν). Finally,

inequalities (2.41) and (2.42) follow from the left inequality (2.43) combined with (2.37)

and (2.36), because δ(ν)−1 ≥ 1, as may be seen from

δ(ν)−1
= c(2ν)

= max
1≤k≤J

max
wk∈Rnk

wT
k (I − πAk)T M (2ν)

k (I − πAk)wk

wT
k (I − πAk)TAk(I − πAk)wk
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≥ 1
ω(2ν)

max
1≤k≤J

max
wk∈Rnk

wT
k (I − πAk)T M (2ν)

k (I − πAk)wk

wT
k (I − πAk)T M (2ν)

k (I − πAk)wk

= 1 .

From (2.38), (2.39) and (2.40), one sees that McCormick’s bound is always the best

one, whereas inequalities (2.41) and (2.42) show that all approaches are nevertheless

qualitatively equivalent, since they give bounds which, at worst, correspond to Mc-

Cormick’s bound with main constant smaller by a modest factor.

2.5 Example

We consider the linear system resulting from the 9-point finite difference discretization

of the two-dimensional Poisson problem

−∆u = f in Ω = (0, 1)× (0, 1)

u = 0 in ∂Ω

on a uniform grid of mesh size h = 1/NJ in both directions. The matrix corresponds

then, up to some scaling factor, to the following nine point stencil
−1 −1 −1

−1 8 −1

−1 −1 −1

 . (2.45)

We assume NJ = 2JN0 for some integer N0 , allowing J steps of regular geometric

coarsening. We consider prolongations in form of the standard interpolation associated

with bilinear finite element basis functions. The restriction P Tk corresponds then to “full

weighting”, as defined in, e.g. [61] 2. With these choices, the stencil (2.45) is preserved

throughout all grids (up to some unimportant scaling factor), and c
(ν)
A may be assessed

by analyzing

max
wk

wT
k (I − πAk)TM (ν)

k (I − πAk)wk

wkAkwk
(2.46)

for a matrix Ak corresponding to stencil (2.45) applied on a grid with mesh size hk =

1/Nk . Considering two successive grids is therefore sufficient, and, to alleviate notation,

we let N = Nk , A = Ak , M (ν) = M
(ν)
k , P = Pk−1 , Ac = Ak−1 = P TAP and

πA = πAk = PA−1
c P TA .

2up to some scaling factor; the scalings of the prolongation and restriction are unimportant when
using coarse grid matrices of the Galerkin type.
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To assess (2.46), we resort to Fourier analysis. The eigenvectors of A are, for m, l =

1, . . . , N − 1, the functions

u
(N)
m,l = sin(mπx) sin(lπy)

evaluated at the grid points. The eigenvalue corresponding to u(N)
m,l is

λ
(N)
m,l = 4(3sm + 3sl − 4smsl) (2.47)

where

sm = sin2(mπ/2N) , sl = sin2(lπ/2N) . (2.48)

The prolongation P satisfies (see, e.g., [61, p. 87])

P T


u

(N)
m,l

u
(N)
N−m,N−l

−u(N)
N−m,l

−u(N)
m,N−l


= 4


(1− sm)(1− sl)

smsl

sm(1− sl)
(1− sm)sl


u

(N/2)
m,l

for 1 ≤ m, l ≤ N/2 − 1 , with P Tu
(N)
m,l = 0 for m = N/2 or m = N/2 . Expressed in

the Fourier basis (that is, in the basis of eigenvectors of A), I − πA is therefore block

diagonal with, for 1 ≤ m, l ≤ N/2− 1 , 4× 4 blocks

(I − πA)m,l = I4 − Pm,l
(
A

(c)
m,l

)−1
P Tm,lAm,l (2.49)

where

P Tm,l = 4
(

(1− sm)(1− sl) smsl sm(1− sl) (1− sm)sl
)

Am,l = diag
(
λ

(N)
m,l , λ

(N)
N−m,N−l , λ

(N)
m,N−l , λ

(N)
N−m,l

)
A

(c)
m,l = P Tm,lAm,lPm,l = 64

(
3sm(1− sm) + 3sl(1− sl)− 16sl(1− sl)sm(1− sm)

)
.

For m = N/2 , 1 ≤ l ≤ N/2 − 1 and l = N/2 , 1 ≤ m ≤ N/2 − 1 , (I − πA)m,l = I2 is a

2× 2 identity block, whereas (I − πA)N
2
, N

2
= 1 reduces to the scalar identity. If M (ν) in

the Fourier basis has the same block diagonal structure, we are left with the analysis of

ρm,l = ρ
(

(I − πA)Tm,lM
(ν)
m,l(I − πA)m,lA

−1
m,l

)
. (2.50)

Now, we consider more specifically damped Jacobi smoothing; that is Rk =

ω−1
Jacdiag(A) = ω−1

Jac 8 I , with ωJac ∈ ( 0 , 4/3 ) to ensure ω(1) = (3/2)ωJac < 2. Then,

for any number of pre– and post–smoothing steps ν , M (ν) is diagonal in the Fourier

basis, with diagonal entries depending on the eigenvalues of A ; that is (see (2.47)),



Comparison of bounds for V-cycle multigrid 29

depending on sm and sl .To obtain grid independent bounds, it is then interesting to

consider ρm,l = ρ(sm, sl) as a function of sm , sl , and to let these parameters vary

continuously in [0, 1] , excluding the corner points where sm(1−sm) = sl(1−sl) = 0 ,

which correspond to singularities. For all ν, ρ(sm, sl) has the following symmetries:

ρ(sm, sl) = ρ(1−sm, sl) = ρ(sm, 1−sl) = ρ(1−sm, 1−sl) . Further, numerical investi-

gations reveal that the maximum on the considered domain is located at the boundary,

i.e., corresponds to, e.g., sm = 0 . Because of the symmetries it is sufficient to analyze

this latter case. One may check that ρ(0, sl) is the largest eigenvalue in modulus of

1
4


slµ1+slµ4

3 0 0 − slµ1+slµ4

3

0 µ2

3−(1−sl) 0 0

0 0 µ3

3−sl 0

−µ1(1−sl)+µ4(1−sl)
3 0 0 (1−sl)µ1+(1−sl)µ4

3

 ,

where {µi}i=1,...,4 are the 4 diagonal entries of M (ν)
kl , given by

µi =
(Am,l)i,i

1− (1− ωJac
2 (Am,l)i,i)ν

.

Thus

ρ(0, sl) = max
(

µ3

3− sl
,

µ2

3− (1− sl)
,
µ1 + µ4

3

)
,

and, injecting the expressions of µi,

ρ(0, sl) = max
(

1
1− (1− ωJac

2 (3− sl))(ν)
,

1
1− (1− ωJac

2 (2 + sl))ν
,

sl

1− (1− 3ωJac
2 sl)ν

+
1− sl

1− (1− 3ωJac
2 (1− sl))ν

)
.

Note that for sl → 0 the third term is larger that the maximum over sl of the first and

the second; hence

ρ(0, sl) ≤ sup
sl∈(0,1)

(
sl

1− (1− 3ωJac
2 sl)ν

+
1− sl

1− (1− 3ωJac
2 (1− sl))ν

)
. (2.51)

The right hand side of (2.51) is in fact independent of sl for ν = 1, and, for ν = 2

and ν = 4, one may check, using elementary function analysis (see Appendix B), that

the supremum is reached for sl → 0, 1 . Hence

c
(ν)
A ≤

2
3νωJac

+
1

1− (1− 3ωJac
2 )ν

, ν = 1, 2, 4. (2.52)

Using the relation (2.52) as an equality, we can evaluate the different bounds. This is
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ωJac ω(1) c
(1)
A c

(2)
A

c
(1)
A

c
(1)
A +2

1− 2−ω(1)

K(1) 1− δ(1) ρ(E(J)
MG)

1/2 1 2.666 1.733 0.571 0.626 0.423 0.398
2/3 1 2 1.5 0.5 0.5 0.333 0.271
1 1.5 1.333 1.666 (*) 0.5 0.387 0.251

Table 2.1: Convergence factor of V–cycle (for N0 = 2 and J = 6) and the correspond-
ing bounds for ν = 1; (*) the quantity exists, but does not correspond to the bound,

since ω(1) > 1.

ωJac ω(2) c
(1)
A c

(2)
A c

(4)
A

c
(1)
A

c
(1)
A +4

c
(2)
A

c
(2)
A +2

1− 2−ω(2)

K(2) 1− δ(2) ρ(E(J)
MG)

1/2 1 2.666 1.733 1.337 0.4 0.4 0.423 0.252 0.187
2/3 1 2 1.5 1.25 0.333 0.333 0.333 0.2 0.121
1 1 1.333 1.666 1.233 (*) 0.25 0.4 0.189 0.091

Table 2.2: Convergence factor of V–cycle (for N0 = 2 and J = 6) and the correspond-
ing bounds for ν = 2; (*) the quantity exists, but does not correspond to the bound,

since ω(1) > 1.

done in Table 2.1 and 2.2 for different number ν of smoothing steps, where we also com-

pare the bounds with the actual convergence factor. One sees that McCormick’s bound

is indeed the best one and, further, that it gives in the considered cases a satisfactory

sharp prediction of actual multigrid convergence.

2.6 Conclusion

We have considered different bounds on the V-cycle multigrid convergence factor, each

depending on a parameter given by the maximum over all levels of a expression defined

on two levels only. More precisely, we have considered the bound in [27, Theorem 7.2.2]

by Hackbusch, the result [38, Lemma 2.3, Theorem 3.4 and Section 5] of McCormick

and the Successive Subspace Correction theory [73, Theorem 4.4 and Lemma 4.6], [75,

Theorem 5.1] used with a-orthogonal decomposition. Regarding the latter approach,

it has been adapted here to the algebraic framework and slightly improved. We have

sown that the main parameters of these three theories are related to each other and

that the corresponding bounds are equivalent from the qualitative point of view; that is,

they simultaneously succeed or fail to prove an optimal convergence for a given problem.

From the quantitative viewpoint, we have proved that the bound of McCormick is the

sharpest, and, further, that it leads to an accurate convergence estimate at least for a

typical example.
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Appendix A

We first show that Theorem 5.1 in [75] particularized to the matrix case (that is, applied

to the case of matrix operators in Rn with a(v,w) = (v, Aw) = vTAw) yields the same

bound as Theorem 2.1 (except for the additional refinement in the definition of ‖Γ‖),
provided that one has Wk = R(P̌k) and Vk = R(P̌kǦk − P̌k−1Ǧk−1), where P̌k and Ǧk

refer to the notation in Theorem 2.1, and Wk,Vk to notation in [75].

Firstly, note that Theorem 5.1 provides a bound on the energy norm of product

iteration matrices of the form (2.16), where

Tk = B+
k QkA , (2.53)

B+
k being a matrix corresponding to a invertible operator onto Wk , and Qk being the

orthogonal projector on the subspace Wk = R(P̌k) ; that is, Qk = P̌k(P̌ Tk P̌k)
−1P̌ Tk .

It then follows that the definition (2.53) matches (2.15) by setting B+
k = P̌kM

−1
k P̌ Tk .

Observe also that, ∀wk ∈ Wk,

zk = B+
k wk ⇔ wk = P̌k(P̌ Tk P̌k)

−1Mk(P̌ Tk P̌k)
−1P̌ Tk zk .

Hence

Bk = P̌k(P̌ Tk P̌k)
−1Mk(P̌ Tk P̌k)

−1P̌ Tk (2.54)

is the proper inverse of B+
k onto Wk.

Next, the bound on ‖FJ‖2A in [75] is based on the decomposition of any vector v ∈ Rn

as

v =
J∑
k=0

vk

where vk ∈ Vk. With Vk = R(P̌kǦk − P̌k−1Ǧk−1), it means

vk = P̌k(I − Pk−1Gk−1)Ǧkv = (P̌kǦk − P̌k−1Ǧk−1)v. (2.55)

Then, the bound in [75] is

‖FJ‖2A ≤ 1− 2− ω
K1(1 +K2)2

, (2.56)

where K1 is such that

J∑
k=0

(Bkvk,vk) ≤ K1vTAv ∀v ∈ Rn , (2.57)
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where ω satisfy

(Awk,wk) ≤ ω(Bkwk,wk) ∀wk ∈ Wk , k = 1, ..., J , (2.58)

and where K2 = ‖Γ̃‖, with Γ̃ = (γ̃kl) being the (J+1)×(J+1) matrix whose coefficients

are such that

(Awk,vl) ≤ γ̃kl(Bkwk,wk)1/2(Blvl,vl)1/2 ∀vk ∈ Vk , wk ∈ Wk (2.59)

for k ≤ l, and γ̃kl = γ̃lk for k > l.

With (2.54) and (2.55), it is easy to recognize that K(ν) in (2.10) is the best constant

K1 satisfying (2.57). On the other hand, “ ∀wk ∈ Wk ” means “ for all wk = P̌kw with

w ∈ Rn ” and “ ∀vk ∈ Vk ” means “ for all vk = P̌k(I − Pk−1Gk−1)Ǧkv with v ∈ Rn ”.

Hence, for k < l, γkl in (2.12) is the best γ̃kl satisfying (2.59). Further, using the same

arguments, we see that ω(ν) is the best choice for ω. Therefore, the equivalence between

the bound (2.56) in [75] and (2.9) is proved, except for the additional refinement showing

that the lower triangular part of Γ can be set to zero.

We next show that with any admissible choice of Vk, one may associate valid Gk, k =

0, ..., J such that Vk = R(P̌kǦk − P̌k−1Ǧk−1) (setting P−1 = G−1 = On0×n0). In other

words, any bound from Theorem 5.1 in [75] obtained using a particular decomposition

can also be obtained via (2.9) (up to some additional refinement in the definition of ‖Γ‖)
using a particular set of matrices Gk.

We begin the proof letting

Xk = V0 ⊕ V1 ⊕ . . .⊕ Vk .

Observe that the proposition holds if, given X0 ⊂ X1 ⊂ . . . ⊂ XJ = Rn, one can find Gk,

k = 0, ..., J such that

R(P̌kǦk) = Xk (2.60)

and

R(P̌kǦk − P̌k−1Ǧk−1) ∩ R(P̌k−1Ǧk−1) = {0}.

The latter equality is checked if, for all v, w ∈ Rn,

(
P̌kǦk − P̌k−1Ǧk−1

)
v = P̌k−1Ǧk−1w ⇒

(
P̌kǦk − P̌k−1Ǧk−1

)
v = P̌k−1Ǧk−1w = 0 ;

that is, since P̌k has full rank, if

(I − Pk−1Gk−1)
(
Ǧkv

)
= Pk−1Gk−1

(
Ǧkw

)
⇒ (I − Pk−1Gk−1)

(
Ǧkv

)
= Pk−1Gk−1

(
Ǧkw

)
= 0.

(2.61)
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This proposition is true when Pk−1Gk−1 is a projector (note that P−1G−1 = On0×n0 is

a projector as well). The right equalities (2.61) follow then from the multiplication of

(2.61) by (I − Pk−1Gk−1) and Pk−1Gk−1, respectively.

We now assume that Ǧj has been constructed properly for j = J, ..., k + 1 (which

holds trivially for j = J − 1), and show that one can construct Gk such that

R(P̌kGkǦk+1) = Xk (2.62)

while satisfying the constraint

GkPkGk = Gk , (2.63)

yielding the required result by induction, since (2.63) implies (PkGk)2 = PkGk.

Let mk = dim(Xk). Observe that W0 ⊂ . . . ⊂ Wk implies mk ≤ dim(Wk) = nk.

Hence (2.62) holds if Gk = R(Ǧk) is a prescribed mk-dimensional subspace of Rnk whose

image by P̌k is Xk. Let Hk be an nk ×mk matrix whose columns form a basis of this

subspace. We search for Gk of the form

Gk = HkZk ,

where Zk is an mk × nk+1 matrix of rank mk. Then (2.62) holds if ZkǦk+1 has rank

mk, which is ensured if R(Ǧk+1) contains an mk-dimensional subspace complementary

to N (Zk) (see [39, p. 199]). Note that dim(R(Ǧk+1)) = dim(Xk+1) ≥ mk, hence there

exists at least one mk-dimensional subspace Gk of R(Ǧk+1), and we shall enforce the

null space of Zk to be complementary to Gk.
Consider now the constraint (2.63). With the given form of Gk, it is satisfied when

ZkPkHk = Imk ;

that is, according to the terminology in [6], if Zk is a {1, 2}-inverse of PkHk. As shown

in [6, p. 59], given any subspace Sk complementary to Tk = R(PkHk) there exist such a

{1, 2}-inverse having Sk as a null space.

Hence the required result is proven if one can always find Sk complementary to both

Gk and Tk. This, in turn, is true since Gk and Tk are subspaces of the same dimension

of a finite dimensional space Rnk , see [34].



34 Comparison of bounds for V-cycle multigrid

Appendix B

Lemma 2.1. Let Pk , k = 0, . . . , J − 1 be nk+1× nk matrices of rank nk with n = nJ >

nJ−1 > · · · > n0 . Let Gk , k = 0, . . . , J − 1 be nk+1 × nk matrices such that

Gk Pk = Ink .

Set P−1 = G−1 = On0×n0 and let, for k = 0, . . . , J , P̌k be defined by (2.7), Ǧk be defined

by (2.8), and Q̌k = (I − Pk−1Gk−1)Ǧk .

There holds, for 0 ≤ l, k ≤ J with k 6= l ,

Q̌kP̌kQ̌k = Q̌k and Q̌lP̌kQ̌k = Onl×n .

Proof. Note that Gk Pk = Ink implies ǦkP̌k = Ink . The first statement follows then

from

(I − Pk−1Gk−1)ǦkP̌k(I − Pk−1Gk−1) = (I − Pk−1Gk−1)(I − Pk−1Gk−1)

= I − Pk−1Gk−1 .

To prove the second statement, we consider two cases. If l > k ,

(I − Pl−1Gl−1)ǦlP̌k = (I − Pl−1Gl−1)Gl · · ·GJ−1PJ−1 · · ·PlPl−1 · · ·Pk

= (I − Pl−1Gl−1)Pl−1 · · ·Pk

= Pl−1(I −Gl−1Pl−1)Pl−2 · · ·Pk

= Onl×nk ,

whereas, if l < k ,

ǦlP̌k(I − Pk−1Gk−1) = Gl · · ·Gk−1Gk · · ·GJ−1PJ−1 · · ·Pk(I − Pk−1Gk−1)

= Gl · · ·Gk−1(I − Pk−1Gk−1)

= Gl · · ·Gk−2(I −Gk−1Pk−1)Gk−1

= Onl×nk .
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Appendix C

In this appendix we outline for even values of ν the proof of the following identity

sup
sl∈(0,1)

(
sl

1− (1− 3ωJac
2 sl)ν

+
1− sl

1− (1− 3ωJac
2 (1− sl))ν

)
=

2
3νωJac

+
1

1− (1− 3ωJac
2 )ν

,

with ωJac ∈ ( 0 , 4/3 ). More precisely, we prove that

f(sl) =
sl

1− (1− 3ωJac
2 sl)ν

is a convex function for ωJac ∈ ( 0 , 4/3 ), and hence so is f(sl) + f(1 − sl), the prove

being finished by the fact that any convex function takes it supremum at the boundary.

Now, note that

f̃(c) =
3ωJac

2
f(c (2/3)ω−1

Jac) =
(
1 + c+ ...+ cν−1

)−1 = g(c)−1

is convex for c ∈ (−1, 1) if and only if f(sl) is convex. However, f̃(c) is convex if d
2f̃
dc2

> 0

for c ∈ (−1, 1), that is, if d2g
dc2
· g < 2 ·

(
dg
dc

)2
. On the other hand, one can check that

d2g

dc2
· g − 2

(
dg

dc

)2

= −
ν/2−1∑
i=0

c2i−2(c2 + i(ν − 2i)(c+ 1)2) ,

this last term being negative for c ∈ (−1, 1).





Chapter 3
When does two-grid optimality carry over to the

V-cycle?

Summary

We investigate additional condition(s) that confirm that a V-cycle multigrid method is

satisfactory (say, optimal) when it is based on a two-grid cycle with satisfactory (say,

level-independent) convergence properties. The main tool is McCormick’s bound on

the convergence factor [SIAM J. Numer.Anal., 22(1985), pp.634-643], which we showed

in previous work to be the best bound for V-cycle multigrid among those that are

characterized by a constant that is the maximum (or minimum) over all levels of an

expression involving only two consecutive levels; that is, that can be assessed considering

only two levels at a time. We show that, given a satisfactorily converging two-grid

method, McCormick’s bound allows us to prove satisfactory convergence for the V-

cycle if and only if the norm of a given projector is bounded at each level. Moreover,

this projector norm is simple to estimate within the framework of Fourier analysis,

making it easy to supplement a standard two-grid analysis with an assessment of the

V-cycle potentialities. The theory is illustrated with a few examples that also show that

the provided bounds may give a satisfactory sharp prediction of the actual multigrid

convergence.

3.1 Introduction

We consider multigrid methods for the solution of symmetric positive definite (SPD)

n× n linear systems:

Ax = b. (3.1)

Multigrid methods are based on the recursive use of a two–grid scheme. A basic two–

grid method combines the action of a smoother, often a simple iterative method such

as Gauss-Seidel, and a coarse-grid correction, which corresponds to the solution of the

37
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residual equation on a coarser grid. A V–cycle multigrid method is obtained when the

residual equation is solved approximately with one application of the two–grid scheme

on that level, and so on, until the coarsest level, where an exact solve is performed.

Other cycles may be defined, including the W–cycle based on two recursive applications

of the two-grid scheme on each level, see, e.g., [61].

If there are only two levels, accurate bounds may be obtained either by means of

Fourier analysis [60,61,68], or by using some appropriate algebraic tools [16,22,23,46,59].

This focus on two-grid schemes is motivated by the fact that, “if the two-grid method

converges sufficiently well, then the multigrid method with W–cycle will have similar

convergence properties” [61, p. 77] (see also [12, pp. 226–228] and [47]). This is not

the case for the V–cycle since there are known examples where the two-grid method

converges relatively well, whereas the multigrid method with V–cycle scales poorly with

the number of levels [41]. Hence, V–cycle analysis has to be, at some point, essentially

different from two-grid analysis.

In this chapter, we investigate additional condition(s) for obtaining an optimal V-

cycle method from an optimal1 two-grid method. Note that we do not base our work

on a new analysis of the V-cycle. Several analyses are indeed available, which, however,

have a common gap: the conditions for proving that the V-cycle converges nicely have

not been compared with the two-grid convergence factor, and it is so far unclear how

they are related. In fact, a number of results relate the V-cycle convergence to sufficient

conditions for two-grid convergence; see, e.g., the two conditions (3.3) in [14], the first of

which is sufficient for two-grid. Or, simply, consider V-cycle analysis particularized to

the two-level case. Such sufficient conditions are, however, often stronger than needed

for just two-level convergence, and, as far as we know, no comparison has been made

with necessary and sufficient conditions or with two-grid convergence factor.

To analyze the V-cycle, one possibility consists of defining an appropriate sub-

space decomposition and then applying successive subspace correction (SSC) theory

[50, 51, 25, 73, 75, 74]. Another possibility consists in checking so-called smoothing and

approximation properties [10, 13, 26, 27, 37, 38, 53]. Regarding the latter approach, the

best result for SPD matrices have been obtained by Hackbusch [27, Theorem 7.2.2] and

McCormick [38]. In a Chapter 2, we show that these results are qualitatively equiv-

alent, with McCormick’s bound being always the sharpest. Note that, in both cases,

the bound is characterized by a constant that is the minimum/maximum over all levels

of an expression involving only two consecutive levels. This last property is important

in the context of this study, since it seems at first sight not possible to compare with
1By “optimal”, for a two-grid method, we mean “having level-independent convergence properties”;

that is, referring to a situation where the two-grid method is defined at different levels of a multigrid
hierarchy, it is considered optimal if there is a level-independent bound on the convergence factor that
is uniform with respect to problem size.
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the two-grid convergence rate a global expression that would involve simultaneously all

levels.

On the other hand, we also consider in Chapter 2 the classical formulation of the

SSC theory (as stated in [73] or [75]), and discuss how to obtain a bound that could

also be assessed considering only two levels at a time. It turns out that this requires the

use of the so-called a-orthogonal decomposition, which corresponds to the choice most

frequently made when applying the SSC theory to multigrid methods for H2-regular

problems. Then, the analysis in Chapter 2 shows that this approach is also qualitatively

equivalent to the Hackbusch and McCormick ones, the latter remaining the sharpest.

Hence, regarding the goal pursued in this work, all exploitable results are superseded

by (but qualitatively equivalent to) McCormick’s bound, which is characterized by the

constant δ; in this work, we relate this constant to the two-grid convergence factor. This

reveals that a satisfactory (optimal) two-grid cycle on each level leads to a satisfactory

estimate of δ if and only if a given norm of an exact coarse-grid correction (projection)

operator remains bounded at each level. Moreover, it turns out that this norm is easy

to assess within the framework of a Fourier analysis.

Eventually, we consider several examples, illustrating the sharpness of the bound

based on two-grid convergence rates and the projector norm. It further turns out that

both of these ingredients are independent and play an important role in the V-cycle

convergence behavior.

The reminder of this chapter is organized as follows. In Section 3.2 we state the gen-

eral setting of this study and gather the needed assumptions. The relation between the

McCormick constant δ and the two-grid convergence factor is established in Section 3.3.

Illustrative examples are discussed in Section 3.4.

3.2 General setting

We consider a multigrid method with J + 1 levels (J ≥ 1); index J refers to the finest

level (on which the system (3.1) is to be solved), and index 0 to the coarsest level. The

number of unknowns at level k , 0 ≤ k ≤ J , is noted nk (with thus nJ = n).

Our analysis applies to symmetric multigrid schemes based on the Galerkin principle

for the SPD system (3.1); that is, restriction is the transpose of prolongation and the

matrix Ak at level k , k = J − 1, . . . , 0 , is given by Ak = P Tk Ak+1Pk , where Pk is the

prolongation operator from level k to level k+ 1 ; we also assume that the smoother Rk
is SPD and that the number of pre–smoothing steps ν (ν > 0) is equal to the number

of post–smoothing steps. The algorithm for V–cycle multigrid is then as follows.
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Multigrid with V–cycle at level k: xn+1 = MG(b, Ak,xn, k)

(1) Relax ν times with smoother Rk : xn ← Smooth(xn, Ak, Rk, ν,b)

(2) Compute residual: rk = b−Akxn
(3) Restrict residual: rk−1 = P Tk−1rk
(4) Coarse grid correction: if k = 1 , e0 = A−1

0 r0

else ek−1 = MG(rk−1, Ak−1, 0, k − 1)
(5) Prolongate coarse-grid correction: xn ← xn + Pk−1ek−1

(6) Relax ν times with smoother Rk : xn+1 ← Smooth(xn, Ak, Rk, ν,b)

When applying this algorithm, the error satisfies

A−1
k b− xn+1 = E

(k)
MG

(
A−1
k b− xn

)
,

where the iteration matrix E(k)
MG is recursively defined from

E
(0)
MG = 0 and, for k = 1, 2, . . . , J :

E
(k)
MG = (I −R−1

k Ak)ν
(
I − Pk−1(I − E(k−1)

MG )A−1
k−1P

T
k−1Ak

)
(I −R−1

k Ak)ν
(3.2)

(see, e.g., [61, p. 48]). Our main objective is the analysis of the spectral radius of E(J)
MG ,

which governs convergence on the finest level. Our analysis makes use of the following

general assumptions.

General assumptions

• n = nJ > nJ−1 > ... > n0 ;

• Pk is an nk+1 × nk matrix of rank nk, k = J − 1, . . . , 0 ;

• AJ = A and Ak = P Tk Ak+1Pk , k = J − 1, . . . , 0 ;

• Rk is SPD and such that ρ(I −R−1
k Ak) < 1 , k = J, . . . , 1 .

In what follows, we make use of the two-grid cycle involving two consecutive levels k

and k − 1, which corresponds to the following iteration matrix:

E
(k)
TG = (I −R−1

k Ak)ν
(
I − Pk−1A

−1
k−1P

T
k−1Ak

)
(I −R−1

k Ak)ν , k = 1, . . . , J . (3.3)

Most of our results do not refer explicitly to the smoother Rk , but are stated with

respect to the matrices M (ν)
k defined from

I − M
(ν)
k

−1
Ak = (I −R−1

k Ak)ν . (3.4)

That is, M (ν)
k is the smoother that provides in one step the same effect as ν steps with

Rk . The results stated with respect to M
(ν)
k may then be seen as results stated for the
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case of one pre– and one post–smoothing step, which can be extended to the general

case via the relations (3.4).

We close this subsection by introducing the projector πAk , which plays an important

role throughout this chapter:

πAk = Pk−1A
−1
k−1P

T
k−1Ak . (3.5)

Note that I − πAk is the (exact) coarse-grid correction matrix at level k.

3.3 Theoretical Analysis

3.3.1 McCormick’s bound

We recall in the following theorem the bound obtained in [38, Lemma 2.3, Theorem 3.4

and Section 5] (see also [37], or [53] for an alternative proof). The equivalence of (3.8)

with the definition (3.7) is proved in in Theorem 2.6.

Note that convergence estimates based on regularity assumptions are also considered

in [37]. These estimates are obtained when Theorem 3.1 below is applied to discretized

PDEs. However, Theorem 3.1 on its own is a purely algebraic result that may by applied

to any multigrid method satisfying the general assumptions in Section 3.2, without

reference to a PDE context. Hence, there is no need for regularity assumptions to apply

here, as may be further confirmed by the purely algebraic proof in [53].

Theorem 3.1. Let E(J)
MG , M (ν)

k , and πAk , k = 1, . . . , J , be defined, respectively, by

(3.2), (3.4), and (3.5), with Pk , k = 0, . . . , J − 1 , Ak , k = 0, . . . , J , and Rk , k =

1, . . . , J , satisfying the general assumptions stated in Section 3.2.

Then

ρ(E(J)
MG) ≤ 1− δ(ν) , (3.6)

where

δ(ν) = min
1≤k≤J

min
vk∈Rnk

‖vk‖2Ak − ‖(I − M
(ν)
k

−1
Ak)vk‖2Ak

‖(I − πAk)vk‖2Ak
(3.7)

= min
1≤k≤J

min
vk∈Rnk

vTkAkvk

vTk (I − πAk)TM (2ν)
k (I − πAk)vk

(3.8)

3.3.2 Relationship to the two-grid convergence rate

We first recall, in the following lemma, a useful characterization of the two-grid rate

obtained in [23, p. 480].
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Lemma 3.1. Let E(k)
TG , M (ν)

k , and πAk , k = 1, . . . , J , be defined, respectively, by (3.3),

(3.4), and (3.5), with Pk , k = 0, . . . , J − 1 , Ak , k = 0, . . . , J , and Rk , k = 1, . . . , J ,

satisfying the general assumptions stated in Section 3.2.

Then

1− ρ(E(k)
TG) = min

vk∈Rnk

vTk (I − π̄Ak)A1/2
k M

(2ν)
k

−1
A

1/2
k (I − π̄Ak)vk

vTk (I − π̄Ak)vk
, (3.9)

with π̄Ak = A
1/2
k πAkA

−1/2
k .

The next theorem contains our main result.

Theorem 3.2. Let E(k)
TG , M (ν)

k , and πAk , k = 1, . . . , J , be defined, respectively, by

(3.3), (3.4), and (3.5), with Pk , k = 0, . . . , J − 1 , Ak , k = 0, . . . , J , and Rk , k =

1, . . . , J , satisfying the general assumptions stated in Section 3.2. Let δ(ν) be defined by

(3.7).

Then

δ(ν) ≥ min
1≤k≤J

1− ρ(E(k)
TG)

‖I − πAk‖2M(2ν)
k

= min
1≤k≤J

1− ρ(E(k)
TG)

‖πAk‖2M(2ν)
k

. (3.10)

Moreover,

δ(ν) ≤ min
1≤k≤J

min

 1− ρ(E(k)
TG) ,

1
‖πAk‖2M(2ν)

k

 . (3.11)

Proof.

Let ξk be defined by

ξk = min
v∈Rnk

vTAkv

vT (I − πAk)TM (2ν)
k (I − πAk)v

.

From (3.8), there holds

δ(ν) = min
1≤k≤J

ξk . (3.12)

On the other hand, Lemma 3.1 implies (since Ak(I−πAk) = (I−πAk)TAk and (I−πAk) =

(I − πAk)2)

1− ρ(E(k)
TG) = min

vk∈Rnk

vTkA
1/2
k (I − πAk) M (2ν)

k

−1
Ak(I − πAk)A−1/2

k vk

vTkA
1/2
k (I − πAk)A−1/2

k vk

= min
vk∈Rnk

vTk (I − πAk) M (2ν)
k

−1
Ak(I − πAk)A−1

k vk
vTk (I − πAk)(I − πAk)A−1

k vk

= min
vk∈Rnk

vTk (I − πAk) M (2ν)
k

−1
(I − πAk)Tvk

vTk (I − πAk)A−1
k (I − πAk)Tvk

. (3.13)
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In what follows, we omit the subscripts k, as well as the superscript (k) and (2ν)
in ETG and M , respectively, when they are obvious from context. Using (3.13), one
obtains

ξ−1 = max
v∈Rn

vT (I − πA)TM(I − πA)v
vTAv

= max
v∈Rn

vTA−1/2(I − πA)TM1/2M1/2(I − πA)A−1/2v
vTv

= max
v∈Rn

vTM1/2(I − πA)A−1/2A−1/2(I − πA)TM1/2v
vTv

= max
v∈Rn

vT (I − πA)A−1(I − πA)Tv
vTM−1v

(3.14)

≤ max
v∈Rn

vT (I − πA)A−1(I − πA)Tv
vT (I − πA)M−1(I − πA)Tv

max
v∈Rn

vT (I − πA)M−1(I − πA)Tv
vTM−1v

=
1

1− ρ(ETG)
max
v∈Rn

vTM1/2(I − πA)M−1/2M−1/2(I − πA)TM1/2v
vTv

=
1

1− ρ(ETG)
max
v∈Rn

vTM−1/2(I − πA)TM1/2M1/2(I − πA)M−1/2v
vTv

=
1

1− ρ(ETG)
max
v∈Rn

vT (I − πA)TM(I − πA)v
vTMv

=
1

1− ρ(ETG)
‖I − πA‖2M .

The result (3.10) follows directly, using Kato’s lemma (e.g., [65, Lemma 3.6]) which

implies ‖I − πA‖M = ‖πA‖M , since πA 6= O, I by virtue of our general assumptions.

In addition, using (3.14) together with Lemma 3.1, one also has

ξ = min
v∈Rn

vTM−1v
vT (I − πA)A−1(I − πA)Tv

≤ min
v=(I−πA)Tw, w∈Rn

vTM−1v
vT (I − πA)A−1(I − πA)Tv

= 1− ρ(ETG),

which gives the first term in the right-hand side of (3.11).

On the other hand, since

vTA1/2 M (2ν)−1
A1/2v = vTv − vT (I −A1/2 M (ν)−1

A1/2)2vT ≤ vTv , ∀v ∈ Rn ,

there holds

vTAv ≤ vTMv , ∀v ∈ Rn .
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Hence,

ξ = min
v∈Rn

vTAv
vT (I − πA)TM(I − πA)v

≤ min
v∈Rn

vTMv
vT (I − πA)TM(I − πA)v

=
1

‖I − πA‖2M
,

(3.15)

which, combined with Kato’s lemma ‖I − πA‖M = ‖πA‖M , gives the second term in the

right-hand side of (3.11).

Theorem 3.2 shows that McCormick’s bound proves a satisfactory convergence rate

for the V–cycle if and only if, at each level, the two-grid method converges fast enough

and ‖πAk‖M(2ν)
k

= ‖M (2ν)
k

1/2
πAk M

(2ν)
k

−1/2
‖ is nicely bounded. We can further show

the following corollary.

Corollary 3.1. Let the assumptions of Theorem 3.2 hold and let E(J)
MG be defined by

(3.2).

Then

ρ(E(J)
TG) ≤ ρ(E(J)

MG) ≤ 1− δ(ν) ≤ 1− min
1≤k≤J

1− ρ(E(k)
TG)

‖πAk‖2M(2ν)
k

. (3.16)

Proof.

The proof of ρ(E(k)
TG) ≤ ρ(E(k)

MG) can be deduced from the relation (7.2.2a) in [27] com-

bined with (7.2.4a) from the same reference, which proves that

A1/2E
(k)
MGA

−1/2 ≤ A1/2E
(k)
TGA

−1/2 .

The other results follow from Theorems 3.1 and 3.2.

Note that the V-cycle convergence factor is bounded below by the two-grid conver-

gence factor on the finest grid only. Indeed, max1≤k≤J ρ(E(k)
TG) can be close to 1 even

when ρ(E(J)
MG) is not, for instance when the smoother alone is efficient enough on the

finest level, so that poor two-grid ingredients on coarser levels will not significantly affect

the convergence. In practice, however, one has often max1≤k≤J ρ(E(k)
TG) ≈ ρ(E(J)

TG) (e.g.,

consider the discrete Poisson equation on many simple geometries with uniform meshes).

Then (3.16) defines an interval, containing both 1− δ(ν) and ρ(E(J)
MG), that is narrow if

and only if max1≤k≤J ‖πAk‖M(2ν)
k

is not much larger than 1.

3.3.3 Fourier analysis

Often, a multigrid method is assessed by estimating the two-grid convergence rate with

Fourier analysis [60,61,68]. This means that one considers a model constant-coefficient
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PDE for which the eigenvectors of the discrete matrix are explicitly known at all levels.

Simple smoothers have the same set of eigenvectors and, hence, the matrices Ak and

Rk are both diagonal whenever expressed in the corresponding basis (the Fourier basis).

In more complicated situations, Rk may be only block-diagonal with small diagonal

blocks; Ak may also have a block diagonal structure in case of coupled systems of PDEs.

Note that M (2ν)
k , expressed in the Fourier basis, will then have the same block diagonal

structure as Ak and Rk, and will be pointwise diagonal if Ak and Rk are pointwise

diagonal.

Let

Ak =


Λ(k)

1

Λ(k)
2

. . .

Λ(k)
lk

 , M
(2ν)
k =


Σ(k)

1

Σ(k)
2

. . .

Σ(k)
lk


be this (block) diagonal representation of Ak and M

(2ν)
k , where the ith block has size

m
(k)
i ×m

(k)
i , i = 1, ..., lk. Technically, Fourier analysis of a two-grid method at level k

characterized by a given prolongation Pk−1 is possible if there exists a basis of the coarse

space (the coarse Fourier basis) such that the expression of Pk−1 in both this basis and

the (fine grid) Fourier basis has the structure

Pk−1 =


p

(k−1)
1

p
(k−1)
2

. . .

p
(k−1)
lk

 ,

where p(k−1)
i are (possibly complex) rectangular matrices of size m(k)

i ×m
(k−1)
i .

Here, we observe that, in this context, M (2ν)
k

1/2
πAk M

(2ν)
k

−1/2
is also block diagonal

with diagonal blocks of the form

Σ(k)
i

1/2
p

(k−1)
i

(
p

(k−1)
i

H
Λ(k)
i p

(k−1)
i

)−1

p
(k−1)
i

H
Λ(k)
i Σ(k)

i

−1/2
. (3.17)

Hence, ‖πAk‖2M(2ν)
k

is the maximal norm of all these m(k)
i × m

(k)
i blocks. Further, the

matrices (3.17) are the product of rectangular matrices; taking the product of their
norms gives an easy-to-assess upper bound:

‖πAk‖M(2ν)
k

≤ max
i

∥∥ Σ(k)
i

1/2
p
(k−1)
i

∥∥ ∥∥(p(k−1)
i

H
Λ(k)
i p

(k−1)
i

)−1

p
(k−1)
i

H
Λ(k)
i Σ(k)

i

−1/2 ∥∥. (3.18)

It is worth noting that the latter inequality becomes an equality when m
(k−1)
i = 1 for
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all i; that is, when the rectangular blocks p(k−1)
i are all simple vectors, as most often

arises when analyzing scalar PDEs.

3.3.4 Finite element setting

Consider a finite element discretization of Poisson boundary value problem on a bounded

domain. Such a domain is first approximated by an appropriate polygonal or polyhedral

mesh, which is then refined several times. These refinements naturally induce a multigrid

hierarchy (including inter-grid transfer operators Pk). It then can be shown (see [72,

Theorem 4.2]) that ‖πAk‖ are bounded on all levels if and only if the underlying problem

possesses (full) elliptic regularity. Since ‖ · ‖ behaves similarly to ‖ · ‖
M

(2ν)
k

for a number

of smoothers, essentially the same conclusions hold with respect to ‖πAk‖M(2ν)
k

.

With regards to the Theorem 3.2, these observations show that level independent

two-grid convergence implies, in this context, a level-independent bound for V-cycle

multigrid if and only if the problem has full elliptic regularity. Hence, it follows that

McCormick’s analysis cannot prove optimal bounds for the V-cycle if the problem does

not possess full regularity. Considering the results in Chapter 2, the same conclusions

hold for Hackbusch’s analysis [27, Section 7.2], and the successive subspace correction

theory with a-orthogonal decomposition [73, 75]. Thus, for the case when ‖πAk‖ and

‖πAk‖M(2ν)
k

behave similarly with respect to the problem size, we show here that another

type of analysis, as developed in, e.g., [50,51,25,73,75,74], is really needed to get uniform

results for the V-cycle for problems with less than full regularity.

3.4 Examples

We consider three examples that represent three possible different practical situations.

In the first, both ρ(E(k)
TG) and ‖πA‖2M(2) are nicely bounded above. In the second exam-

ple, ρ(E(k)
TG) remains bounded away from one while ‖πA‖2M(2) increases rapidly with the

problem size. The third example is the other way around: ‖πA‖2M(2) is nicely bounded

while ρ(E(k)
TG) is far from being optimal.

3.4.1 Standard multigrid with 2D Poisson

We consider the linear system resulting from the bilinear finite element discretization of

the two-dimensional Poisson problem

−∆u = f in Ω = (0, 1)× (0, 1)

u = 0 in ∂Ω
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on a uniform grid of mesh size h = 1/NJ in both directions. The matrix corresponds

then to the following nine point stencil:
−1 −1 −1

−1 8 −1

−1 −1 −1

 . (3.19)

Up to some scaling factor, this is also the stencil obtained with 9-point finite difference

discretization. We assume NJ = 2JN0 for some integer N0 , allowing J steps of regular

geometric coarsening. We consider the standard prolongation operator

Pk =

(
Jk

Ink

)
,

where Jk corresponds to the natural interpolation associated with bilinear finite element

basis functions. The restriction P Tk corresponds then to “full weighting”, as defined

in, e.g., [61] 2. We consider damped Jacobi smoothing: Rk = ω−1
Jacdiag(Ak) . Since the

stencil is preserved on all levels, it is sufficient to consider only two successive grids; to

alleviate notation, we therefore let N = Nk , A = Ak ,R = Rk , M = M
(ν)
k , P = Pk−1 ,

Ac = Ak−1 = P TAP , and πA = πAk = PA−1
c P TA .

We now use Fourier analysis to asses ‖πA‖M(2ν) via (3.18). The eigenvectors of A

are, for i, j = 1, . . . , N − 1 , the functions

u
(N)
i,j = sin(iπx) sin(jπy)

evaluated at the grid points. The eigenvalue corresponding to u(N)
i,j is

λ
(N)
i,j = 4(3si + 3sj − 4sisj) , (3.20)

where

si = sin2(
iπ

2N
) , sj = sin2(

jπ

2N
) . (3.21)

Hence, the eigenvalues of I −R−1A are in the interval [1− ωJac 3
2 , 1). One has therefore

ρ(I − R−1A) ≤ 1, as required by our general assumptions if ωJac ∈ (0, 4/3). The

prolongation P satisfies (see, e.g., [61, p. 87])

P T


u

(N)
i,j

u
(N)
N−i,N−j

−u(N)
N−i,j

−u(N)
i,N−j


= 4


(1− si)(1− sj)

sisj

si(1− sj)
(1− si)sj


u

(N/2)
i,j

2up to some scaling factor; the scalings of the prolongation and restriction are unimportant when
using coarse-grid matrices of the Galerkin type.
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for 1 ≤ i, j ≤ N/2− 1 , with P Tu
(N)
i,j = 0 for i = N/2 or j = N/2 . Using

pi,j = 4
(

(1− si)(1− sj) sisj si(1− sj) (1− si)sj
)T

,

Λi,j = diag
(
λ

(N)
i,j , λ

(N)
N−i,N−j , λ

(N)
N−i,j , λ

(N)
i,N−j

)
,

Σ(ν)
i,j = diag

{σ(ν)(λ(N)
c,s )

∣∣∣∣∣ σ(ν)(λ) =
λ

1− (1− ωJacλ
8 )ν

}
(c,s)=(i,j),(N−i,N−j),(N−i,j),(i,N−j)

 ,

we can rewrite (3.18):

‖πA‖2M(2ν) = max
i,j=1,...,N−1

g(ν)(si, sj) ,

where

g(ν)(si, sj) =

∥∥ Σ(2ν)
i,j

1/2
pi,j
∥∥2 ∥∥ pi,j T Λi,j Σ(2ν)

i,j

−1/2 ∥∥2

(pi,j T Λi,j pi,j)
2 . (3.22)

One also has

max
i,j=1,...,N−1

g(ν)(si, sj) ≤ sup
(si,sj)∈(0,1)×(0,1)

g(ν)(si, sj) .

For all ν, g(ν)(si, sm) exhibits the following symmetries: g(ν)(si, sj) = g(ν)(1−si, sj) =

g(ν)(si, 1−sj) = g(ν)(1−si, 1−sj) . Further, numerical investigations reveal that the

maximum on the considered domain is located at the boundary, i.e., corresponds to,

e.g., sj = 0 or, equivalently, j = 0 (such index values represent asymptotic behavior and

do not correspond to any Fourier block) . Because of the symmetries, it is sufficient to

analyze this latter case. Next, since

g(ν)(si, 0)

=

(
(pi,0)2

1σ
(2ν)(λ(N)

i,0 ) + (pi,0)2
3σ

(2ν)(λ(N)
N−i,0)

)( (pi,0)21

(
λ
(N)
i,0

)2

σ(2ν)(λ
(N)
i,0 )

+
(pi,0)23

(
λ
(N)
N−i,0

)2

σ(2ν)(λ
(N)
N−i,0)

)
(

(pi,0)2
1λ

(N)
i,0 + (pi,0)2

3λ
(N)
N−i,0

)2

= 1 +
(pi,0)2

1(pi,0)2
3

(
σ(2ν)(λ

(N)
i,0 )

σ(2ν)(λ
(N)
N−i,0)

(
λ

(N)
N−i,0

)2
+

σ(2ν)(λ
(N)
N−i,0)

σ(2ν)(λ
(N)
i,0 )

(
λ

(N)
i,0

)2
− 2λ(N)

i,0 λ
(N)
N−i,0

)
(

(pi,0)2
1λi,0 + (pi,0)2

3λN−i,0
)2

= 1 + si(1−si)

(
1−
(
1− 3

2ωJacsi
)2ν

1−
(
1− 3

2ωJac(1−si)
)2ν +

1−
(
1− 3

2ωJac(1−si)
)2ν

1−
(
1− 3

2ωJacsi
)2ν −2

)
, (3.23)
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ωJac 1− 1
‖πA‖2

M(2)

ρ(E(J)
TG) ρ(E(J)

MG) 1− δ(1) 1− (1−ρ(E
(J)
TG))

‖πA‖2
M(2)

1/2 0.385 0.391 0.398 0.423 0.625
2/3 0.333 0.25 0.271 0.333 0.5
1 0.2 0.25 0.251 0.4 0.4

Table 3.1: The estimates of main convergence parameters for ν = 1 and for different
damping factors ωJac.

ωJac 1− 1
‖πA‖2

M(4)

ρ(E(J)
TG) ρ(E(J)

MG) 1− δ(2) 1− (1−ρ(E
(J)
TG))

‖πA‖2
M(4)

1/2 0.25 0.153 0.187 0.252 0.365
2/3 0.2 0.083 0.121 0.2 0.266
1 0.143 0.068 0.091 0.189 0.2

Table 3.2: The estimates of main convergence parameters for ν = 2 and for different
damping factors ωJac.

we obtain (see Appendix A for details)

‖πA‖2M(2ν) ≤ sup
(si,sj)∈(0,1)×(0,1)

g(ν)(si, sj) = sup
si∈(0,1)

g(ν)(si, 0) ≤

 2− 3ωJac
4 if ν = 1

1 + 1
3νωJac

if ν > 1 .

Note that this bound is asymptotically sharp for N → ∞ when ν = 1, since

lims→0 g
(1)(s, 0) = 2 − 3ωJac/4. In Tables 3.1 and 3.2, we use this bound and the

asymptotically sharp estimate

δ(ν)−1 ≤ 1
3νωJac

+
1

1− (1− 3ωJac
2 )2ν

, ∀ ν = 1, 2,

obtained in Chapter 2 to illustrate inequalities (3.16), with two-grid and V-cycle multi-

grid convergence factors numerically assessed for N0 = 2 and J = 7 (hence N = 256).

Note that ρ(E(k)
TG) increases with the mesh size, so that max1≤k≤J ρ(E(k)

TG) corresponds

to the value on the finest grid, which is close to the asymptotic one. Observe that the

interval containing both ρ(E(J)
MG) and 1 − δ(1) is sharp enough. On the other hand,

1− 1
‖πA‖2

M(2)

is also a lower bound on 1− δ(1) by (3.11), but in general not a lower bound

on the effective convergence factor.
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3.4.2 Aggregation-based multigrid for 1D Poisson

We consider N ×N linear system associated to A = A(ε), where

A(ε) =



2 −1 · · · −1

−1 2 −1

−1 2
. . .

...
...

. . . . . . −1

−1 · · · −1 2


+ ε N−1 IN , (3.24)

with N = 2JN0 and ε > 0. We also assume piecewise constant prolongation of the form

P =


1 1

1 1
. . .

1 1


T

.

Note that, with this prolongation, the successive coarse-grid matrices Ak = Ak(ε) are also

given by (3.24) withN replaced byNk = 2kN0, where we considerN0 ≥ 2. Hence, we can

omit the subscript k (or k−1), let Ac = Ak−1 = P TAP , and set πA = πAk = PA−1
c P TA.

Note that this is a 1D like problem which could be solved more efficiently using a tri-

diagonal solver. The analysis below can however be easily repeated in more dimensions,

leading essentially to the same conclusions. We therefore continue with the 1D variant

for the sake of simplicity.

The eigenvectors of A(ε) are, for j = 0, . . . , N − 1 , the functions

u
(N)
j =

1√
N

exp(i jπx)

evaluated at the grid points, with i =
√
−1. The eigenvalue corresponding to u(N)

j is

λ
(N)
j (ε) = 4 sin2(jπN−1) + ε N−1 .

The prolongation P satisfies (see [41, p. 1087])

P T

{
u

(N)
j

u
(N)
j+N/2

}
=
√

2 ei jπN
−1

{
cos(jπN−1)

i sin(jπN−1)

}
u

(N/2)
j .

We consider damped Jacobi smoother R = 2 diag(A). Hence, the eigenvalues of

I − R−1A are in the interval [1 − ε N−1

4+2ε N−1 , 1 − 4+ε N−1

4+2ε N−1 ) = [ω, 1 − ω) with ω =
4+ε N−1

4+2ε N−1 ∈ (0, 1). One therefore has ρ(I − R−1A) ≤ 1, as required by our general

assumptions.
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Letting

pj =
√

2 ei jπN
−1
(

cos(jπN−1) i sin(jπN−1)
)H

,

Λj(ε) = diag
(
λ

(N)
j (ε) , λ(N)

j+N/2(ε)
)
,

Σ(ν)
j (ε) = diag

{σ(ν)(λ(N)
c (ε))

∣∣∣∣∣ σ(ν)(λ) =
λ

1− (1− ωλ
4+ε N−1 )ν

}
(c)=(j),(j+N/2)

 ,

we can rewrite (3.18):

‖πA‖M(2ν) = max
j=0,...,N/2−1

∥∥ Σ(2ν)
j (ε)

1/2
pj
∥∥ ∥∥ pj H Λj(ε) Σ(2ν)

j (ε)
−1/2 ∥∥

pj H Λj(ε) pj
. (3.25)

First observe that σ(2ν)(λ) is an increasing function of λ since t(1 − (1 − t)2ν)−1 is
an increasing function of t on the interval (0, 1). Hence, since λ(N)

1 (ε) ≤ λ
(N)
1+N/2(ε) for

N ≥ 2N0 ≥ 4, we have

‖πA‖M(2ν) ≥
∥∥ Σ(2ν)

1 (ε)
1/2

p1

∥∥ ∥∥ p1
H Λ1(ε) Σ(2ν)

1 (ε)
−1/2 ∥∥

p1
H Λ1(ε) p1

=

√
|(p1)1|2 σ(2ν)(λ

(N)
1 (ε))

σ(2ν)(λ
(N)
1+N/2(ε))

+ |(p1)2|2
√
|(p1)1|2 λ(N)

1 (ε)
2 σ(2ν)(λ

(N)
1+N/2(ε))

σ(2ν)(λ
(N)
1 (ε))

+ |(p1)2|2 λ(N)
1+N/2(ε)

2

|(p1)1|2 λ(N)
1 (ε) + |(p1)2|2 λ(N)

1+N/2(ε)

≥

√√√√ σ(2ν)(λ(N)
1 (ε))

σ(2ν)(λ(N)
1+N/2(ε))

√
|(p1)1|2 + |(p1)2|2

√
|(p1)1|2 λ(N)

1 (ε)
2

+ |(p1)2|2 λ(N)
1+N/2(ε)

2

|(p1)1|2 λ(N)
1 (ε) + |(p1)2|2 λ(N)

1+N/2(ε)

=

√√√√ σ(2ν)(λ(N)
1 (ε))

σ(2ν)(λ(N)
1+N/2(ε))

√
cos4(πN−1) sin2(πN−1) + cos2(πN−1) sin4(πN−1) +O(ε)

2 cos2(πN−1) sin2(πN−1) +O(ε)
.

Further, using again the monotonicity of σ(2ν), there holds

σ(2ν)(λ(N)
1 (ε))

σ(2ν)(λ(N)
1+N/2(ε))

≥ limλ→0 σ
(2ν)(λ)

σ(2ν)(4 + εN−1)
=

(4 + εN−1)
νω

1− (1− ω)2ν

(4 + εN−1)
=

1− (1− ω)2ν

νω

with ω ∈ (0, 1). Hence, for ε→ 0, we have

‖πA‖2M(2ν) ≥
1− (1− ω)2ν

νω

1
4 cos2(πN−1) sin2(πN−1)

= O(N2) .

Thus, ‖πA‖2
M

(2)
k

increases with the problem size when ε is small enough, whereas, as

shown in [41], the two-grid convergence factor remains bounded. Hence, we have an

example of optimal two-grid method for which the V-cycle convergence estimate is poor.

As seen in Table 3.3, it turns out that the actual convergence factor also deteriorates with

the number of levels, showing that the analysis based on ‖πA‖2M(2) is qualitatively correct.
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J(N) 1(8) 3(32) 5(128) 7(512) 9(2048)
‖πA‖2

M
(2)
J

1.471 13.58 208.0 3312 52575

ρ(E(J)
TG) 0.375 0.490 0.499 0.5 0.5

ρ(E(J)
MG) 0.375 0.800 0.947 0.986 0.997

Table 3.3: The values of main parameters for ε = 10−4 and for different problem
sizes; the coarsest grid corresponds to N0 = 4.

3.4.3 Positive off-diagonal entries

We consider the (2NJ − 1)× (2NJ − 1) matrix

A =



2 1

1 2 1
. . . . . . . . .

1 2 1

1 2


,

with Nk = N0 · 2k, corresponding to the one-dimensional stencil[
1 2 1

]
. (3.26)

We also consider the (2Nk − 1)× (Nk − 1) prolongation matrix

Pk =
1√
2


1 0 1

1 0 1
. . .

1 0 1


T

(3.27)

and the damped Jacobi smoother Rk = 1
2 diag(Ak) with one pre- and one post-smoothing

step at each level. Note that the stencil (3.26) is preserved on all levels.

The values of ‖πA‖2
M

(2)
J

and ρ(E(J)
TG) on the finest grid, which are also the maximal

values of these parameters over all grids, are given in the Table 3.4 together with the

V-cycle convergence factor ρ(E(J)
MG).

J(N) 1(4) 3(16) 5(64) 7(256) 9(1024)
‖πA‖2

M
(2)
J

1.235 1.479 1.498 1.5 1.5

ρ(E(J)
TG) 0.625 0.971 0.998 0.9999 0.99999

ρ(E(J)
MG) 0.625 0.971 0.998 0.9999 0.99999

Table 3.4: The values of main parameters for different problem sizes; the coarsest
grid corresponds to N0 = 2.



When does two-grid optimality carry over to the V-cycle? 53

This example illustrates that ‖πAk‖2M(2ν)
k

is a parameter essentially independent of

ρ(E(k)
TG), since it remains nicely bounded while both the two-grid and the V-cycle con-

vergence factor deteriorate rapidly with the problem size.

3.5 Conclusion

We have presented a two-sided inequality (3.16) on the McCormick’s estimate of V-cycle

convergence factor (which is the best bound from the previous chapter). The inequality

proves that the bound predicts an optimal V-cycle convergence if and only if the related

two-grid scheme has level-independent convergence properties and the Mk-norm of a

given projector πAk is bounded on on all levels. As a straightforward consequence, if

the latter norm condition is checked, level-independent two-grid convergence implies

optimal convergence properties for V-cycle multigrid. We have also shown on examples

that both these conditions (level-independent convergence of the two-grid scheme and on

the boundness of the πAk norm) are independent; that is, each of them can be satisfied

whereas the other is not.

In the finite element context, when multigrid hierarchy is induced by successive mesh

refinements, and considering well conditioned smoothers, we have shown that the bound

of McCormick (as well as the other bounds in Chapter 2) provides an optimal estimate for

V-cycle multigrid if and only if the underlying problem possesses (full) elliptic regularity.

Considering the Fourier analysis, we have observed that the norm of πAk can be

easily assessed, allowing to supplement the two-grid estimate with an indication of V-

cycle potentialities.

Appendix A

In this appendix, we outline the proof of the following inequality:

sup
si∈(0,1)

g(ν)(si, 0) ≤

 2− 3ωJac
4 if ν = 1

1 + 1
3νωJac

if ν > 1 ,
(3.28)

with g(ν) defined by (3.23) and ωJac ∈ [ 0 , 4/3 ).

Note that g(ν)(si, 0) = g(ν)(1 − si, 0) and it is sufficient to seek a supremum for

si ∈ (0, 0.5). Next, exchanging (3/2)ωJac for α (hence, α ∈ [0, 2)), one has

g(ν)(si, 0) =1 + si(1− si)
([

1− (1− αsi)2ν

1− (1− α(1− si))2ν
− 1
]

+
[

1− (1− α(1− si))2ν

1− (1− αsi)2ν
− 1
])

=1 + si(1− si)
[
(1− αsi)2ν − (1− α(1− si))2ν

]
×
(

1
1− (1− αsi)2ν

− 1
1− (1− α(1− si))2ν

)
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≤1 + si(1− si)
[
(1− αsi)2ν − (1− α(1− si))2ν

]( 1
1− (1− αsi)2ν

)
(3.29)

≤1 + si(1− αsi)2ν

(
1

1− (1− αsi)2ν

)
=1 +

(1− αsi)2ν

α
∑2ν−1

k=0 (1− αsi)k

≤1 +
1

2να
,

the last inequality coming from the fact that αsi ∈ [0, 1). This proves (3.28) for ν > 1.

On the other hand, if ν = 1, (3.29) further gives

g(1)(si, 0) ≤1 + si(1− si)
[
(1− αsi)2 − (1− α(1− si))2

]( 1
1− (1− αsi)2

)
=1 + si(1− si) [α(2− α)(1− 2si)]

(
1

αsi(2− αsi)

)
=1 + (2− α)(1− 2si)

(
1
α
− 2− α
α(2− αsi)

)
(3.30)

≤1 + (2− α)
(

1
α
− 2− α

2α

)
(3.31)

=2− α

2
,

where the inequality (3.31) comes from the fact that the expression (3.30) is a decreasing

function of si. This concludes the proof.



Chapter 4
Smoothing factor and actual multigrid

convergence

Summary

We consider the Fourier analysis of multi-grid methods for symmetric positive definite

and semi-positive definite linear systems arising from the discretizations of scalar PDEs.

In this framework, the smoothing factor is frequently used to estimate the potential of

a multigrid approach. In this chapter, the smoothing factor is related to the actual two-

grid convergence rate and also to the V-cycle convergence estimate based on McCormick

theory in [SIAM J. Numer.Anal., 22(1985), pp.634-643]. A two-sided bound is obtained

that defines an interval containing both the two-grid and V-cycle convergence rate.

This interval is narrow when an additional parameter is small enough, which is a simple

function of quantities available in standard Fourier analysis.

From a qualitative viewpoint, it turns out that, besides the smoothing factor, the

convergence mainly depends on the angle between the eigenvectors of the matrix associ-

ated with small eigenvalues and the range of the prolongation. Nice V-cycle convergence

is guaranteed if the tangent of this angle has an upper bound proportional to the eigen-

value, whereas nice two-grid convergence requires the tangent to be bounded by an

expression proportional only to the square root of the eigenvalue.

The presented results apply to rigorous Fourier analysis for regular discrete PDEs,

and also to local Fourier analysis via the discussion of semi-definite systems as may arise

from the discretization of PDEs with periodic boundary conditions.

4.1 Introduction

We consider Fourier analysis of multigrid methods for symmetric positive definite (SPD)

or, more generally, symmetric semi-positive definite n× n linear systems

Ax = b. (4.1)

55
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Multigrid methods are based on the recursive use of a two–grid scheme. A basic two–

grid method combines the action of a smoother, often a simple iterative method such

as Gauss-Seidel, and a coarse-grid correction, which corresponds to the solution of the

residual equation on a coarser grid. A multigrid method is obtained when the residual

equation is solved approximately applying few iterations of the two–grid scheme on that

level, and so on, until the coarsest level when an exact solve is performed. If the two–grid

method is used recursively once on each level, the resulting algorithm is called V–cycle

multigrid, whereas more involved cycling strategies (like W– or F–cycle) correspond to

more iterations of two–grid method on given levels (see, e.g., [61, 27,67]).

Fourier analysis [60,61,68] is a widely used tool that helps to design efficient multi-

grid approaches. It exploits the fact that the discretization of a constant-coefficient

(elliptic) boundary value problem on simple domains often leads to a system (4.1) of

which discrete Fourier modes are eigenvectors. If, in addition, other multigrid compo-

nents also have a simple block structure in this Fourier basis, the analysis of a multigrid

approach can be reduced to the analysis of diagonal blocks of small size, which can be

done either analytically or numerically. The multigrid components designed for such

simple cases are then adapted to more complex problems.

Fourier analysis is in practice limited to a few consecutive grids: generally two, rarely

three [69]. Often Fourier analysis is further reduced to the computation of a simpler

(one-grid) smoothing factor. When assessing this latter, the coarse-grid correction is

assumed to annihilate the so-called smooth (or low frequency) error modes, while leaving

rough (or high frequency) modes unchanged. Since this is the limit case of the desired

behavior of a coarse-grid correction, the smoothing factor is often considered as an ideal

two-grid convergence estimate. However, it is so far unclear which condition(s) are to be

satisfied by the coarse-grid correction for having the actual two-grid convergence close

to this ideal. Further, nice two-grid convergence does not necessarily imply optimal

convergence of the multigrid method with V-cycle [41], hence the latter likely requires

additional conditions.

In this chapter we investigate these questions for symmetric multigrid schemes of

Galerkin type. The coarse-grid correction is essentially determined by the prolongation,

and we establish a simple connection between the smoothing factor and the actual two-

grid convergence via an additional parameter α that mainly depends on the coefficients

of the prolongation in the Fourier basis. Regarding the V-cycle convergence rate, we

use as main tool McCormick’s bound [38] (see also [37,53]) which is shown in Chapter 2

to be the best convergence estimate among those that can be assessed considering only

two consecutive levels at a time. In a previous chapter, we show that optimal two-grid

convergence implies optimal V-cycle convergence if the norm of the (two-grid) coarse-

grid correction operator is bounded at each level. However, although it is sketched how

to compute this norm within the framework of Fourier analysis, no simple criterion is
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given nor a connection is made with the smoothing factor. Here we prove a simple

relation between McCormick’s bound and the smoothing factor, using the same easy-to-

compute parameter α that relates the smoothing factor with the two-grid convergence

rate.

When the constant α and the smoothing factor are nicely bounded at each level, our

analysis essentially proves that the two-grid and the V-cycle convergence factors are both

in a narrow interval, which further goes towards zero as the number of smoothing steps

is increased. On the other hand, from a more qualitative viewpoint, we deduce easy-

to-check conditions to be satisfied by the prolongation for optimal two-grid or V-cycle

convergence. Doing so, we give in some sense a more precise meaning to statements like

“Interpolation must be able to approximate an eigenvector with error bound proportional

to the size of the associated eigenvalue” [18, p. 1573], [21, p. 4]. We also highlight that

the conditions for guaranteed optimal V-cycle convergence are in fact stronger that the

conditions for optimal two-grid convergence.

In a number of practical cases, when Fourier analysis cannot be applied directly, it is

still possible to replace boundary conditions, for instance, by the periodic ones, to make

Fourier analysis work. Provided that some negligible extra smoothing is performed

on the boundary, such modification has little influence on the convergence rate [17,

57]. These approaches are closely related to local Fourier analysis, which can often be

viewed [68, Remark 5.3] [61, Section 3.4.4] as a (rigorous) Fourier analysis for problems

with periodic boundary conditions. Since such boundary conditions often lead to semi-

positive definite (singular) systems (4.1), our treatment should be valid for them as

well. This is addressed in this work via the extension of McCormick’s bound to the

semi-positive definite case.

The reminder of this chapter is organized as follows. In Section 4.2 we state the

general setting of this study for SPD systems and gather the needed assumptions. Mc-

Cormick’s bound is introduced in Section 4.3 and Fourier analysis for SPD problems is

discussed in Section 4.4. The approach is extended to symmetric semi-positive definite

systems in Section 4.5. Illustrative examples are discussed in Section 4.6.

4.2 General setting

We consider a multigrid method with J+1 levels; J > 1 corresponds to a truly multigrid

method, whereas J = 1 leads to a mere two-grid scheme. Index J refers to the finest

level (on which the system (4.1) is to be solved), and index 0 to the coarsest level. The

number of unknowns at level k , 0 ≤ k ≤ J , is noted nk (with thus nJ = n).

Our analysis applies to symmetric multigrid schemes based on the Galerkin principle

for the SPD system (4.1); that is, restriction is the transpose of prolongation and the

matrix Ak at level k , k = J − 1, . . . , 0 , is given by Ak = P Tk Ak+1Pk , where Pk is the
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prolongation operator from level k to level k+ 1 ; we also assume that the smoother Rk
is SPD and that the number of pre–smoothing steps ν (ν > 0) is equal to the number

of post–smoothing steps.

The algorithm for V–cycle multigrid is defined as follows.

Multigrid with V–cycle at level k: xn+1 = MG(b, Ak,xn, k)

(1) Relax ν times with smoother Rk :

repeat ν times xn ← xn +R−1
k (bk −Akxn)

(2) Compute residual: rk = b−Akxn
(3) Restrict residual: rk−1 = P Tk−1rk
(4) Coarse grid correction: if k = 1 , e0 = A−1

0 r0

else ek−1 = MG(rk−1, Ak−1,0, k − 1)
(5) Prolongate coarse-grid correction: xn ← xn + Pk−1ek−1

(6) Relax ν times with smoother Rk :

repeat ν times xn+1 ← xn +R−1
k (bk −Akxn)

Observe that for k = 1 this algorithm corresponds to a standard two-grid method with

exact coarse-grid solve. Our analysis makes use of the following general assumptions.

General assumptions

• n = nJ > nJ−1 > · · · > n0 ;

• Pk is an nk+1 × nk matrix of rank nk, k = J − 1, . . . , 0 ;

• AJ = A and Ak = P Tk Ak+1Pk , k = J − 1, . . . , 0 ;

• Rk is SPD and such that ρ(I −R−1
k Ak) < 1 , k = J, . . . , 1 .

Most of our results do not refer explicitly to the smoother Rk , but are stated with

respect to the matrices N (ν)
k defined from

N
(ν)
k =

ν−1∑
j=0

(I −R−1
k Ak)jR−1

k , (4.2)

which also satisfy

I − N
(ν)
k Ak = (I −R−1

k Ak)ν . (4.3)

That is, N (ν)
k is the relaxation operator that provides in 1 step the same effect as ν steps

with R−1
k . The results stated with respect to N (ν)

k may then be seen as results stated for

the case of 1 pre– and 1 post–smoothing step, which can be extended to the general case

via the relation (4.3). If N (ν)
k is nonsingular, it plays the same role as M (ν)

k

−1
from the

two previous chapters; however, in Section 4.5 potentially singular N (ν)
k are considered.
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When applying the V-cycle algorithm, the error satisfies

A−1
k b− xn+1 = E

(k)
MG

(
A−1
k b− xn

)
where the iteration matrix E(k)

MG is recursively defined from

E
(0)
MG = O and, for k = 1, 2, . . . , J :

E
(k)
MG = (I −R−1

k Ak)ν
(
I − Pk−1(I − E(k−1)

MG )A−1
k−1P

T
k−1Ak

)
(I −R−1

k Ak)ν
(4.4)

(see, e.g., [61, p. 48]). Note that for J = 1 (4.4) reduces to the two-grid iteration matrix:

E
(J)
TG = (I −R−1

J AJ)ν
(
I − PJ−1A

−1
J−1P

T
J−1AJ

)
(I −R−1

J AJ)ν . (4.5)

The convergence on finest level is governed by the spectral radius ρ(E(J)
MG), or, in case

of two-grid, ρ(E(J)
TG). In this chapter, we want to discuss assessment of these spectral radii

within the framework of a Fourier analysis, as may be developed for systems arising from

the discretization of scalar PDEs. It means that the eigenvectors of Ak are explicitly

known at each level and form the Fourier basis. We further assume that the smoother

shares the same set of eigenvectors; i.e., is also diagonal when expressed in this Fourier

basis.1 According to (4.2), N (ν)
k will be diagonal as well for all ν.

Technically, a Fourier analysis is then possible if, expressing Pk−1 in both the coarse

(level k − 1) and fine (level k) Fourier basis, it has the form

Pk−1 =



p(k−1)
1

p(k−1)
2

. . .

p(k−1)
lk−1

O


, (4.6)

where p(k−1)
j are (possibly complex) vectors of size m(k)

j , j = 1, ..., lk−1. Note that this

form induces a block partitioning of Ak, Rk and Nk when these matrices are expressed

in Fourier basis. More precisely we write

Ak =


Λ(k,1)

Λ(k,2)

. . .

Λ(k,lk)

 , Rk =


Γ(k,1)

Γ(k,2)

. . .

Γ(k,lk)

 ,

1Here we exclude cases for which the smoother is block diagonal as, e.g., when using red-black Gauss-
Seidel relaxation for 5-pont discretizations of Poisson equation [61, Section 4.5].
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N
(2ν)
k =


Σ(k,1)

Σ(k,1)

. . .

Σ(k,lk)

 , (4.7)

where Λ(k,j) = diag(λ(k,j)
1 , . . . , λ

(k,j)

m
(k)
j

), Γ(k,j) = diag(γ(k,j)
1 , . . . , γ

(k,j)

m
(k)
j

) , and Σ(k,j) =

diag(σ(k,j)
1 , . . . , σ

(k,j)

m
(k)
j

). Note that the block lk corresponds to all eigenmodes of Ak that

have no corresponding block in Pk−1; that is, all modes such that the associated eigenvec-

tor vk satisfies P Tk−1vk = 0. Whereas the separate treatment of the “non-prolongated”

block is not compulsory (it can, for instance, be merged with one of the regular blocks),

we adopt it here because such block (which can also be a group of “non-prolongated”

blocks put together) often arises in practice.

Observe that the partitioning induced by (4.6) associates in a same block other than

lk the different Fourier modes that, on the coarse-grid, are mapped by P Tk−1 onto the

same coarse Fourier mode. To develop our analysis, we don’t need to enter the details

about which modes are associated. It is important to note, however, that in usual setting

of Fourier analysis (see, e.g., [61,68]), inside each set of associated modes (that is, inside

each block other than lk), there is a unique mode classified as “low frequency”, all other

modes being labelled as “high frequency”. Moreover, the modes that belong to the block

lk are all classified as “high frequency”. Then, the smoothing factor is the worst factor

by which high frequency components are reduced per relaxation step; that is,

µ̃(k) = max
j=1,...,lk

max
i=1,..,m

(k)
j

i is a “high frequency” mode

|1− γ
(k,j)
i

−1
λ

(k,j)
i | .

In our study, we assume that the ordering inside each block is such that

|1− γ
(k,j)
1

−1
λ

(k,j)
1 | ≥ |1− γ

(k,j)
2

−1
λ

(k,j)
2 | ≥ · · · ≥ |1− γ

(k,j)

m
(k)
j

−1
λ

(k,j)

m
(k)
j

| (4.8)

and report results with respect to

µ(k) = max
j=1,...,lk

max
i=2,..,m

(k)
j if j<lk

i=1,..,m
(k)
lk

if j=lk

|1− γ
(k,j)
i

−1
λ

(k,j)
i |

= max
(

max
j=1,...,lk−1

|1− γ
(k,j)
2

−1
λ

(k,j)
2 | , |1− γ

(k,lk)
1

−1
λ

(k,lk)
1 |

)
. (4.9)

Clearly, µ(k) coincides with the classical smoothing factor if, inside each block j other

than lk, the low frequency component is also the one less efficiently relaxed by the

smoother. This corresponds to usual situations, but may be not true in whole generality.
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Note, however, that one has µ(k) ≤ µ̃(k) as soon as each block other than lk contains

at least one low frequency mode. In the following, we call µ(k) the smoothing factor

without checking further if µ(k) = µ̃(k).

Eventually, observe that (4.3) implies 1 − σ(k,j)
i λ

(k,j)
i = (1 − γ

(k,j)
i

−1
λ

(k,j)
i )2ν and

hence (4.8) is equivalent to

σ
(k,j)
1 λ

(k,j)
1 ≤ σ

(k,j)
2 λ

(k,j)
2 ≤ · · · ≤ σ

(k,j)

m
(k)
j

λ
(k,j)

m
(k)
j

.

4.3 V–cycle analysis and McCormick’s bound

We recall here the bound obtained in [38, Lemma 2.3, Theorem 3.4 and Section 5] (see

also [37], or [53] for an alternative proof). The equivalence of definition (4.11) with

(4.12) is proved in Theorem 2.6.

Theorem 4.1. Let E(J)
MG and N

(ν)
k , k = 1, . . . , J , be defined respectively by (4.4)

and (4.2) with A being symmetric positive definite and with Pk , k = 0, . . . , J − 1 ,

Ak , k = 0, . . . , J , and Rk , k = 1, . . . , J , satisfying the general assumptions stated in

Section 4.2.

Then, letting πAk = Pk−1A
−1
k−1P

T
k−1Ak, there holds

ρ(E(J)
MG) ≤ 1− min

1≤k≤J
δ

(ν)
k , (4.10)

where

δ
(ν)
k = min

vk∈Rnk

‖vk‖2Ak − ‖(I − N
(ν)
k Ak)vk‖2Ak

‖(I − πAk)vk‖2Ak
(4.11)

= min
vk∈Rnk

vTk N
(2ν)
k vk

vTk (A−1
k − Pk−1A

−1
k−1P

T
k−1)vk

. (4.12)

Moreover,

δ
(ν)
k

−1
≤ 1
ν

(
δ

(1)
k

−1
+ ν − 1

)
. (4.13)

As already mentioned, it was shown in Chapter 2 that the McCormick’s bound is

the best bound for V-cycle multigrid among those characterized by a constant which is

a maximum over all levels of an expression involving only two consecutive levels at a

time. This latter feature is the key property that allows us, in the next section, to assess

the bound in standard Fourier analysis setting, and relate it to the smoothing factor.
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4.4 Rigorous Fourier analysis for SPD problems

Let Ãk = N
(2ν)
k

1/2
Ak N

(2ν)
k

1/2
and P̃k−1 = N

(2ν)
k

−1/2
Pk−1 , with corresponding block

structure

Ãk =


Λ̃(k,1)

Λ̃(k,2)

. . .

Λ̃(k,lk)

 , P̃k−1 =



p̃(k−1)
1

p̃(k−1)
2

. . .

p̃(k−1)
lk−1

O


,

where Λ̃(k,j) = diag(λ̃(k,j)
i ) with λ̃

(k,j)
i = σ

(k,j)
i λ

(k,j)
i . Setting

π̃(k,j) = p̃(k−1)
j ( p̃(k−1)

j

H
Λ̃(k,j)p̃(k−1)

j )−1 p̃(k−1)
j

H
Λ̃(k,j) ,

there holds

ρ(E(k)
TG) = ρ

(
(
(
I − Pk−1A

−1
k−1P

T
k−1Ak

)
(I − N

(ν)
k Ak)2

)
= ρ

((
I − Pk−1A

−1
k−1P

T
k−1Ak

)
(I − N

(2ν)
k Ak)

)
= ρ

(
(I − P̃k−1Ã

−1
k−1P̃

T
k−1Ãk)(I − Ãk)

)
= max

(
max

j=1,...,lk−1
ρ
(

(I − π̃(k,j))(I − Λ̃(k,j))
)
, ρ
(
I − Λ̃(k,lk)

))
,

and

δ
(ν)
k

−1
= max

vk∈Rnk

vTk (A−1
k − Pk−1A

−1
k−1P

T
k−1)vk

vTk N
(2ν)
k

−1
vk

= max
vk∈Rnk

vTk (I − P̃k−1Ã
−1
k−1P̃

T
k−1Ãk)Ã

−1
k vk

vTk vk

= max
(

max
j=1,...,lk−1

ρ
(

(I − π̃(k,j)) Λ̃(k,j)−1
)
, ρ
(

Λ̃(k,lk)−1
))

.

Now, for each individual block other than lk, the quantities one has to take the

maximum of may be assessed by applying the following theorem with Λ̃ = Λ̃(k,j) and

p̃ = p̃(k−1)
j (this vector is not equal to zero since the block lk is not considered). Observe

that the assumption 0 < λ̃i ≤ 1 is then not restrictive since I−Ãk and (I−N (ν)
k Ak)2 have

the same spectra, and hence the eigenvalues of Λ̃(k,j), being a subset of the eigenvalues

of Ãk, belong to (0, 1] by virtue of our general assumptions.
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Theorem 4.2. Let Λ̃ = diag(λ̃i) be a m ×m real matrix with 0 < λ̃1 ≤ λ̃2 ≤ · · · ≤
λ̃m ≤ 1 , and let p̃ = (p̃1 . . . p̃m)T be a nonzero complex vector. Set

π̃ = p̃ (p̃HΛ̃p̃)−1 p̃HΛ̃ ,

ρTG = ρ
(

(Im − π̃)
(
Im − Λ̃

) )
,

and

δ−1 = ρ
(

(Im − π̃) Λ̃−1
)
.

Letting

α̃ =
m∑
i=2

λ̃2
i |p̃i|2

λ̃2
1‖p̃‖2

, (4.14)

then
λ̃2

1 + α̃(1− λ̃1/λ̃2)
≤ δ ≤

(
4
α̃

)1/3

. (4.15)

Moreover, if |p̃1| > 0, letting

β̃ =
m∑
i=2

λ̃2
i |p̃i|2

λ̃2
1|p̃1|2

, (4.16)

then

λ̃1 +
λ̃2 − λ̃1

1 + β̃
≤ δ ≤ λ̃1 +

λ̃m − λ̃1

1 + β̃
(4.17)

and

λ̃1 +
λ̃2 − λ̃1

1 + λ̃−1
2 λ̃1β̃

≤ 1− ρTG ≤ min

(
λ̃1 +

λ̃m − λ̃1

1 + λ̃−1
m λ̃1β̃

, λ̃2

)
, (4.18)

whereas, if |p̃1| = 0,

δ = 1− ρTG = λ̃1 . (4.19)

Proof. Set λ̃c = p̃HΛ̃p̃ =
∑m

i=1 λ̃i|p̃i|2. First, observe that, according to Lemma 2.2

in [41],

λ̃1|p̃1|2λ̃−1
c λ̃−1

m +(1−λ̃1|p̃1|2λ̃−1
c )λ̃−1

1 ≤ δ−1≤ λ̃1|p̃1|2λ̃−1
c λ̃−1

2 +(1−λ̃1|p̃1|2λ̃−1
c )λ̃−1

1 , (4.20)

and, similarly,

λ̃1|p̃1|2λ̃−1
c ηm+ (1− λ̃1|p̃1|2λ̃−1

c )η1 ≤ ρTG ≤ λ̃1|p̃1|2λ̃−1
c η2 + (1− λ̃1|p̃1|2λ̃−1

c )η1 , (4.21)
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where ηi = (1 − λ̃i). Equality (4.19) then readily follows. Moreover, (4.20) and (4.21)

can be further rewritten as

λ̃1|p̃1|2λ̃−1
c

(
λ̃−1
m − λ̃−1

1

)
+ λ̃−1

1 ≤ δ−1≤ λ̃1|p̃1|2λ̃−1
c

(
λ̃−1

2 − λ̃
−1
1

)
+ λ̃−1

1 , (4.22)

λ̃1|p̃1|2λ̃−1
c (ηm − η1) + η1 ≤ ρTG ≤ λ̃1|p̃1|2λ̃−1

c (η2 − η1) + η1 . (4.23)

We now prove the inequalities (4.17) and (4.18). Note that

λ̃1|p̃1|2λ̃−1
c =

λ̃1|p̃1|2∑m
i=1 λ̃i|p̃i|2

=

(
1 + λ̃1

∑m
i=2 λ̃i|p̃i|2

λ̃2
1|p̃1|2

)−1

implies

(1 + ξ2)−1 ≤ λ̃1|p̃1|2λ̃−1
c ≤ (1 + ξm)−1 , (4.24)

where ξi = β̃λ̃1/λ̃i. Using these last inequalities in (4.22) and (4.23) one obtains (since

λ̃−1
1 ≥ · · · ≥ λ̃−1

m and η1 ≥ · · · ≥ ηm)

1
ξm + 1

(
λ̃−1
m − λ̃−1

1

)
+ λ̃−1

1 ≤ δ−1 ≤ 1
ξ2 + 1

(
λ̃−1

2 − λ̃
−1
1

)
+ λ̃−1

1 ,

1
ξm + 1

(ηm − η1) + η1 ≤ ρTG ≤
1

ξ2 + 1
(η2 − η1) + η1 .

Hence, using ξi = β̃ λ̃1/λ̃i and ηi = 1− λ̃i , i = 2,m , we have

1 + β̃

λ̃m + λ̃1β̃
≤ δ−1 ≤ 1 + β̃

λ̃2 + λ̃1β̃
,

1− λ̃2
m + λ̃2

1β̃

λ̃m + λ̃1β̃
≤ ρTG ≤ 1− λ̃2

2 + λ̃2
1β̃

λ̃2 + λ̃1β̃
.

The inequalities (4.17) and (4.18) (except the second term in the minimum) readily

follow. To conclude the proof of (4.18), let ek be the k-th unit vector and let

v =


e2 if p̃He2 = 0

e1 − e2

(
λ̃1

1/2
p̃He1

λ̃2
1/2

p̃He2

)
otherwise .

Note that π̃ Λ̃
−1/2

v = 0 and Λ̃ π̃ = π̃H Λ̃ . Hence,

ρTG = ρ
(

(Im − π̃)2
(
Im − Λ̃

) )
= ρ

(
(Im − π̃)

(
Im − Λ̃

)
(Im − π̃)

)
= ρ

(
Λ̃1/2 (Im − π̃)

(
Im − Λ̃

)
(Im − π̃) Λ̃−1/2

)
= ρ

(
Λ̃−1/2 (Im − π̃)H Λ̃1/2

(
Im − Λ̃

)
Λ̃1/2 (Im − π̃) Λ̃−1/2

)
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≥
vHΛ̃−1/2 (Im − π̃)H Λ̃1/2

(
Im − Λ̃

)
Λ̃1/2 (Im − π̃) Λ̃−1/2v

vHv

=
vH
(
Im − Λ̃

)
v

vHv

≥ 1− λ̃2 .

We next prove the left inequality (4.15). First observe that

λ̃1|p̃1|2λ̃−1
c =

λ̃1|p̃1|2∑m
i=1 λ̃i|p̃i|2

= 1−
∑m

i=2 λ̃i|p̃i|2∑m
i=1 λ̃i|p̃i|2

≥ 1−
∑m

i=2 λ̃i|p̃i|2

λ̃1
∑m

i=1 |p̃i|2
≥ 1− λ̃1α̃

λ̃2

,

and hence, with (4.20), there holds

δ−1 ≤

(
1− λ̃1α̃

λ̃2

)
λ̃−1

2 +
λ̃1α̃

λ̃2

λ̃−1
1 = λ̃−1

2

(
1 + α̃(1− λ̃1

λ̃2

)

)
.

It remains to prove the right inequality (4.15). Note that, according to Theorem 3.2,

δ ≤ min
(

1− ρTG , ‖π̃‖−2
)
.

Hence, provided that

α̃ ≤ 4
(1− ρTG)2

‖π̃‖2 (4.25)

holds (we prove it below), we have

δ ≤ min
(

1− ρTG ,
1
α̃

4
(1− ρTG)2

)
≤ max

x>0
min

(
x ,

1
α̃

4
x2

)
≤
(

4
α̃

)1/3

.

We are thus left with the proof of (4.25), for which we use

‖π̃‖2 = ρ
(
p̃ λ̃−1

c p̃HΛ̃2p̃ λ̃−1
c p̃H

)
=
‖p̃‖2 p̃HΛ̃2p̃

λ̃2
c

= ‖p̃‖2
∑m

i=1 λ̃
2
i |p̃i|2

λ̃2
c

. (4.26)

According to (4.21), we have

ρTG ≥ 1− λ̃1 − λ̃1|p̃1|2λ̃−1
c (λ̃m − λ̃1) .

Hence, considering first the case where λ̃1 ≤ 1−ρTG
2 and λ̃1 6= λ̃m, there holds

λ̃1|p̃1|2λ̃−1
c =

|p̃1|2λ̃1∑m
i=1 λ̃i|p̃i|2

≥ 1− λ̃1 − ρTG
λ̃m − λ̃1

≥ 1− ρTG
2(λ̃m − λ̃1)

≥ 1− ρTG
2

, (4.27)
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the last inequality following from 0 ≤ λ̃1 < λ̃m ≤ 1. Note that (4.27) implies |p̃1|2 > 0.

The right inequality (4.25) follows then from

α̃ =
m∑
i=2

λ̃2
i |p̃i|2

λ̃2
1‖p̃‖2

≤ ‖p̃‖2
∑m

i=1 λ̃
2
i |p̃i|2

(λ̃1|p̃1|2)2
≤ 4

(1− ρTG)2
‖p̃‖2

∑m
i=1 λ̃

2
i |p̃i|2

λ̃2
c

,

together with (4.26). If λ̃1 = λ̃m, we have

α̃ =
m∑
i=2

|p̃i|2

‖p̃‖2
≤ 1 ≤ 4

(1− ρTG)2
‖π̃‖2 ,

the last inequality coming from the fact that π̃ is a projector, and hence ‖π̃‖ ≥ 1. On

the other hand, when λ̃1 ≥ 1−ρTG
2 one has (since λ̃i ≤ 1)

α̃ =
m∑
i=2

λ̃2
i |p̃i|2

λ̃2
1‖p̃‖2

<
4

(1− ρTG)2

m∑
i=2

λ̃2
i |p̃i|2

‖p̃‖2
≤ 4

(1− ρTG)2
≤ 4

(1− ρTG)2
‖π̃‖2 ,

the last inequality coming from ‖π̃‖2 ≥ 1.

This theorem can be applied in the context of Fourier analysis, setting Λ̃ = Λ̃(k,j)

and p̃ = p̃(k−1)
j , where Λ̃(k,j) and p̃(k−1)

j come from the block representation of Ãk =

N
(2ν)
k

1/2
Ak N

(2ν)
k

1/2
and P̃k = N

(2ν)
k

−1/2
Pk. Hence, the main constants for block j < lk

at level k are

α̃(k,j)
ν =

m
(k)
j∑
i=2

λ̃
(k,j)
i

2
|(p̃(k−1)

j )i|2

λ̃
(k,j)
1

2
‖p̃(k−1)

j ‖2
=

∑m
(k)
j

i=2 σ
(k,j)
i λ

(k,j)
i

2
|(p(k−1)

j )i|2(
σ

(k,j)
1 λ

(k,j)
1

)2∑m
(k)
j

i=1 σ
(k,j)
i

−1
|(p(k−1)

j )i|2
(4.28)

and

β̃(k,j)
ν =

m
(k)
j∑
i=2

λ̃
(k,j)
i

2
|(p̃(k−1)

j )i|2

λ̃
(k,j)
1

2
|(p̃(k−1)

j )1|2
=

m
(k)
j∑
i=2

σ
(k,j)
i λ

(k,j)
i

2
|(p(k−1)

j )i|2

σ
(k,j)
1 λ

(k,j)
1

2
|(p(k−1)

j )1|2
, (4.29)

where we use subscript ν to recall that these quantities inherit the dependence of σ(k,j)
i

on the number of smoothing steps. Taking all blocks other than lk into account, we set

α̃(k)
ν = max

j=0,...,lk−1
α̃(k,j)
ν and β̃(k)

ν = max
j=0,...,lk−1

β̃(k,j)
ν . (4.30)

Considering the contribution of block lk to both 1 − δ
(ν)
k

−1
, ρ(E(k)

MG) and ρ(E(k)
TG), it is

given by 1− λ̃(k,lk)
1 . It is not surprising that the contribution is the same since no coarse-

grid correction is performed on the corresponding modes, which therefore undergo only

the action of the smoother.
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Our definition (4.9) of the smoothing factor entails

min
(
λ̃

(k,lk)
1 , min

j=1,...,lk−1
λ̃

(k,j)
2

)
= 1−

(
µ(k)

)2ν
. (4.31)

Hence, using successively the right inequality (4.18) (with second term in the minimum),

the results in [27, Section 7.2] ( for the proof of ρ(E(J)
TG) ≤ ρ(E(J)

MG) ), the inequality

(4.10) and the left inequality (4.15) (with 1− λ1/λ2 bounded above by 1), one obtains

the following cascade of inequalities

(µ(J))2ν ≤ ρ(E(J)
TG) ≤ ρ(E(J)

MG) ≤ 1 − min
1≤k≤J

δ
(ν)
k ≤ max

1≤k≤J

(
µ(k)

)2ν
+ α̃

(k)
ν

1 + α̃
(k)
ν

. (4.32)

Observe that if maxk=1,...,J µ
(k) ≈ µ(J) (which often holds in practice) and if α̃(k)

ν is nicely

bounded at each level, these inequalities define a narrow interval containing both the

two-grid and V-cycle multigrid convergence factors. On the other hand, if α̃(k)
ν is large

at some levels, the right inequality (4.32) becomes ineffective, and the right inequality

(4.15) further shows that 1 − min1≤k≤J δ
(ν)
k will be indeed close to 1. As observed in

Chapter 3, the actual convergence of the V-cycle may then scale poorly with the number

of levels.

Now, the smoothing factor µ(k) can be directly assessed from λ
(k,j)
i and γ

(k,j)
i , i =

1, ...,m(k)
j , j = 1, ..., lk. However, α̃(k)

ν and β̃(k)
ν are related to the σ(k,j)

i , which are known

only via the relation

1− σ(k,j)
i λ

(k,j)
i = (1− γ

(k,j)
i

−1
λ

(k,j)
i )2ν .

Hence, α̃(k)
ν and β̃(k)

ν may be difficult to assess, and their dependence on ν is also unclear.

It is therefore not obvious to predict how the previous cascade of inequalities (4.32)

evolves with respect to this parameter. The easiest way to overcome this difficulty it to

use (4.10) combined with (4.13). The cascade of inequalities then becomes

(µ(J))2ν ≤ ρ(E(J)
TG) ≤ ρ(E(J)

MG) ≤ 1− min
1≤k≤J

δ
(ν)
k

≤ max
1≤k≤J

δ
(1)
k

−1
− 1

δ
(1)
k

−1
− 1 + ν

≤ max
1≤k≤J

(
µ(k)

)2
+ α̃

(k)
1(

µ(k)
)2 + α̃

(k)
1 + ν(1−

(
µ(k)

)2)
. (4.33)

Note that the two rightmost bounds behave like O(ν−1), whereas the smoothing factor

alone suggests an exponential dependence via the left inequality (4.33). For the typical

example considered in Section 4.6, the actual behavior of both ρ(E(J)
MG) and ρ(E(J)

TG)

is close to O(ν−1) (see Figure 4.1), indicating that the upper bounds provide a more

realistic estimate, at least in the considered case.
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Now, in Theorem 4.3 below, we show that α̃(k)
ν and β̃(k)

ν cannot increase with ν and

we further relate these constants to

α(k) = max
j=1,...,lk−1

∑m
(k)
j

i=2 γ
(k,j)
i

−1
λ

(k,j)
i

2
|(p(k−1)

j )i|2(
γ

(k,j)
1

−1
λ

(k,j)
1

)2∑m
(k)
j

i=1 γ
(k,j)
i |(p(k−1)

j )i|2
, (4.34)

β(k) = max
j=1,...,lk−1

m
(k)
j∑
i=2

γ
(k,j)
i

−1
λ

(k,j)
i

2
|(p(k−1)

j )i|2

γ
(k,j)
1

−1
λ

(k,j)
1

2
|(p(k−1)

j )1|2
. (4.35)

Note, however, that these expressions make sense only if, similarly to σ
(k,j)
1 λ

(k,j)
1 =

min
1≤s≤m(k)

j

σ
(k,j)
s λ

(k,j)
s , one also has

γ
(k,j)
1

−1
λ

(k,j)
1 = min

1≤s≤m(k)
j

γ(k,j)
s

−1
λ(k,j)
s . (4.36)

This, in turn, holds if,

γ
(k,j)
i

−1
λ

(k,j)
i ≤ 2− min

1≤s≤m(k)
j

γ(k,j)
s

−1
λ(k,j)
s , i = 1, ...,m(k)

j . (4.37)

Indeed, (4.37) implies in particular min
1≤i≤m(k)

j

γ
(k,j)
i

−1
λ

(k,j)
i ≤ 1, and further

|1− min
1≤s≤m(k)

j

γ(k,j)
s

−1
λ(k,j)
s | = 1− min

1≤s≤m(k)
j

γ(k,j)
s

−1
λ(k,j)
s

≥ max(1− γ
(k,j)
i

−1
λ

(k,j)
i , γ

(k,j)
i

−1
λ

(k,j)
i − 1) ,

hence (4.36) by virtue of the ordering (4.8). Observe that (4.37) holds when the smoother

is scaled in such a way that the eigenvalues of R−1
k Ak do not exceed 1. On the other

hand, if the smoother is related to some damping factor, the condition (4.37) is in fact

a constraint on the latter: assuming

γ
(k,j)
i

−1
= ω̄ γ̄

(k,j)
i

−1
,

it amounts to, taking all blocks other than lk into account,

ω̄ ≤ min
1≤j≤lk−1

2

max
1≤s≤m(k)

j

γ
(k,j)
i

−1
λ

(k,j)
i + min

1≤s≤m(k)
j

γ
(k,j)
i

−1
λ

(k,j)
i

.
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Theorem 4.3. Let λi > 0 and γi > 0, i = 1, ...,m satisfy |1 − λ1γ
−1
1 | ≥ |1 − λ2γ

−1
2 | ≥

· · · ≥ |1− λmγ−1
m | and set

σ
(ν)
i = λ−1

i

(
1− (1− λiγ−1

i )2ν
)

, i = 1, ...,m ,

for some integer ν > 0 . Let

α̃ν =
∑m

i=2 σ
(ν)
i λ2

i |pi|2(
σ

(ν)
1 λ1

)2∑m
i=1 σ

(ν)
i

−1
|pi|2

,

and, if |p1| > 0,

β̃ν =
m∑
i=2

σ
(ν)
i λ2

i |pi|2

σ
(ν)
1 λ2

1|p1|2
.

One has (
1
ν

)2

α̃1 ≤ α̃ν ≤ α̃1 , (4.38)

and, if |p1| > 0,
1
ν
β̃1 ≤ β̃ν ≤ β̃1 . (4.39)

Moreover, if

max
1≤i≤m

γ−1
i λi ≤ 2− min

1≤i≤m
γ−1
i λi (4.40)

let

α =
∑m

i=2 γ
−1
i λ2

i |pi|2(
γ−1

1 λ1

)2∑m
i=1 γi|pi|2

,

and, if |p1| > 0,

β =
m∑
i=2

γ−1
i λ2

i |pi|2

γ−1
1 λ2

1|p1|2
.

One has (
2− ω

2ν

)2

α ≤ α̃ν ≤ α , (4.41)

and, if |p1| > 0,
2− ω

2ν
β ≤ β̃ν ≤ β . (4.42)

where ω = max1≤i≤m γ
−1
i λi.

Further, letting

φ = arccos

(
|p1|√∑m
i=1 |pi|2

)
,

one has, for any µ such that |1− γ−1
i λi| ≤ µ, i = 2, ...,m

(1− µ)2 min2≤i≤m γi
max1≤i≤m γi

(
sinφ
γ−1

1 λ1

)2

≤ α ≤ ω2 max2≤i≤m γi
min1≤i≤m γi

(
sinφ
γ−1

1 λ1

)2

, (4.43)
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and, if |p1| > 0,

(1− µ)2 min2≤i≤m γi
γ1

(
tanφ
γ−1

1 λ1

)2

≤ β ≤ ω2 max2≤i≤m γi
γ1

(
tanφ
γ−1

1 λ1

)2

. (4.44)

Proof. First, observe that we have

1− λiσ(1)
i = (1− γ−1

i λi)2 , i = 1, ...,m ,

and, hence, the assumed ordering is equivalent to λ1σ
(1)
1 ≤ λ2σ

(1)
2 ≤ · · · ≤ λmσ

(1)
m .

Moreover, when (4.40) holds, one also has γ−1
1 λ1 = min1≤i≤m γ

−1
i λi. We also note that

it is sufficient to prove inequalities (4.41) and (4.42) for ν = 1, the general case following

from (4.38) and (4.39), respectively.

Next, observe that

σ
(ν)
i

σ
(1)
i

=
1− (1− γ−1

i λi)2ν

1− (1− γ−1
i λi)2

=
1− (1− s)ν

s
=

ν∑
k=0

(1− s)k (4.45)

with s = 1 − (1 − γ−1
i λi)2 = λiσ

(1)
i ∈ [0, 1], is a decreasing function of λiσ

(1)
i . Hence,

since λ1σ
(1)
1 ≤ λ2σ

(1)
2 ≤ · · · ≤ λmσ(1)

m , one has

σ
(ν)
i ≤

σ
(ν)
1 σ

(1)
i

σ
(1)
1

, i = 1, ...,m .

The right inequalities (4.38) and (4.39) straightforwardly follow.

Similarly, since
σ

(1)
i

γ−1
i

=
1− (1− γ−1

i λi)2

γ−1
i λi

= (2− γ−1
i λi) , (4.46)

the equality γ−1
1 λ1 = min1≤i≤m γ

−1
i λi implies

σ
(1)
i ≤

σ
(1)
1 γ−1

i

γ−1
1

, i = 1, ...,m ;

hence the right inequalities (4.41) and (4.42).

Next, from
σ

(ν)
i

σ
(1)
i

=
ν−1∑
k=0

(1− γ−1
i λi)2k

we conclude

1 ≤
σ

(ν)
i

σ
(1)
i

≤ ν ;
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hence the left inequalities (4.38) and (4.39). Similarly, from (4.46) we have

2− ω ≤
σ

(1)
i

γ−1
i

≤ 2

which in turn implies the left inequalities (4.41) and (4.42).

Finally, for the proof of (4.43) and (4.44) we first note that |1 − γ−1
i λi| ≤ µ, i =

2, ...,m and the definition ω = max1≤i≤m γ
−1
i λi imply 1− µ ≤ γ−1

i λi ≤ ω. Hence

(
1− µ
γ−1

1 λ1

)2 ∑m
i=2 γi|pi|2∑m
i=1 γi|pi|2

≤ α ≤
(

ω

γ−1
1 λ1

)2 ∑m
i=2 γi|pi|2∑m
i=1 γi|pi|2

,

and, if |p1| > 0,

(
1− µ
γ−1

1 λ1

)2 m∑
i=2

γi|pi|2

γ1|p1|2
≤ β ≤

(
ω

γ−1
1 λ1

)2 m∑
i=2

γi|pi|2

γ1|p1|2
.

The conclusion follows since

sin2 φ =
∑m

i=2 |pi|2∑m
i=1 |pi|2

and tan2 φ =
∑m

i=2 |pi|2

|p1|2
.

This theorem shows that, from a qualitative viewpoint, it is sufficient to analyze

α(k,j) and β(k,j), which involve only γ(k,j)
i , λ

(k,j)
i and p(k−1)

j . Further, if, as often arises,

the smoother is well conditioned, all γ(k,j)
i are approximately equal (they are all equal

for damped Jacobi smoothing). Then α̃
(k,j)
ν and β̃

(k,j)
ν , j < lk, behave essentially like(

sinφ(k,j)

γ
(k,j)
1

−1
λ
(k,j)
1

)2

and
(

tanφ(k,j)

γ(k,j)1
−1
λ
(k,j)
1

)2

, respectively, where φ(k,j) is the angle between

the eigenvector associated to λ(k,j)
1 and the range of the prolongation.

This allows to discuss the condition for having satisfactory two-grid convergence

and a satisfactory V-cycle convergence estimate via McCormick’s bound (4.10). Con-

sidering (4.17) and (4.18), only blocks for which λ̃
(k,j)
1 = σ

(k,j)
1 λ

(k,j)
1 is small have to

by analyzed carefully. This sounds logical: if all modes inside a block are efficiently

relaxed by the smoother, it does not matter that much how the restriction and prolon-

gation operate on these modes. Now, provided that the smoothing factor is bounded

away from 1, one will have nice two-grid convergence if and only if, for each block with

small γ(k,j)
1

−1
λ

(k,j)
1 , the quantity λ̃

(k,j)
1 β̃

(k,j)
ν is reasonably bounded above; that is, if

tanφ(k,j) ≤ c ·
(
γ

(k,j)
1

−1
λ

(k,j)
1

)1/2

. On the other hand, the condition is stronger for

having a nice V-cycle convergence estimate: this requires β̃(k,j)
ν to be bounded above;

that is, tanφ(k,j) ≤ c · γ(k,j)
1

−1
λ

(k,j)
1 .

Some heuristics present in the multigrid literature [18, p. 1573](see also [21, p. 4])

state: “Interpolation must be able to approximate an eigenvector with error bound
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proportional to the size of the associated eigenvalue”. Our results give a more precise

interpretation of such statements. For mere two-grid convergence the tangent of the

angle between the eigenvector and the range of the prolongation should be proportional

to the square root of the eigenvalue, whereas guaranteed V-cycle convergence requires

it be proportional to the eigenvalue.

4.5 Semi-positive definite problems and local Fourier anal-

ysis

In this section we consider Fourier analysis for symmetric semi-positive definite linear

systems. Such extension is motivated by local Fourier analysis (also called local mode

analysis) that has a wider scope than (rigorous) Fourier analysis. The main idea is

the assessment of the two-grid convergence or of the smoothing factor without taking

boundary conditions into account. In practice, such approach is often equivalent to the

use of periodic boundary conditions and therefore leads to linear systems with non-trivial

null space.

Another way to interpret local Fourier analysis is to consider it as a limit case of

(rigorous) Fourier analysis for SPD problems on grids of increasing size (with, thus,

decreasing influence of boundary conditions on estimated parameters). Now, we pre-

viously observed for the SPD case that the angle between the range of prolongation

and an eigenvector of A should be proportional to the size of the eigenvalue. In the

limit case of local Fourier analysis, the modes belonging to the null space N (A) of A

should therefore be interpolated exactly, which also corresponds to a common practice.

It then follows that null space components seemingly play no role in the convergence,

and hence that Fourier analysis may be carried out ignoring these modes. This, in-

deed, is the common practice when assessing the two-grid convergence factor (see, for

instance, [61, p.109], [68, p.107] and the references therein).

In Theorem 4.4 below we give theoretical foundation to this approach with respect

to V-cycle multigrid, showing that McCormick’s bound on the convergence rate can also

be computed ignoring singular modes, or, more precisely, restricting the minimum in

(4.12) to vectors belonging to the range of Ak. Since (4.12) is at the root of the further

analysis developed in Theorems 4.2 and 4.3, the application of the results in Section 4.4

to local mode analysis is then straightforward.

Now, to state our theorem, we need to extend our definition of the V-cycle multigrid

algorithm in Section 4.2 to Ak possibly singular. The only potential difficulty comes

in fact with the bottom level matrix A0 whose inverse is needed. In Theorem 4.4, we

assume that instead one uses any matrix B0 such that A0B0A0 = A0. Such matrices are

called {1}-inverse in [6], and one may check that if r0 ∈ R(A0), then A0B0r0 = r0. On
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the other hand, to generalize (4.12), we need the inverse of the restriction of Ak to its

range. The most convenient way to express it is to use the Moore-Penrose inverse A+
k

of Ak, since, if Ak = Xdiag(λi)XT , then A+
k = Xdiag(λ+

i )XT with

λ+
i =

{
λ−1
i if λi 6= 0 ,

0 otherwise.

The expression of A+
k is thus particularly simple when using the Fourier basis which

makes Ak diagonal.

Theorem 4.4. Let xn+1 = MG(b, A,xn, J) be the vector resulting from the application

of the multigrid algorithm with V-cycle at level J > 1, where A is symmetric semi-

positive definite, and, in case A0 is singular, where A−1
0 is exchanged for any matrix A(1)

0

such that A0A
(1)
0 A0 = A0. Assume that Pk , k = 0, . . . , J−1 , Ak , k = 0, . . . , J , and Rk ,

k = 1, . . . , J satisfy the general assumptions stated in Section 4.2 with ρ(I−R−1
k Ak) < 1

being replaced by ρ(I −R−1
k Ak) ≤ 1 , with (I −R−1

k Ak)z = λz for |λ| = 1 if and only if

z ∈ N (Ak) . Let PR(A),N (A) be the orthogonal projector onto the range of A.

If b ∈ R(A), then, for any solution x̃ to (4.1),

PR(A),N (A) (x̃− xn+1) = E
(J)
MG (x̃− xn) = E

(J)
MG PR(A),N (A) (x̃− xn)

for some matrix E(J)
MG satisfying

ρ(E(J)
MG) ≤ 1− min

1≤k≤J
δ̃

(ν)
k ,

with

δ̃
(ν)
k = min

vk∈R(Ak)

vTk N
(2ν)
k vk

vTk (A+
k − Pk−1A

+
k−1P

T
k−1)vk

. (4.47)

Proof. Let qk = dim(N (Ak)). Observe that, Ak being non-negative definite,

Ak−1 = P Tk−1AkPk−1 is non-negative definite with qk−1 ≤ qk. Without loss of generality,

we can express all the matrices using bases of Rnk , k = J, ..., 0 such that, when qk > 0,

the first qk canonical vectors span N (Ak). Hence, Ak admits a block representation

Ak =

(
Oqk,qk

ARRk

)
, (4.48)

with all but lower right blocks being empty if qk = 0.
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Similarly, we partition

Rk =

(
RNNk RNRk

RRNk RRRk

)
, N

(ν)
k =

N (ν)
k

NN
N

(ν)
k

NR

N
(ν)
k

RN
N

(ν)
k

RR

 , Pk−1 =

(
PNNk−1 PNRk−1

PRNk−1 PRRk−1

)
,

where all but lower right blocks of Rk, N
(ν)
k and Pk−1 become empty when qk = 0 , and

where PNNk−1 and PRNk−1 are empty when qk > 0 with qk−1 = 0. If qk > 0, there holds

Ak−1 = P Tk−1AkPk−1 =

(
PRNk−1

T
ARRk PRNk−1 PRNk−1

T
ARRk PRRk−1

PRRk−1
T
ARRk PRNk−1 PRRk−1

T
ARRk PRRk−1

)
.

Hence, in view of the form (4.48) and the fact thatARRk is SPD, one must have PRNk−1 = O.

It then follows that, for any nk × nk matrix

Bk−1 =

(
∗ ∗
∗ BRRk−1

)
,

one has

Pk−1Bk−1P
T
k−1 =

(
∗ ∗
∗ PRRk−1B

RR
k PRRk−1

T

)
, (4.49)

This latter relation also holds for qk = 0, the blocks denoted by a star ∗ being then

empty.

Now, xn+1 = MG(b, Ak,xn, k) may be expressed as

xn+1 = xn +BJ(b−Axn), (4.50)

where the matrix BJ is defined from the recursion

B0 = A
(1)
0

Bk = N
(2ν)
k − (I − N

(ν)
k Ak)Pk−1Bk−1P

T
k−1(I −Ak N

(ν)
k ) , k = 1, . . . , J

(see, e.g., [65, Section 5.1] ; B−1
k in this reference corresponds to Bk here).

Since there holds

I − N
(2ν)
k Ak =

Iqk ∗

I − N
(2ν)
k

RR
ARRk

 (4.51)

with all but lower right blocks being empty if qk = 0, letting

BJ =

(
∗ ∗
∗ BRRJ

)
,
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it follows from (4.49) that BRRJ may be computed from the recursion

BRRk = N
(2ν)
k

RR
− (I − N

(ν)
k

RR
ARRk )PRRk−1B

RR
k−1 P

RR
k−1

T
(I −ARRk N

(ν)
k

RR
) ,

k = 1, . . . , J .

On the other hand, when A0 is singular, A0B0A0 = A0 holds for A0 of the form (4.48)

if and only if BRR0 = ARR0
−1, whereas from (4.51) we deduce

I − N
(2ν)
k

RR
ARRk = (I − N

(ν)
k

RR
ARRk )2 .

Hence Ek = I −BRRk ARRk obeys the recursion

E0 = O

Ek = (I − N
(ν)
k

RR
ARRk )

(
I − PRRk−1(I − Ek−1) ARRk−1

−1
PRRk−1

T
ARRk

)
(I − N

(ν)
k

RR
ARRk ) ,

k = 1, 2, . . . , J .

similar to (4.4); that is, corresponding to a multigrid scheme satisfying all assumptions

of Theorem 4.1, which therefore implies

ρ(EJ) ≤ 1− max
1≤k≤J

δ
(ν)
k (4.52)

with

δ
(ν)
k = min

v∈Rnk−qk

vTNRRk v

vT (ARRk
−1 − PRRk−1 A

RR
k−1

−1
PRRk−1

T )v
.

Moreover, δ̃(ν)
k = δ

(ν)
k since

A+
k =

(
O

ARRk
−1

)

with all but lower right block being empty when qk = 0.

Finally, using (4.50) and the fact that b ∈ R(A), there holds

x̃− xn+1 = (I −BJA)(x̃− xn),

and hence

PR(A),N (A) (x̃− xn+1) =

(
O O

O I

)(
I ∗

I −BRRk ARRk

)
(x̃− xn)
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=

(
O O

O EJ

)
(x̃− xn)

=

(
O O

O EJ

)
PR(A),N (A) (x̃− xn) ,

which, together with (4.52), concludes the proof.

4.6 Examples

4.6.1 Usual prolongations in 2D

In this subsection we show how the conclusions of Theorems 4.2 and 4.3 can be used

to analyze usual prolongation operators presented in [68]. More precisely, we assess the

parameter2

tan2 φ(j) =
∑m

i=2 |(p(j))i|2

|(p(j))1|2
, (4.53)

that characterizes the quality of a prolongation, according to (4.44). Indeed, see Sec-

tion 4.4, if tanφ(j) ≤ c ·
(
γ

(j)
1

−1
λ

(j)
1

)1/2

, j = 1, ..., l, holds for not too large c, then

a smoothing factor bounded away from one guarantees optimal two-grid convergence,

whereas the condition tanφ(j) ≤ c · γ(j)
1

−1
λ

(j)
1 leads to optimal V-cycle multigrid con-

vergence. Since γ(j)
1 is often close to 1, it is thus critical to check the behavior of tanφ(j)

when λ
(j)
1 becomes close to 0.

Such a discussion presumes that the prolongation P (which fixes tanφ(j)) and the

coarse-grid matrix A (which determines λ(j)
i ) are both known. Here, we develop a slightly

different approach and, for various prolongation operators (taken from [68]), we indicate

conditions that the eigenvalues of a potential system matrix A should satisfy, when used

with such prolongations, in order to lead to optimal two- and multigrid algorithms.

Instead of index j, we use a couple (θ1,θ2) of angles (for two-dimensional problems),

adopting the notation of [68]. Although in the context of (rigorous) Fourier analysis θ1

and θ2 can take only a finite number of values (depending on the mesh-size assumed),

we follow here the common practice and perform computations allowing all values inside

a fixed interval (0, π).

Before we characterize in Table 4.1 various prolongations taken from Table 6.2 in [68],

we illustrate with bilinear prolongation how the corresponding results can be derived.

From Table 6.2 in [68] we learn that the Fourier symbol for bilinear prolongation is

(1 + cos(θ1))(1 + cos(θ2)). This means that for a block characterized by a couple (θ1, θ2)
2Here and in what follows we omit the grid number k, the discussion of this subsection does not

depend on the choice of a particular grid.
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we have (with elements ordered not necessarily according to (4.8))

p(θ1,θ2) =


(1 + cos(θ1))(1 + cos(θ2))

(1 + cos(θ1 + π))(1 + cos(θ2))

(1 + cos(θ1))(1 + cos(θ2 + π))

(1 + cos(θ1 + π))(1 + cos(θ2 + π))



= 4


(1− sin2(θ1/2))(1− sin2(θ2/2))

sin2(θ1/2) sin2(θ2/2)

(1− sin2(θ1/2)) sin2(θ2/2)

sin2(θ1/2)(1− sin2(θ2/2))

 . (4.54)

There, p(θ1,θ2) is one of the blocks (4.6) of P in the relevant Fourier basis. Now, small

values of tan2 φ(θ1,θ2) are possible when all but one entry of p(θ1,θ2) are small; that is,

when both θ1 and θ2 are close to 0 or π. Since vectors p(θ1,θ2), p(θ1+π,θ2), p(θ1,θ2+π) and

p(θ1+π,θ2+π) have same entries (ordered differently), in what follows we consider only

the situation when (θ1,θ2)→ (0, 0) (the same comment holds for other prolongations in

Table 4.1). Hence, for small θ1 and θ2,

p(θ1,θ2) =


O(1)

O
(
θ2

1

)
O
(
θ2

2

)
O
(
θ2

1θ
2
2

)

 ,

which, together with (4.53), gives, for the ordering satisfying (4.8) (when all γi are

bounded below), tan2 φ(θ1,θ2) = O
(
θ2

1 + θ2
2

)
. The same data is given in Table 4.1 for

other prolongations coming from Table 6.2 in [68]. If we indicate O (θη1 + θη2) in the

third column it means that optimal two-grid convergence based on an optimal smooth-

ing factor occurs if and only if the eigenvalues of the matrix tend to zero only for θ1

and θ2 approaching 0 or π, and not faster than O
(

(sinη θ1 + sinη θ2)1/2
)

, whereas guar-

anteed optimal V-cycle convergence requires the eigenvalue going to 0 not faster than

O (sinη θ1 + sinη θ2).

For example, consider any of the usual discretizations of an isotropic laplace oper-

ator on a uniform grid. The eigenvalues λ(θ1,θ2) satisfy the already observed symmetry

λ(θ1,θ2) = λ(θ1+π,θ2) = λ(θ1,θ2+π) = λ(θ1+π,θ2+π). Moreover, for 0 ≤ θ1, θ2 ≤ π/2, the

eigenvalue λ(θ1,θ2) becomes small only when (θ1, θ2) is close to (0, 0), behaving in it

neighborhood as O
(
θ1

2 + θ2
2
)
. In view of the results given in Table 4.1, and provided

that the smoother with bounded away from one smoothing factor is used, all considered

prolongations lead to an optimal two-grid cycle, and all but constant upwind prolonga-

tion are guaranteed optimal with V-cycle. Note that numerical experiments confirm the
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prolongation Fourier symbol tan2 φ(θ1,θ2)

bilinear (1 + cos(θ1))(1 + cos(θ1)) O
(
θ21 + θ22

)
bicubic (8 + 9 cos(θ1)− cos(3θ1)) O

(
θ41 + θ42

)
×(8 + 9 cos(θ2)− cos(3θ2))

biquintic (128− 150 cos(θ1) + 25 cos(3θ1)− 3 cos(5θ1)) O
(
θ61 + θ62

)
×(128− 150 cos(θ2) + 25 cos(3θ2)− 3 cos(5θ2))

constant upwind (1 + exp(iθ1))(1 + exp(θ2)) O (θ1 + θ2)
seven point 1 + cos(θ1) + cos(θ2) + cos(θ1 − θ2) O

(
θ21 + θ22

)
Table 4.1: Various prolongations coming from Table 6.2 in [68], with asymptotical

behavior of tan2 φ(j) for small values of θ1 and θ2.

suboptimal behavior of the V-cycle in this case [41].

4.6.2 2D Poisson

In this subsection we illustrate quantitative aspects of the cascades of inequalities (4.32)

and (4.33). We consider the linear system resulting from the bilinear finite element

discretization of the two-dimensional Poisson problem

−∆u = f in Ω = (0, 1)× (0, 1)

u = 0 in ∂Ω

on a uniform grid of mesh size h = 1/MJ in both directions. The matrix corresponds

then to the following nine point stencil
−1 −1 −1

−1 8 −1

−1 −1 −1

 . (4.55)

Up to some scaling factor, this is also the stencil obtained with 9-point finite difference

discretization. We assume MJ = 2JM0 for some integer M0 , allowing J steps of regular

geometric coarsening. We consider bilinear prolongation

Pk =

(
Jk

Ink

)

where Jk corresponds to the natural interpolation associated with bilinear finite element

basis functions. The restriction P Tk corresponds then to “full weighting”, as defined in,

e.g. [61] 3. We consider damped Jacobi smoothing: Rk = ω−1
Jacdiag(Ak) , with ωJac = 2/3;

that is, such that ω = maxλ∈σ(R−1
k Ak) λ = 1. Since the stencil is preserved on all levels,

3up to some scaling factor; the scalings of the prolongation and restriction are unimportant when
using coarse-grid matrices of the Galerkin type.
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it is sufficient to consider only two successive grids; to alleviate notation, we therefore

let N = N
(ν)
k , A = Ak , P = Pk−1 , Ac = Ak−1 = P TAP and πA = πAk = PA−1

c P TA .

Now, we asses µ and α̃ν using (rigorous) Fourier analysis. The eigenvectors of A are,

for m, l = 1, . . . ,M − 1 , the functions

u
(M)
m,l = sin(mπx) sin(lπy) (4.56)

evaluated at the grid points. The eigenvalue corresponding to u(M)
m,l is

λ
(M)
m,l = 4(3sm + 3sl − 4smsl) (4.57)

where

sm = sin2(θ(m)) , sl = sin2(θ(l)) . (4.58)

with

θ(m) =
mπ

2M
.

The prolongation P satisfies (see, e.g., [61, p. 87])

P T


u

(M)
m,l

u
(M)
M−m,M−l

−u(M)
M−m,l

−u(M)
m,M−l


= 4


(1− sm)(1− sl)

smsl

sm(1− sl)
(1− sm)sl


u

(M/2)
m,l

for 1 ≤ m, l ≤ M/2 − 1 , with P Tu
(M)
m,l = 0 for m = M/2 or l = M/2 . Hence, P has a

block structure (4.6) with blocks

pTm,l = 4
(

(1− sm)(1− sl) smsl sm(1− sl) (1− sm)sl
)
,

which also correspond to the bilinear prolongation (4.54) considered previously. A and

N (2ν) are block diagonal like in (4.7) with diagonal blocks given by, respectively,

Λm,l = diag
(
λ

(M)
m,l , λ

(M)
M−m,M−l , λ

(M)
m,M−l , λ

(M)
M−m,l

)
,

Σ(ν)
m,l = 64 diag

{1− (1− λ(M)
c,s /12)ν

λ
(M)
c,s

}
(c,s)=(m,l),(M−m,M−l),(m,M−l),(M−m,l)

 .

To assess α̃ν via (4.41) and to evaluate the smoothing factor µ, we have to determine

the smallest eigenvalue of the block (m, l). We restrict ourself to l,m ≤M/2, for which

it is given by λm,l = Λm,l(1, 1). The results are extended to other couples (m, l), noting

that the blocks (l,m), (M − l,m), (l,M − m) and (M − l,M − m) lead to the same

set of eigenvalues for Λm,l with same corresponding entries of the prolongation vector
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ν µ2ν ρ(E(J)
TG) ρ(E(J)

MG) 1− δ(ν) δ(1)
−1−1

δ(1)
−1−1+ν

µ2+α
µ2+α+ν(1−µ2)

1 0.25 0.25 0.271 0.333 0.333 0.625
2 0.0625 0.083 0.121 0.2 0.2 0.455

Table 4.2: The estimates of different terms involved in inequalities (4.33) for ν = 1, 2.
Two-grid and V-cycle convergence factors are assessed considering J = 7 and M0 = 2.

pm,l, and hence with same contributions to µ and α̃1. Transcribing the definitions (4.9),

(4.28) and (4.30) for l,m ≤M/2, we have

µ = max
1≤m,l≤M/2

max
i=1,...,4 if l=M/2 or m=M/2

i=2,...,4 if l,m<M/2

∣∣∣∣1− Λm,l(i, i)
12

∣∣∣∣ , (4.59)

α̃ν = max
1≤m,l≤M/2−1

∑4
i=2(pm,l)2

iΛm,l(i, i)
2Σ(ν)

m,l(i, i)

(Λm,l(1, 1)Σ(ν)
m,l(1, 1))2

∑4
i=1(pm,l)2

i (Σ
(ν)
m,l(i, i))

−1
, (4.60)

(4.61)

From (4.59) one finds

µ ≤ 1
2
.

On the other hand, Theorem 4.3 applies, yielding

α̃ν ≤ α , (4.62)

with

α = max
m,l≤M/2−1

∑4
i=2(pm,l)2

iΛm,l(i, i)
2

Λm,l(1, 1)2
∑4

i=1(pm,l)2
i

, (4.63)

We show in Appendix A that

α ≤ 1 , (4.64)

whereas we show in Chapter 2 that, for this model problem,

δ(ν)−1 ≤ 1 +
1

2ν
, ν = 1, 2.

We are then able to report in Table 4.2 all quantities involved in inequalities (4.33),

using numerically computed values for ρ(E(J)
TG) and ρ(E(J)

MG), and approximating α̃ν with

its upper bound 1 (from (4.62), (4.64)); numerical investigation reveal that the latter is

relatively accurate since one has effectively α̃1 = 1 whereas, for ν > 1, α̃ν is apparently

bounded below by 0.75. As a consequence, the rightmost upper bound (4.33) is in this

example sharper than the rightmost upper bound (4.32), and we display only the former.
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Figure 4.1: The dependence of ρ(E(J)
MG) (◦) and ρ(ETG) (×), as well as leftmost lower

bound (4.33) (∗) and rightmost upper bound (4.33) (+) , on the number ν of smoothing
steps.

The dependence of these quantities with respect to ν is further investigated on Fig-

ure 4.1. One sees that the O(ν−1) behavior of the upper bound (4.33) provides a more

realistic estimate than the lower bound µ2ν based on the smoothing factor only.

4.7 Conclusion

We have presented two cascades of inequalities (4.32) and (4.33) witch determine in-

tervals containing simultaneously the bound of McCormick, the V-cycle multigrid con-

vergence factor and the two-grid convergence factor on the finest level. The intervals’

limits depend on µ(k), which usually coincides with the smoothing factor on level k,

and on the additional quantity α̃
(k)
ν , which can be further bounded by a more simple

parameter α(k). This latter parameter depends essentially on the quotient of the sine

of the angle φ between prolongation and the corresponding smooth eigenvalue of Ak;

if it is small, the aforementioned intervals are narrow, indicating that the two-grid and

V-cycle convergence factors are both well reflected by the smoothing factor.

Assuming µ(k) reasonably small, we have further shown that the two-grid convergence

is optimal if and only if the cosine of φ has a bound proportional to the square root

of the corresponding eigenvalue of Ak, whereas McCormick bound predicts an optimal

V-cycle convergence if and only if cosine of φ has a bound proportional to the eigenvalue

itself. Using this observation, we have clarified the heuristics in the multigrid literature

which use such proportionality as a guideline in the design of multigrid solvers.

Finally, we have extended our analysis to positive semi-definite systems, as can arise

when using local Fourier analysis. In particular, if the system is compatible, we have

shown that the kernel modes of the problem can be ignored in the multilevel setting.
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Appendix A

Here we sketch the proof of (4.64), or, equivalently, of

4∑
i=2

(pm,l)
2
i Λm,l(i, i)2 − Λm,l(1, 1)2

4∑
i=1

(pm,l)
2
i ≤ 0 , 1 ≤ l,m ≤M/2− 1 . (4.65)

Expressing (4.65) with respect to sl and sm one may check (using, for instance, computer

algebra tools) that

1
256

(
4∑
i=2

(pm,l)
2
i Λm,l(i, i)2 − Λm,l(1, 1)2

4∑
i=1

(pm,l)
2
i

)
=−18slsm−172s2

l s
2
m+54(s2

l sm+sls2
m)−9(s4

l +s4
m)+194(s3

l s
2
m+s2

l s
3
m)−250s3

l s
3
m

−89(s4
l s

2
m+s2

l s
4
m)+88(s4

l s
3
m+s3

l s
4
m)−16s4

l s
4
m−54(s3

l sm+s3
msl)+42(s4

l sm+s4
msl)

=−s4
l

(
(3−7sm)2+36s2

m(1−2sm)+4s2
m(1−2sm)2

)
−s4

m

(
(3−7sl)2+36s2

l (1−2sl)+ v4s2
l (1−2sl)2

)
−2slsm(9+86slsm−27(sl+sm)+27(s2

l +s2
m)−97(s2

l sm+sls2
m)+125s2

l s
2
m−8s3

l s
3
m)

and the proof is done if we show that, for 0 ≤ sm, sl ≤ 1/2, one has

g(sl, sm) = 9+86slsm−27(sl+sm)+27(s2
l +s2

m)−97(s2
l sm+sls2

m)+125s2
l s

2
m−8s3

l s
3
m ≥ 0 .

This inequality follows from

g(sl, sm) = f(sl, sm) +
1
2
slsm +

97
2
slsm(1− 2sl)(1− 2sm) + 2s2

l s
2
m(1− 4slsm)

provided that

f(sl, sm) = (27− 72s2
l )s

2
m + (37sl − 27)sm + 9 + 27s2

l − 27sl ≥ 0 . (4.66)

Since the discriminant of this quadratic equation, namely

D(sl) = 7668s4
l − 7668s3

l + 1009s2
l + 918sl − 243 ,

is negative for 0 ≤ sl ≤ 1/2 , and since in the same equation the factor 27− 72s2
l before

s2
m is positive for the same interval, the inequality (4.66) and, hence, the result (4.65),

follow.



Chapter 5
Algebraic analysis of aggregation-based multigrid

Summary

Convergence analysis of two-grid methods based on coarsening by (unsmoothed) aggre-

gation is presented. For diagonally dominant symmetric (M-)matrices, it is shown that

the analysis can be conducted locally; that is, the convergence factor can be bounded

above by computing separately for each aggregate a parameter which in some sense

measures its quality. The procedure is purely algebraic and can be used to control a

posteriori the quality of automatic coarsening algorithms. Assuming the aggregation

pattern sufficiently regular, it is further shown that the resulting bound is asymptoti-

cally sharp for a large class of elliptic boundary value problems, including problems with

variable and discontinuous coefficients. In particular, the analysis of typical examples

shows that the convergence rate is insensitive to discontinuities under some reasonable

assumptions on the aggregation scheme.

5.1 Introduction

We consider multigrid methods [61,27,67] for solving large sparse n× n linear systems

Ax = b (5.1)

with symmetric positive definite (SPD) system matrix A. Multigrid methods are based

on the recursive use of a two-grid scheme. A basic two-grid method combines the action

of a smoother, often a simple iterative method, and a coarse grid correction, which

corresponds to the solution of the residual equations on a coarser grid. The convergence

depends on the interplay between these two components and, when simple smoothers are

used, it relies essentially on the coarsening ; that is, on the way the fine grid equations

are approximated by the coarse system.

83
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Here we consider coarsening by aggregation. In such schemes, the fine grid unknowns

are grouped into disjoint sets, and each set is associated with a unique coarse grid

unknown. Piecewise constant prolongation is then a common choice, which means that

the solution of the residual equation computed on the coarse grid is transferred back to

the fine grid by assigning the value of a given coarse variable to all fine grid variables

associated with it. This makes the coarse grid matrix easy to compute and usually as

sparse as the original fine grid matrix.

Aggregation schemes are not new and trace back to [11, 20]. They did not receive

much attention till recently because of the difficulty to obtain grid independent conver-

gence on their basis [59, p.p. 522–524], see also [69, p. 663], where an accurate three

grid analysis is presented for the model Poisson problem. This may be related to the

fact that piecewise constant prolongation does not correspond to an interpolation which

is at least first order accurate, as required by the standard multigrid theory [27, Sections

3.5 and 6.3.2].

That is why aggregation is often associated with smoothed aggregation, a procedure

in which a tentative piecewise constant prolongation operator is smoothed [63,64]. This

allows to develop an appropriate convergence theory, but, at the same time, some of

the attractive features of pure (unsmoothed) aggregation are lost, since the coarse grid

matrices are less sparse and more costly to compute.

In this chapter, we investigate such pure aggregation schemes based on piecewise

constant prolongation. They may indeed lead to two-grid methods with grid independent

convergence properties, as recently shown in [41] for model constant coefficient discrete

PDE problems. There is no contradiction with the above quoted results, whose focus is

on the convergence properties of two-grid methods used recursively in so-called V-cycle

scheme [61]. Indeed, aggregation based multigrid methods tend to scale poorly with

the number of levels when using simple V- or even W-cycles, even though the two-grid

scheme converges nicely [41, 48]. However, this may be cured using more sophisticated

K-cycles, in which Krylov subspace acceleration is used at each level [49]. It is also

possible to improve scalability by increasing the number of smoothing steps on coarser

levels [32].

Now, the (Fourier) analysis developed in [41] only addresses constant coefficient

problems with artificial (periodic) boundary conditions. Although there are numerical

evidences that aggregation based methods can be robust in presence of varying or dis-

continuous coefficients [48], this remains yet to be proved. On the other hand, it is also

lacking an analysis which would not only allow to assess a given aggregation scheme for

a problem at hand, but could also serve as a guideline in the development of aggregation

algorithms, in much the same way the coarsening strategies used in classical AMG meth-

ods may be derived from the objective to keep reasonably bounded some convergence

measure of the resulting two-grid scheme [15,53,58,59].



Algebraic analysis of aggregation-based multigrid 85

In this chapter, we fill these gaps by developing a convergence analysis which relates

the global convergence to “local” quantities associated with each aggregate. This analy-

sis is based on a general algebraic result which requires only the knowledge of a splitting

of the system matrix A satisfying some given properties, and we show how this splitting

can be constructed in a systematic way when the matrix is diagonally dominant. Fur-

ther, the needed local quantities are easy to compute solving an eigenvalue problem of

the size of the aggregate. They can also be assessed analytically in a number of cases.

This assessment reveals that the convergence is to a large extent insensitive to variations

or discontinuities in PDE coefficients if one can introduce some reasonable assumptions

on the aggregation scheme.

Moreover, as seen below, the bounds deduced in this way can often be shown asymp-

totically sharp provided that one assumes a simplified smoothing scheme with only one

damped Jacobi pre- or post-smoothing step. Hence, we do not only develop a qualita-

tive analysis, but also a quantitative one, complementary to Fourier analysis: this latter

allows to assess the benefit of more smoothing steps or increasing smoother quality, but

is restricted to constant coefficient problems on rectangular grids.

Returning to a qualitative viewpoint, it should be mentioned that, since the bound

depends only on local quantities, it is independent of the global properties of the under-

lying PDE such as (full) elliptic regularity. For instance, estimates derived in Section 5.4

do not need the assumption that the underlying domain is convex, and, in fact, allow

re-entering corners.

The presented results share some features with the analysis of element-based al-

gebraic multigrid (AMGe) approaches, as developed in [18, 21, 31, 33]. Convergence

estimates presented there are also local and can be used to guide the coarsening pro-

cess. The AMGe coarsening itself however differs substantially from aggregation. It

applies only to finite element problems and requires the knowledge of element matri-

ces, whereas the associated prolongation is denser than the basic piecewise constant

prolongation considered here.

The remainder of this chapter is organized as follows. The general framework of

aggregation-based two-grid methods is introduced in Section 5.2. The algebraic analysis

is developed in Section 5.3, and illustrated in Sections 5.4 and 5.5 on PDE problems

with, respectively, continuous and discontinuous coefficients. Concluding remarks are

given in Section 5.6.

5.2 Aggregation-based two-grid schemes

The coarsening procedure is based on the agglomeration of the unknowns of the system

(5.1) into nc non-empty disjoint sets called aggregates. The size of the k-th aggregate

is denoted by n(k) > 0. Note that some aggregation procedures (e.g., [48]) leave part
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of the unknowns outside the coarsening process, for instance because the corresponding

row is strongly dominated by its diagonal element. As will be seen below, our analysis

gives theoretical support to this approach. Therefore, besides the nc regular aggregates

we define the (pseudo) 0-th aggregate as the (possibly empty) set of n(0) unknowns that

are left outside the coarsening process. For the ease of presentation, and without loss of

generality, we assume the ordering of the unknowns such that those belonging to (k+1)-

th aggregate have higher indices that those belonging to k-th aggregate, k = 0, ..., nc−1.

The regular aggregates are the variables of the next (coarse) level in the multigrid

hierarchy. Once they are defined, the n× nc prolongation matrix is given by

(P )ij =

{
1 if i belongs to j-th aggregate , j = 1, ..., nc
0 otherwise .

(5.2)

Hence, setting 1m = (1 1 · · · 1)T , with m being the vector size, we have

P =



0 0 · · · 0

1n(1)

1n(2)

. . .

1n(nc)


. (5.3)

In what follows, we assume a slightly more general form of (5.3)

P =



0 0 · · · 0

p(1)

p(2)

. . .

p(nc)


(5.4)

with p(k) being a vector of size n(k). We shall see, however, that for the considered

examples the choice p(k) = 1n(k) is often the best (or even the only reasonable) choice.

Once the prolongation P is known, the nc×n restriction matrix is set to its transpose

and the nc × nc coarse grid matrix is given by the Galerkin formula Ac = P TAP . In

order to complete the definition of a two-grid scheme, one also needs to specify the pre-

and post-smoother matrices R1, R2, as well as the number ν1 and ν2 of pre- and post-

smoothing steps, respectively. The iteration matrix ETG of the two-grid cycle is then

given by

ETG = (I −R−1
2 A)ν2(I − P TA−1

c PA)(I −R−1
1 A)ν1 . (5.5)

The main objective of this chapter is the analysis of its spectral radius ρ (ETG) (that

is, its largest eigenvalue in modulus), which governs the convergence of the two-grid
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scheme.

It is often convenient to define a “global” smoother X via the relation

I −X−1A = (I −R−1
1 A)ν1(I −R−1

2 A)ν2 . (5.6)

X has the same effect in one iteration as ν2 steps of post-smoothing followed by ν1 steps

of pre-smoothing. In what follows, we assume that X is SPD, which does not necessarily

requires the symmetry of R1 and R2.

5.3 Algebraic analysis

The starting point of our analysis is a notorious identity for the two-grid convergence

rate introduced in [23, Theorem 4.3]. We recall it up to a slight generalization in

Theorem 5.1 below. The generalization, that is based on the results in [44], allows for

nonsymmetric smoothing scheme, e.g., ν1 = 1 and ν2 = 0. It is somehow important

because the parameter µD for D = diag(A), which is investigated in the remainder of

this chapter, appears then directly connected to the convergence factor of a simplified

two-grid scheme with only 1 pre- or post-smoothing step.

Theorem 5.1. Let A be an n × n SPD matrix and let P be an n × nc matrix of rank

nc < n. Let R1, ν1 and R2, ν2 be such that X, defined by (5.6), is an n×n SPD matrix

and let ETG be the two-grid iteration matrix defined by (5.5).

Then, setting πX = P (P TXP )−1P TX, we have

ρ(ETG) = max
(
λmax(X−1A)− 1, 1− 1

µX

)
, (5.7)

where

µX = max
v∈Rn\{0}

vTX(I − πX)v
vTAv

.

Moreover, for any n× n SPD matrix D, setting πD = P (P TDP )−1P TD and

µD = max
v∈Rn\{0}

vTD(I − πD)v
vTAv

,

there holds

µX ≤
(

max
v∈Rn\{0}

vTXv
vTDv

)
µD . (5.8)

In particular, if R1 = R2 = ω−1D with ω−1 ≥ λmax(D−1A), one has

ρ(ETG) = 1− 1
µX

, (5.9)
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with

µX ≤ ω−1 µD , (5.10)

where equality is reached when ν1 + ν2 = 1.

Proof. The equality (5.7) is a direct consequence of [44, Theorem 2.1 and Corol-

lary 2.1], combined with the assumptions that A and X are SPD, which implies

max
v∈Rn\{0}

vTX(I − πX)v
vTAv

= λmax

(
A−1/2X(I − πX)A−1/2

)
= λmax

(
A−1X(I − πX)

)
.

The inequality (5.8) follows from Corollary 2.2 in [44], setting in this latter Y = D,

LY = D1/2 and Q = πD.

To prove (5.9), observe that ω−1 ≥ λmax(D−1A) implies, together with (5.6),

λmax(X−1A) ≤ 1. Hence (5.7) gives (5.9) since it is known by [44, Theorem 2.1] that

µX ≥ 1.

The inequality (5.10) follows from (5.8) combined with

max
v∈Rn\{0}

vTXv
vTDv

= ω−1 max
v∈Rn\{0}

vTωD−1v
vTX−1v

= ω−1 max
v∈Rn\{0}

vTv − vT (I − ωA1/2D−1A1/2)v
vTv − vT (I −A1/2X−1A1/2)v

≤ ω−1 ,

where the last inequality holds because I − A1/2X−1A1/2 = (I − ωA1/2D−1A1/2)ν1+ν2 .

Eventually, when ν1 +ν2 = 1, one has X = ω−1D, which implies X(I−πX) = ω−1D(I−
πD), and, hence, that (5.10) is an equality.

When D is chosen independently of P , the first factor in the right hand side of (5.8)

depends only on the smoothing scheme. If R1 = RT2 = R and ν1 = ν2 = ν, setting

S =
(
I −R−1A

)ν , one has further

vTXv
vTDv

≤ σ−1 ∀v ∈ Rn\{0} ⇐⇒ ||Sv||2A ≤ ||v||2A − σ||v||2AD−1A ∀v ∈ Rn .

Hence, when D = diag(A) (the choice that is privileged in the rest of this work) this

quantity is nothing but the inverse of the smoothing factor in Ruge-Stüben analysis [59].

On the other hand, the second factor in the right hand side of (5.8) depends on P but

not on X, and keeping it bounded amounts to satisfying an approximation property.

Now, our analysis is based on the splitting of A as

A = Ab +Ar , (5.11)
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where Ab and Ar are both symmetric nonnegative definite and Ab is block diagonal:

Ab =


A(0)

A(1)

. . .

A(nc)

 , (5.12)

where A(k), k = 0, ..., nc, is of size n(k) × n(k).

As an example, consider a symmetric diagonally dominant matrix A with positive

diagonal entries (in particular, if all off-diagonal entries are nonpositive, the matrix is

an M -matrix). The matrices A(k), k = 0, ..., nc can be constructed by restricting the

matrix A to the unknowns belonging to the k-th aggregate and then by subtracting the

corresponding contribution C(k) = diag(ci) from its diagonal, in order to keep

Ar =


C(0) ∗ · · · ∗
∗ C(1) · · · ∗
...

...
. . .

...

∗ ∗ · · · C(nc)

 (5.13)

diagonally dominant, and, hence, nonnegative definite. Since A is diagonally dominant,

the contribution subtracted from the diagonal of each A(k) can be such that either each

row of Ab is weakly diagonally dominant; that is

(Ab)jj −
n∑
i=1
i 6=j

|(Ab)ij | = 0, j = 1, ..., n ; (5.14)

or such that each row of Ar is weakly diagonally dominant; that is

(Ar)jj −
n∑
i=1
i 6=j

|(Ar)ij | = 0, j = 1, ..., n ; (5.15)

or something in between; that is

(|(A)jj | −
n∑
i=1
i 6=j

|(A)ij |) +
n∑
i=1
i 6=j

|(Ab)ij | ≥ (Ab)jj ≥
n∑
i=1
i 6=j

|(Ab)ij |, j = 1, ..., n . (5.16)

Once the splitting is known, the following theorem allows to estimate the “global”

approximation property constant µD by means of “local” quantities µ(k)
D , k = 0, ..., nc.

Because each µ(k)
D corresponds to a particular aggregate k, it may be seen as a measure

of this aggregate’s quality.
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Theorem 5.2. Let A = Ab + Ar be an n × n SPD matrix, with Ab and Ar symmetric

nonnegative definite and Ab having the block-diagonal form (5.12). Let P be an n× nc
matrix of rank nc < n and of the form (5.4). Let

D =


D(0)

D(1)

. . .

D(nc)

 (5.17)

be an n× n SPD matrix, set πD = P (P TDP )−1P TD and

µD = max
v∈Rn\{0}

vTD(I − πD)v
vTAv

. (5.18)

Letting

µ
(0)
D =


0 if n(0) = 0

sup
v(0)∈Rn(0)\N (A(0))

v(0) T D(0)v(0)

v(0) T A(0)v(0)
if n(0) > 0

and, for k = 1, ..., nc,

µ
(k)
D =


0 if n(k) = 1

sup
v(k)∈Rn(k)\N (A(k))

v(k) T D(k)(I − π(k)
D )v(k)

v(k) T A(k)v(k)
if n(k) > 1 ,

(5.19)

where

π
(k)
D = p(k)(p(k) T D(k)p(k))−1 p(k) T D(k) , (5.20)

there holds

µD ≤ max
k=0,...,nc

µ
(k)
D . (5.21)

Moreover, µ(0)
D < ∞ if and only if n(0) = 0 or A(0) is SPD, and, for k = 1, ..., nc,

µ
(k)
D <∞ if and only if N (A(k)) ⊂ span

{
p(k)

}
, with, in the latter case,

µ
(k)
D =


0 if n(k) = 1

max
v(k)∈R(A(k))\{0}

v(k) T D(k)(I − π(k)
D )v(k)

v(k) T A(k)v(k)
if n(k) > 1 .

(5.22)

Proof. We first prove the if and only if result for k = 1, ..., nc, the case k = 0 being

trivial. The if statement assumes N (A(k)) ⊂ span
{
p(k)

}
which means that either

N (A(k)) = {0} or N (A(k)) = span
{
p(k)

}
. In the former case the supremum in (5.19)

becomes a maximum over Rn(k)\{0} = R(A(k))\{0}, hence, (5.22) and µ(k)
D <∞. In the

latter case, decomposing any vector that does not belong to N (A(k)) as v = αp(k) + w,
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w ∈ R(A(k))\{0}, and using D(k)(I − π(k)
D )p(k) = (D(k)(I − π(k)

D ))Tp(k) = 0, we have

µ
(k)
D = sup

v∈Rn(k)\N (A(k))

vTD(k)(I − π(k)
D )v

vTA(k)v
= max

w∈R(A(k))\{0}

wTD(k)(I − π(k)
D )w

wTA(k)w
,

leading to the same conclusions. The only if statement is proved assuming N (A(k)) *
span

{
p(k)

}
and showing that µ

(k)
D = ∞. Indeed, taking v = αu + w with w ∈

N (A(k))\span
{
p(k)

}
(exists by assumption) and u ∈ R(A(k)) leads to

µ
(k)
D = sup

α∈R\{0}

|wTD(k)(I − π(k)
D )w + 2αuTD(k)(I − π(k)

D )w + α2uTD(k)(I − π(k)
D )u|

α2uTA(k)u
.

Since wTD(k)(I − π(k)
D )w 6= 0 by construction of w, this last expression is unbounded

for α→ 0.

We now prove (5.21). Note that this inequality is obvious when µ
(k)
D = ∞ for at

least one k. Hence, without loss of generality we may assume µ(k)
D finite for k = 0, ..., nc.

Moreover, since nc < n, there holds µD > 0.

Now, observe that

D(I − πD) =


D(0)

D(1)(I − π(1)
D )

. . .

D(nc)(I − π(nc)
D )

 (5.23)

and, hence,

µD = max
v∈Rn\{0}

vTD(I − πD)v
vTAv

= max
v∈Rn\{0}

vTD(I − πD)v
vTAbv + vTArv

= max
v∈Rn\{0}

∑
k=1,...,nc

v(k) T D(k)(I − π(k)
D )v(k) + v(0) T D(0)v(0)∑

k=0,...,nc
v(k) T A(k)v(k) + vTArv

. (5.24)

Let v∗ = (v(0)
∗

T
v(1)
∗

T
· · · v(nc)

∗
T

)T be the vector that realizes this maximum. Notice

that
∑

k=0,...,nc
v(k)
∗

T
A(k)v(k)

∗ > 0. Indeed, because of the boundness of µ(k)
D , k =

0, ..., nc, the equality
∑

k=0,...,nc
v(k)
∗

T
A(k)v(k)

∗ = 0 would imply a zero numerator in the

right hand side of (5.24), whereas, since A is SPD, vT∗ Arv∗ > 0, which would further

lead to µD = 0. This latter contradicts our assumption nc < n.

Next, since µD is finite, as shown above, v(k)
∗ ∈ N (A(k)) implies

v(k)
∗

T
D(k)(I − π(k)

D )v(k)
∗ = 0 .
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Therefore, since π(k)
D = I when n(k) = 1 (entailing D(k)(I − π(k)

D ) = 0)

µD =

∑
k=1,...,nc

v(k)
∗

T
D(k)(I − π(k)

D )v(k)
∗ + v(0)

∗
T
D(0)v(0)

∗∑
k=0,...,nc

v(k)
∗

T
A(k)v(k)

∗ + vT∗ Arv∗

≤
∑

k=1,...,nc
v(k)
∗

T
D(k)(I − π(k)

D )v(k)
∗ + v(0)

∗
T
D(0)v(0)

∗∑
k=0,...,nc

v(k)
∗

T
A(k)v(k)

∗

≤ max
k=0,...,nc

v
(k)
∗ /∈N (A(k))

v(k)
∗

T
D(k)(I − π(k)

D )v(k)
∗

v(k)
∗

T
A(k)v(k)

∗

≤ max
k=0,...,nc

µ
(k)
D .

A practical consequence of this theorem is to show that nodes for which the corre-

sponding row is strongly dominated by its diagonal element may be kept outside the

aggregation process by putting them into the (pseudo) 0-th aggregate. The proposition

below presents a simple estimate of the pseudo aggregate’s quality based on diagonal

dominance excess of corresponding rows.

Proposition 5.1. Assume that A is diagonally dominant, that the splitting A = Ab+Ar
satisfies (5.15) for j = 1, ..., nc and that D(0) = diag

{
(A)ii|i = 1, ..., n(0)

}
. If n(0) > 0,

one has

µ
(0)
D = max

v∈Rn(0)

vTD(0)v
vTA(0)v

≤ max
i=1,...,nc

(A)ii
2(A)ii −

∑n
j=1 |(A)ij |

. (5.25)

Proof. Set ηi = 2(A)ii −
∑n

j=1 |(A)ij | and note that if ηi = 0 at least for one

i ≤ nc, the inequality is trivially satisfied. Otherwise, observing that A(0) ≥ diag(ηi),

the inequality (5.25) follows.

Regarding aggregates 1, ..., nc , it is clear that the value of µ(k)
D strongly depends on

p(k). In the theorem below we further indicate the scope of variation of the aggregate’s

quality if A(k) and D(k) are given, and determine the p(k) that leads to the best quality.

Theorem 5.3. Let A(k) and D(k) be, respectively, an n(k) × n(k) non-zero symmetric

nonnegative definite matrix and an n(k)× n(k) SPD matrix, with n(k) > 1. Let p(k) be a

non-zero vector of size n(k). Let

µ
(k)
D = sup

v∈Rn(k)\N (A(k))

vTD(k)(I − π(k)
D )v

vTA(k)v
, (5.26)

where π(k)
D = p(pTD(k)p)−1pTD(k) and let λ1 ≤ λ2 ≤ · · · ≤ λn(k) be the eigenvalues of

D(k)−1
A(k). Then,

λ−1
2 ≤ µ(k)

D ≤ λ
−1
1 . (5.27)
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Moreover, if

D(k)−1
A(k)p = λ1 p , (5.28)

then

µ
(k)
D =

1
λ2
, (5.29)

and, assuming µ(k)
D finite,

vTD(k)(I − π(k)
D )v = µ

(k)
D vTA(k)v v ∈ R(A(k))

if and only if

D(k)−1
A(k)v = λ2v with vTD(k)p = 0 . (5.30)

Proof. Note that the case µ(k)
D =∞ implies nonempty N (A(k)) and, hence, λ1 = 0.

The inequalities (5.27) are then trivially satisfied. Moreover, according to Theorem 5.2

we have then N (A(k)) * span {p}. Hence, if (5.28) holds, dim(N (A(k))) ≥ 2, which in

turn implies λ2 = 0 and, therefore, (5.29).

Now, consider µ
(k)
D < ∞ which, according to Theorem 5.2, implies N (A(k)) ⊂

span {p}, and, hence, λ2 > 0. If N (A(k)) is nonempty, then N (A(k)) = span {p} and

λ1 = 0, which in turn implies (5.28). Therefore, for all v ∈ R(A(k)), pTD(k)v = 0, and,

hence, π(k)
D v = 0. Then, according to the Theorem 5.2, we further have

µ
(k)
D = max

v∈R(A(k))\{0}

vTD(k)(I − π(k)
D )v

vTA(k)v
= max

v∈R(A(k))\{0}

vTD(k)v
vTA(k)v

= λ−1
2 .

In addition, a vector v reaches the maximum if and only if (5.30) holds.

Finally, we treat the case where N (A(k)) is empty and, hence, A(k) is invertible. Let

xi be the eigenvector of D(k)−1
A(k) associated with the eigenvalue λi. To prove the left

inequality (5.27) we set

v =

 x2 if pTD(k)x2 = 0

x1 −
(

pTD(k)x1

pTD(k)x2

)
x2 otherwise ,

and note that π(k)
D v = 0. Injecting such v 6= 0 into (5.26) we find

µ
(k)
D ≥

vTD(k)v
vTA(k)v

≥ λ−1
2 .

The right inequality (5.27) follows from

µ
(k)
D = max

v∈Rn(k)\{0}

vTD(k)(I − π(k)
D )v

vTA(k)v
≤ max

v∈Rn(k)\{0}

vTD(k)v
vTA(k)v

= λ−1
1 .
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Moreover, if p = x1, then xi, i = 1, ..., n(k) are also eigenvectors of A(k)−1
D(k)(I−π(k)

D )

with corresponding eigenvalues λ̃i such that λ̃1 = 0 and, for i > 1, λ̃i = λ−1
i . Since

µ
(k)
D is the smallest eigenvalue of A(k)−1

D(k)(I − π(k)
D ), (5.29) follows. Moreover, (5.30)

holds if and only if v is an eigenvector A(k)−1
D(k)(I−π(k)

D ) associated with λ−1
2 = µ

(k)
D ,

which is in turn equivalent to vTD(k)(I − π(k)
D )v = µ

(k)
D vTA(k)v .

By way of illustration, consider a symmetric diagonally dominant M -matrix and

assume that the splitting A = Ab + Ar is based on the rule (5.14). Then, each A(k)

is singular with its null space equal to span{1n(k)}. Theorem 5.2 then shows that one

has to use p(k) = 1n(k) to keep µ
(k)
D finite, in which case, by Theorem 5.3, µ(k)

D =

λ2(D(k)−1
A(k))

−1
. When the diagonal dominance is strict, the two side inequality

(5.16) indicates that there is some freedom in the choice of the diagonal entries of Ab,

and one may wonder how to exploit it at best. The following remarks give some clues

in this respect.

Remark 5.3.1 When A(k) is irreducible and diagonally dominant with nonpositive off-

diagonal entries, and when D(k) is a diagonal matrix, D(k)−1
A(k) is an irreducible

M -matrix and, hence, an eigenvector whose components are all positive (e.g., 1n(k)) is

necessarily the eigenvector associated with the smallest eigenvalue, which is unique.

Remark 5.3.2 Consider a diagonally dominant M -matrix for which the splitting A =

Ab +Ar is based on (5.16). If the diagonal dominance is strict for some rows associated

with aggregate k, assuming p(k) = 1n(k) , a nice way to quickly obtain a useful estimate

consists in choosing diagonal entries as large as possible while satisfying (5.16) with the

additional constraint that 1n(k) is an eigenvector of D(k)−1
A(k), so that the condition

ensuring (5.29) holds. In particular, when D(k) is a diagonal matrix, it amounts to using

A(k) = A
(k)
0 + ηD(k) with A

(k)
0 satisfying (5.14) and with η being the largest constant

such that (5.16) still holds.

5.4 Discrete PDEs with constant and smoothly varying

coefficients

5.4.1 Preliminaries

We start considering matrices associated with the five point stencil
−αy

−αx αd −αx
−αy

 with αx, αy > 0 and αd ≥ 2(αx + αy) (5.31)

on a rectangular grid of arbitrary shape. For such matrices we want to assess boxwise

aggregates with four nodes per aggregate (as on Figure 5.1(a)) and linewise aggregates
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(a) (b) (c)

Figure 5.1: Examples of (a) boxwise, (b) linewise and (c) L-shaped aggregation
patterns.

with two, three and four nodes (as on Figure 5.1(b)). We select the splitting A = Ab+Ar
satisfying (5.15). The prolongation vector is p(k) = 1n(k) , k = 1, ..., nc and, as can be

checked from (5.32) and (5.34) below, it is an eigenvector of D(k)−1
A(k) associated with

the smallest eigenvalue δdα
−1
d , where δd = αd − 2(αx + αy) ≥ 0. Theorem 5.3 then

implies that µ(k)
D = λ2(D(k)−1

A(k))−1 = αdλ2(A(k))−1.

Considering more specifically boxwise aggregates, we have

A(k) =


αx + αy −αx −αy 0

−αx αx + αy 0 −αy
−αy 0 αx + αy −αx

0 −αy −αx αx + αy

+ δd I , (5.32)

and, hence,

µ
(k)
D =

2αx + 2αy + δd
2 min(αx, αy) + δd

, (5.33)

whereas for linewise aggregation of size m in x direction

A(k) =


αx −αx

−αx 2αx
. . .

. . . . . . −αx
−αx αx

+ δd I (5.34)

and, hence, the following formula holds for m = 2, ..., 4 :

µ
(k)
D =

2αx + 2αy + δd

(2−
√
m− 2)αx + δd

. (5.35)

It follows that linewise aggregates of size 4 oriented in the direction of strong cou-

pling become more attractive than boxwise aggregates whenever max(αx, αy) > (2 +
√

2) min(αx, αy) . Always choosing the best aggregate shape, we have then

µ
(k)
D ≤ 3 +

√
2 . (5.36)
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Since linewise aggregates of size 3 and 2 have better quality than linewise aggregates of

size 4, as can be concluded from (5.35), this upper bound holds for them as well.

5.4.2 Constant coefficients

We now discuss more specifically the five point finite difference approximation of

∂

∂x

(
αx
∂u

∂x

)
+

∂

∂y

(
αy
∂u

∂y

)
+ βu = f on Ω , (5.37)

with uniform mesh size h in both directions, where the boundary ∂Ω of the domain

Ω ∈ R2 is the union of segments parallel to the x or y axis and connecting the grid

nodes. Note that Ω is possibly not convex and may contain holes.

If the PDE coefficients αx, αy and β are constant, the above results allow to assess

aggregate’s quality for some typical aggregate shapes. It is also easy to extend the

reasoning to further aggregation schemes, leading to bound above (5.36) by a modest

constant if either coefficients are isotropic (αx = αy) or if one uses linewise aggregation

along the strong coupling direction. For instance, if αx = αy, (5.35) with m = 3 also

applies to L-shaped aggregates as illustrated on Figure 5.1(c).

Regarding Neumann boundary conditions, only the quality of aggregates that con-

tain boundary nodes is not covered by the above analysis. Again, however, isotropic

coefficients and linewise aggregates aligned with strong coupling yield bounds similar

to (5.33) and (5.35). For instance, if αx = αy and β = 0, boxwise aggregation near

a Neumann boundary result in matrices A(k) and D(k) that have the form analyzed in

Lemma 5.1 below, with α1 = α2 and α3 = α4 = 0 (boundary aligned with grid lines),

α2 = α3 = α4 = 0 (resorting corners), or α1 = α2 = α3 and α4 = 0 (re-entering corners).

As shown in this lemma, one has then µ
(k)
D ≤ 2 in the two former cases and µ

(k)
D ≤ 2.23

in the latter, compared to µ(k)
D = 2 away from the boundary.

Note that our analysis does not require all aggregates having the same shape, which

in fact seldom occurs with practical aggregation algorithms (see [48] for an example).

One should just take care that the global µD is not larger than desired because of a few

irregular aggregates, which in practice can be prevented by breaking them into smaller

pieces.

5.4.3 Smoothly varying coefficients

Consider now the same discrete PDE (5.37) but with smoothly varying coefficients.

Because the matrices A(k) and D(k) are local to the aggregate at hand, they are equal, up

to a O(h) perturbation, to the matrices A(k)
0 and D(k)

0 corresponding to PDE coefficients

that are constant and equal to the mean value inside the aggregate. Furthermore, 1n(k)

remains the eigenvector of D(k)−1
A(k) associated with the smallest eigenvalue either
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αx = αy , δd = 0 αx = 10αy , δd = 0
pairwise L-shaped boxwise linewise linewise boxwise

(size=3) (size=4)
N µ

(k)
D µD µ

(k)
D µD µ

(k)
D µD µ

(k)
D µD µ

(k)
D µD µ

(k)
D µD

12 2 1.940 4 2.315 2 1.959 2.2 2.184 3.756 3.638 11 8.431
24 2 1.984 4 2.377 2 1.989 2.2 2.196 3.756 3.744 11 10.185
48 2 1.996 4 2.394 2 1.997 2.2 2.199 3.756 3.753 11 10.778
96 2 1.999 4 2.399 2 1.999 2.2 2.200 3.756 3.755 11 10.943

Table 5.1: The value of µD and of its upper bound (5.21) for different grid sizes.

because β = 0 and, hence, N (A(k)) = span{1n(k)}, or by using the trick suggested

at the end of Section 5.3 in Remark 5.3.2 (see also Remark 5.3.1). Hence, as shown

in Theorem 5.3, µ(k)
D is the inverse of the second smallest eigenvalue of D(k)−1

A(k).

Since the eigenvalues of a matrix are continuous functions of its entries, it means that,

asymptotically (for h → 0), µ(k)
D tends to the smallest eigenvalue of D(k)

0

−1
A

(k)
0 ; that

is, to the value obtained in the constant coefficient case. Therefore, the results of the

previous subsection carry over the variable coefficient case, at least when the mesh size

h is small enough.

5.4.4 Numerical example

We consider the linear system resulting from the five point finite difference discretization

of (5.37) on Ω = [0, 1]×[0, 1] with Dirichlet boundary conditions and constant coefficients

αx, αy and β = 0. The discretization is performed on a uniform rectangular grid of mesh

size h = (N + 1)−1 in both directions.

For the sake of simplicity, we let N be a multiple of 12, which allows that the whole

domain is covered with aggregates of the same shape. Using the rule (5.14), the matrices

A(k) and D(k) are the same for all aggregates. As a consequence, the quality estimate

µ
(k)
D is the same as well.

We consider first an isotropic situation (αx = αy). The columns from 2 to 7 of

Table 5.1 then give the values of µD and of its upper bound µ
(k)
D for three types of

aggregation pattern, presented on Figure 5.1. Observe that when mode are added to

an aggregate, its quality is not necessarily deteriorated, as can be seen comparing L-

shaped and box aggregates. We next consider in columns 8 to 13 an anisotropic situation

(αx = 10αy). One sees that boxwise aggregation is not recommended in this case.

5.4.5 Sharpness of the estimate

Numerical results in Table 5.1 indicate that the bound (5.21) on µD can be asymp-

totically sharp for N large enough. Moreover, as shown in Theorem 5.1, if only one

Jacobi smoothing iteration is performed, we further have ρ(ETG) = 1 − ωµ−1
D . Hence,
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a sharp estimate of µD further leads to a sharp estimate of the two-grid convergence

rate. The reader can wonder why and when this happens. This is what we investigate in

the present subsection, starting with the first question for the particular case of boxwise

aggregates.

Consider that the setting of the above example holds. Without loss of general-

ity, we assume in addition that αx ≥ αy. First, we recall that D(k)−1
A(k)p(k) =

λ1(D(k)−1
A(k)) p(k), and, hence, the vector vb = (1 1 − 1 − 1)T ∈ R(A(k)) that can

be checked to satisfy D(k)−1
A(k)vb = λ2(D(k)−1

A(k)) vb reaches, according to Theo-

rem 5.3, the supremum in definition (5.19) of µ(k)
D . Therefore, setting

ṽ = (γ1 vb T γ2 vb T · · · γnc vb T )T ,

we locally reproduce the maximizing vectors for every aggregate. Moreover, setting

γ1 = γ2 = · · · = γN = −γN+1 = · · · = −γ2N = γ2N+1 = · · · = 1 we further make ṽ take

the same value at every two connected nodes that belong to different aggregates. Hence,

since Ar have the form (5.13) with diagonal blocks being diagonal matrices, there holds

(Ar)ij ((ṽ)i − (ṽ)j) = 0 for all i and j. Therefore, setting σi =
∑n

j=1(Ar)ij , and since

σi > 0 only for the unknowns near the boundary, there holds

ṽArṽ = −
n∑

i,j=1

1
2

(Ar)ij ((ṽ)i − (ṽ)j)2 +
n∑
i=1

σi (ṽ)i
2 (5.38)

=
n∑
i=1

σi (ṽ)i
2

= 2N(αx + αy)

= 2N−1(αx + αy)α−1
d ṽTDṽ . (5.39)

On the other hand, note that p(k) T D(k)vb = 0 implies πDṽ = 0, and, hence,

µD ≥
ṽTD(I − πD)ṽ
ṽTAbṽ + ṽTArṽ

=
ṽTDṽ

ṽTAbṽ + ṽTArṽ

=
ṽTDṽ

µ
(k)
D

−1
ṽTDṽ + ṽTArṽ

=
µ

(k)
D

1 + µ
(k)
D

ṽTArṽ
ṽTDṽ

. (5.40)

It then follows from (5.39) that µD → µ
(k)
D for N →∞.

The following theorem is useful in extending this analysis to a more general frame-

work.
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Theorem 5.4. Let A = Ab + Ar, P , D, µD and µ
(k)
D , k = 0, ..., nc, be defined as in

Theorem 5.2. Assume µ
(k)
D finite for k = 0, ..., nc and let, for n(0) > 0 and n(k) > 1

k = 1, ..., nc,

ṽ0 ∈ arg max
v(0)∈Rn(0)\{0}

(
v(0) T D(0)v(0)

v(0) T A(0)v(0)

)
,

ṽk ∈ arg max
v(k)∈R(A(k))\{0}

(
v(k) T D(k)(I − π(k)

D )v(k)

v(k) T A(k)v(k)

)
, (5.41)

with ṽk = 1 otherwise. Let γk, k = 0, ..., nc, be real parameters, and set

ṽ =
(
γ0θ
−1
0 ṽ0

T γ1θ
−1
1 ṽ1

T · · · γncθ−1
nc ṽnc

T
)T

, (5.42)

where θk =
(
ṽk

T A(k)ṽk
)1/2

if n(k) > 1 and θk = 1 otherwise. Assume either that

ṽTArṽ ≤ εṽTAbṽ , (5.43)

or that n(0) = 0, that A(k) is singular for k = 1, ..., nc and that

(c + ṽ)TAr(c + ṽ) ≤ ε
(

max
k=1,...,nc

µ
(k)
D

)−1

ṽTDṽ (5.44)

for some vector c =
(
ξ1 p(1) T · · · ξnc p(nc) T

)T
.

Then

µD ≥
1

1 + ε

∑nc
k=0 γ

2
kµ

(k)
D∑nc

k=0 γ
2
k

. (5.45)

Proof. We first prove the lower bound (5.45) based on the assumption (5.43).

Starting with the equality (5.24) in the proof of Theorem 5.2 and setting v(k) = γkθ
−1
k ṽk

together with v = ṽ , we have

µD ≥
∑

k=1,...,nc
v(k) T D(k)(I − π(k)

D )v(k) + v(0) T D(0)v(0)∑
k=0,...,nc

v(k) T A(k)v(k) + vTArv
(5.46)

≥ 1
1 + ε

∑
k=1,...,nc

γ2
kθ
−2
k ṽk

T D(k)(I − π(k)
D )ṽk + γ2

0θ
−2
0 ṽ0

T D(0)ṽ0∑
k=0,...,nc

γ2
kθ
−2
k ṽk

T A(k)ṽk

=
1

1 + ε

∑
k=1,...,nc

γ2
kµ

(k)
D∑

k=0,...,nc
γ2
k

,

where the last equality follows from θ−2
k ṽk

T D(k)(I − π(k)
D )ṽk = µ

(k)
D .
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Now, we prove the lower bound (5.45) based on the assumptions related to (5.44).

We may then assume that

(c + ṽ)TAr(c + ṽ) ≤ εṽTAbṽ (5.47)

holds, this inequality being proved later. Since µ
(k)
D is finite, Theorem 5.2 implies

N (A(k)
r ) ⊂ span{p(k)}, k = 1, ..., nc. From the singularity of A(k), k = 1, ..., nc, we

further conclude that N (A(k)
r ) = span{p(k)} and, hence,(

ξkp(k) + ṽk
)T

A(k)
(
ξkp(k) + ṽk

)
= ṽTkA

(k)ṽk . (5.48)

Moreover, using the definition (5.20) of π(k)
D , we also have

(
ξkp(k) + ṽk

)T
D(k)(I − π(k)

D )
(
ξkp(k) + ṽk

)
= ṽTkD

(k)(I − π(k)
D )ṽk . (5.49)

Therefore, injecting v = c + ṽ and v(k) = ξkp(k) + γkθ
−1
k ṽk into (5.46) and using (5.48)

and (5.49), the proof is finished as in the previous case.

We are thus left with the proof of (5.47). From Theorem 5.3 we conclude that

D(k)−1
A(k)ṽk = λ2(D(k)−1

A(k))ṽk and p̃(k) T D(k)ṽk = 0. Therefore,

ṽk
T D(k)(I − π(k)

D )ṽk = ṽTkD
(k)ṽk ,

which implies ṽTkD
(k)ṽk = µkD ṽk

T A(k)ṽk . Hence,

ṽTDṽ ≤
(

max
k=1,...,nc

µ
(k)
D

)
ṽT Abṽ ,

which, together with (5.44) implies (5.47).

Now, we return to the previous example and prove the asymptotical sharpness for

linewise aggregates of size m ≤ 4. As in the boxwise case, the vector (5.41) is the second

eigenvector of α−1
d A(k) given by

vb =


(1
√

2−1 1−
√

2 −1)T if m = 4 ,

(1 0 −1)T if m = 3 ,

(1 −1)T if m = 2 .

Hence, choosing

ṽ = (γ1 vb T γ2 vb T · · · γnc vb T )T ,

with γ1 = −γ2 = γ3 = · · · = γN/m = −γN/m+1 = γN/m+2 = · · · = 1, we further make ṽ

take the same value at every two connected nodes that belong to different aggregates.
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Next, using again (5.38) with first term in the right hand side vanishing, we have

ṽArṽ = 2Nm−1αy‖vb‖2 + αxN(‖(vb)1‖2 + ‖(vb)m‖2)

≤ 2N(αx + αy)‖vb‖2

= 2N−1(αx + αy)α−1
d µ

(k)
D ṽTAbṽ , (5.50)

and, hence, (5.45) holds with ε = N−1(αx + αy)α−1
d µ

(k)
D . The asymptotical sharpness

follows then from Theorem 5.4.

Considering a general situation, we note that a lower bound close to the upper bound

(5.21) can be proved via (5.45) if there exists a vector ṽ of the form (5.42), such that

(a)
∑nc
k=0 γ

2
kµ

(k)
D∑nc

k=0 γ
2
k

is close to maxk=0,...,nc µ
(k)
D ;

(b) ε, defined via (5.43) or (5.44), is small compared to 1 .

Now, the condition (a) can be satisfied by using large values of γ2
k where µ(k)

D is large.

When all µ(k)
D are the same, we trivially have

∑nc
k=0 γ

2
kµ

(k)
D∑nc

k=0 γ
2
k

= max
k=0,...,nc

µ
(k)
D ,

independently of the choice of γk. As illustrated in Section 5.5, the use of γ2
k with

variable magnitude allows to prove asymptotical sharpness in the case where the µ(k)
D s

are not all the same.

Condition (b) is more difficult to check. One may start from relation (5.38) and

look for a vector ṽ of the form (5.42) such that (Ar)ij ((ṽ)i − (ṽ)j) = 0 for all i and

j. If such a vector exists, the first term in (5.38) is zero. Then, let Ωh = {1, ..., nc} be

the set of all coarse unknowns and set ∂Ωh =
{
i |σi =

∑n
j=1 (Ar)ij 6= 0

}
. If as in the

previous example σi is positive only for unknowns near the boundary, then ∂Ωh is a set

of “boundary” unknowns. Assuming σi and (ṽ)i, i = 1, ..., nc reasonably bounded, we

have

ṽTArṽ =
n∑
i=1

σi(ṽ)2
i = O(|∂Ωh|) ,

whereas, assuming γ2
k , k = 1, ..., nc, bounded below,

ṽTAbṽ =
nc∑
k=0

γ2
kθ
−2
k ṽTkA

(k)ṽk =
nc∑
k=0

γ2
k = O(|Ωh|) ,

In a discretized PDE context, the ratio |∂Ωh|/|Ωh| usually becomes arbitrary small as

the mesh is refined.
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Further, the lower bound (5.45) can be obtained using only a (given) set of aggregates

(numbered from 1 to n̄c for convenience), setting

ṽ = (γ1θ
−1
1 ṽ1

T · · · γn̄cθ−1
n̄c ṽn̄c

T 0T · · · 0T )T . (5.51)

Then, (5.38) becomes

ṽArṽ = −
∑
i,j∈Ω̄h

1
2

(Ar)ij ((ṽ)i − (ṽ)j)2 +
∑
i∈Ω̄h

σ̄i (ṽ)i
2 ,

where Ω̄h is the set of unknowns belonging to the first n̄c aggregates and σ̄i =
∑

j∈Ω̄h
(Ar)ij .

Again, setting ∂Ω̄h = {i | σ̄i 6= 0} and repeating the steps described above, one obtains

µD ≥
1

1 + ε̄

∑n̄c
k=0 γ

2
kµ

(k)
D∑n̄c

k=0 γ
2
k

,

with ε̄ = O(|∂Ω̄h|/|Ω̄h|). In practice, it means that the upper bound (5.21) can also be

asymptotically sharp when the µ(k)
D s are not all equal, providing that the aggregates for

which µ
(k)
D is maximal cover a significant part of the domain.

As an example, consider a scalar PDE discretized on a grid from which we can extract

a Ω̄h = N̄ × N̄ square of nodes with every node corresponding to the same stencil of the

form (5.31). Then, assuming that the whole square is covered with box aggregates as

on the Figure 5.1(a), the relations (5.33), (5.40) and (5.39) can be used (with N̄ instead

of N) to show that

µD ≥
1

1 + ε̄
µ̄D (5.52)

with µ̄D = 2αx+2αy+δD
2 min(αx,αy)+δd

and ε̄ = 2N̄−1(αx + αy)α−1
d µ̄D.

5.5 Discrete PDEs with discontinuous coefficients

5.5.1 Preliminaries

As in the previous section, our analysis is based on the aggregates’ quality, which in

turn involves the computation of the second smallest eigenvalue of small matrices. The

following lemma is helpful in this respect.

Lemma 5.1. Let

Ad =
1
2


4α1 −2α1 −2α1

−2α1 3α1+α2 −α1−α2

−2α1 3α1+α3 −α1−α3

−α1−α2 −α1−α3 2α1+α2+α3

 (5.53)
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and

Dd = diag (4α1 2(α1+α2) 2(α1+α3) (α1+α2+α3+α4)) , (5.54)

where α1 > 0 and α2, α3, α4 > 0. Ad is positive semi-definite, and let λ2(D−1
d Ad) be

the smallest nonzero eigenvalue of D−1
d Ad.

Then,

λ2(D−1
d Ad) ≥

5−
√

17
8

, (5.55)

and, if α1 = α2 and α3 = α4, there holds

λ2(D−1
d Ad) = min

(
1
2
,

3α1 + α3

4(α1 + α3)

)
. (5.56)

Moreover, if α1 ≥ α2, α3, α4, one has

λ2(D−1
d Ad) ≥ β (5.57)

with β = λ2(D−1
d Ad) (≈ 0.449) being evaluated for α1 = α2 = α4 = 1 and α3 = 0.

Furthermore,

λ2(D−1
d Ad) ≥

1
2

if


α1 ≥ α2 = α3 = α4

or α1 = α2 ≥ α3 = α4

or α1 = α2 = α3 ≥ α4 .

(5.58)

Proof. We first prove (5.55). Since the diagonal entries of Dd are non-decreasing

functions of α4 and Ad does not depend on this latter, λ2(D−1
d Ad) does not increase

with increasing α4. Hence, setting Cd = limα4→∞D
−1
d Ad, we have

λ2(D−1
d Ad) ≥ lim

α4→∞
λ2(D−1

d Ad) = λ2(Cd) , (5.59)

where

Cd =

(
D−1
r Ar ∗

0T 0

)
,

with

Ar =
1
2


4α1 −2α1 −2α1

−2α1 3α1 + α2

−2α1 3α1 + α3

 and Dr = 2


2α1

α1 + α2

α1 + α3

 .
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Hence, λ2(Cd) is the smallest eigenvalue of D−1
r Ar . Now, assume without loss of gener-

ality that α3 ≥ α2 (one may see that they play a symmetric role in the definition of Ad
and Dd). Then, setting

Ãr =
1
2


4α1 −2α1 −2α1

−2α1 3α1 + α2

−2α1 3α1 + α2

 and D̃r = 2


2α1

α1 + α2

α1 + α2

 ,

we have,

λmin(D−1
r Ar) = min

v∈R3\{0}

vTArv
vTDrv

= min
v∈R3\{0}

vT Ãrv + 1
2(α3 − α2) (v)3

2

vT D̃rv + 2(α3 − α2) (v)3
2

≥ min(λmin(D̃−1
r Ãr) ,

1
4

) . (5.60)

One may check that the set of eigenvalues of D̃−1
r Ãr is{

3α1 + α2

4(α1 + α2)
,

3
8

+
2α1 ±

√
17α2

1 + 14α1α2 + α2
2

8(α1 + α2)

}

(e.g., by assessing the determinant of Ãr − λ̃D̃r for all λ̃ belonging to the set1). Since

2α1 −
√

17α2
1 + 14α1α2 + α2

2 ≥ (2−
√

17)(α1 + α2) holds for α1, α2 > 0, the inequality

(5.55) follows.

On the other hand, if α1 = α2 and α3 = α4, the set of eigenvalues of D−1
d Ad is given

by
{

0 , 1
2 ,

3α1+α3
4(α1+α3) ,

1
2 + 3α1+α3

4(α1+α3)

}
, which leads to (5.56).

To prove (5.57) we note that, as previously observed, λ2(D−1
d Ad) does not increase

with increasing α4. Since α1 is the largest coefficient by assumption, setting α4 = α1

gives a worst case estimate. Next, we assume without loss of generality that α2 ≥ α3

(again, they play a symmetric role). Let then Ã0,0, Ã1,0 and Ã1,1 be the matrices defined

via (5.53) with α1 = α4 = 1 and the couple (α2, α3) given by, respectively, (0, 0), (1, 0)

and (1, 1); that is

Ã0,0 =


2 −1 −1

−1 3
2 −1

2

−1 3
2 −1

2

−1
2 −1

2 1

 , Ã1,0 =


2 −1 −1

−1 2 −1

−1 3
2 −1

2

−1 −1
2

3
2

 ,

Ã1,1 =


2 −1 −1

−1 2 −1

−1 2 −1

−1 −1 2

 .

1All eigenvalues explicitly given in this proof have been checked with computer algebra.
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Similarly, let D̃0,0, D̃1,0 and D̃1,1 be the matrices defined via (5.54) with α1 = α4 = 1

and (α2, α3) being, respectively, (0, 0), (1, 0) and (1, 1); that is, D̃0,0 = diag(4 2 2 2) ,

D̃1,0 = diag(4 4 2 3) and D̃1,1 = diag(4 4 4 4) . Then,

Ad = (α1 − α2)Ã0,0 + (α2 − α3)Ã1,0 + α3Ã1,1

Dd = (α1 − α2)D̃0,0 + (α2 − α3)D̃1,0 + α3D̃1,1 .

Next, using the min-max theorem (e.g., [3, Lemma 3.13]), we have

λ2(D−1
d Ad) = max

v∈R4\{0}
min
w⊥v

wTD
−1/2
d AdD

−1/2
d w

wTw

= max
v∈R4\{0}

min
z⊥v

zTAdz
zTDdz

= max
v∈R4\{0}

min
z⊥v

(α1 − α2)zT Ã0,0z + (α2 − α3)zT Ã1,0z + α3zT Ã1,1z

(α1 − α2)zT D̃0,0z + (α2 − α3)zT D̃1,0 + α3zT D̃1,1z

≥ max
v∈R4\{0}

min

(
min
z⊥v

zT Ã0,0z

zT D̃0,0z
, min

z⊥v

zT Ã1,0z

zT D̃1,0z
, min

z⊥v

zT Ã1,1z

zT D̃1,1z

)

Hence,

λ2(D−1
d Ad) ≥ min

(
min

z⊥D̃1,014

zT Ã0,0z

zT D̃0,0z
, min

z⊥D̃1,014

zT Ã1,0z

zT D̃1,0z
, min

z⊥D̃1,014

zT Ã1,1z

zT D̃1,1z

)
, (5.61)

where the second term in the minimum further becomes, since D̃
1/2
1,0 14 belongs to

N (D̃−1/2
1,0 Ã1,0D̃

−1/2
1,0 ),

min
z⊥D̃1,014

zT Ã1,0z

zT D̃1,0z
= λ2

(
D̃−1

1,0Ã1,0

)
= β .

Therefore, the proof of (5.57) is done if we show that the second term in (5.61) is the

smallest. For this, we note that the vector z = (64 −34 33 −62)T is orthogonal to

D̃1,014 = (4 4 2 3)T and that zT Ã1,0z = 15861.5 with zT D̃1,0z = 34718. Hence, the

second term is smaller than 0.46. Further, the first term in (5.61) is larger than 0.46, as

can be concluded from positive definiteness of

Ã0,0 + D̃1,014(D̃1,014)T − 0.46D̃0,0 =


16.16 15 7 12

15 16.58 8 11.5

7 8 4.58 5.5

12 11.5 5.5 9.08


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which implies zT Ã0,0z− 0.46zT D̃0,0z ≥ 0 for any z ⊥ D̃1,014. Similarly, the third term

in (5.61) is larger than 0.46 since

Ã1,1 + D̃1,014(D̃1,014)T − 0.46D̃1,1 =


16.16 15 7 12

15 16.16 8 11

7 8 4.16 5

12 11 5 9.16


is also positive definite. The positive definiteness can be proved, for instance, checking

that the determinants of upper left 1× 1, 2× 2, 3× 3 and 4× 4 blocks are positive.

Eventually, we prove (5.58). If α1 = α2 and α3 = α4, the inequality is already proved

in (5.56). If α2 = α3 = α4, taking D̃d = diag(4α1 2(α1 +α2) 2(α1 +α2) 2(α1 +α2))

we have λk(D−1
d Ad) ≥ λk(D̃−1

d Ad) ∈
{

0 , 1
2 ,

3α1+α2
4(α1+α2) ,

1
2 + 3α1+α2

4(α1+α2)

}
which leads to

the same conclusions. If α1 = α2 = α3, the set of eigenvalues of D−1
d Ad is given by{

0 , 1
2 ,

1
2 + 4α1±

√
10α2

1+4α1α4+2α2
4

4(3α1+α4)

}
and, since α1 ≥ α4 implies 10α2

1 + 4α1α4 + 2α2
4 ≤

16α2
1, the inequality (5.58) follows.

5.5.2 Analysis

We consider the PDE (5.37) with piecewise constant isotropic coefficients (αx(x, y) =

αy(x, y)) and β = 0, and assume Dirichlet boundary conditions. As in the previous

section, we consider the five point finite difference approximation with uniform mesh size

h in both directions (mesh box integration scheme [42]), and assume that the boundary

∂Ω of Ω ⊂ R2 is the union of segments parallel to the x or y axis and connecting the grid

nodes. We aim at assessing boxwise aggregation as illustrated on Figure 5.1(a), which

was shown relevant for isotropic coefficients in the previous section.

Here we assume that the possible discontinuities match the grid lines. Hence, Ω is

a union of non overlapping subdomains Ωi in which the coefficients are constant, and

the boundary ∂Ωi of each Ωi is formed by segments aligned with grid lines and having

grid nodes as end points. To exclude some uncommon situations, we assume that every

two such end points are separated by a distance not less than 2h and that each box

aggregate contains at least one point which is interior to one subdomains. In practice,

this assumption is automatically met if the mesh size is small enough; in fact, it has to

be not larger than h0/2, where h0 is the size of the coarsest mesh that still correctly

reproduces the geometry of the problem.

The most general situation corresponding to this setting is then schematized on

Figure 5.2(a) where the central aggregate has one node interior to Ω1 and the opposite

node at the intersection of four subdomains: Ω1, Ω2, Ω3 and Ω4. With the splitting

satisfying (5.14), the corresponding aggregate’s matrices A(k) and D(k) are given by
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(a) (b)

1 2

3 4

2

1

Figure 5.2: (a) general box aggregate situation with respect to discontinuities and
(b) discontinuity nodes aggregated with white point nodes.

(5.53) and (5.54), respectively, with αi, i = 1, ..., 4, being the PDE coefficient in the

subdomain Ωi.

Because of the assumption (5.14) and of Theorem 5.3, aggregate’s quality µ(k)
D is the

inverse of the second smallest eigenvalue of D(k)−1
A(k). Lemma 5.1 then shows us the

following.

• The approach is robust in all cases, since, by (5.55), µ(k)
D is always bounded above

independently of the relation between the coefficients αi.

• Nevertheless, from a practical viewpoint, (5.55) allows a significant decrease of ag-

gregate’s quality compared with the constant coefficient case. However, according

to (5.57), which implies µ(k)
D ≤ 2.23 (compared with 2 in constant coefficient case),

a major deterioration is avoided when α1 ≥ α2, α3, α4. The latter condition is

satisfied if nodes belonging to several subdomains Ωi are always aggregated only

with nodes that belong to Ωi with largest PDE coefficient αi. Roughly speaking,

the rule may be summarized as “aggregate discontinuity nodes with those of the

strong coefficient region”.

• In many practical cases, no more than two subdomains are involved at a time

for a single aggregate, and either α1 = α2 = α3, or α1 = α2 and α3 = α4, or

α2 = α3 = α4 hold, as illustrated on Figure (5.2)(b). Then, if the rule above is

applied; that is, if α1 is in addition the largest coefficient, (5.58) applies and shows

that there is no deterioration at all compared with the constant coefficient case.

5.5.3 Numerical example

Consider the PDE (5.37) on a square domain Ω = [0, 1]× [0, 1] with β = 0,

αx(x, y) = αy(x, y) =

{
1 if x ≤ 1/2

d (> 1) if x > 1/2 .
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(a) (b)

Figure 5.3: Two potential aggregation strategies for the numerical example.

and with Dirichlet boundary conditions. Consider the linear system (5.1) resulting from

its five point finite difference discretization (mesh box integration scheme [42]) on the

regular grid of mesh size h = N−1. Since discontinuities needs to be aligned with grid

lines, N has to be even. For simplicity of presentation, we further assume that it is a

multiple of 4. The number of unknowns being (N−1)×(N−1) (there is no unknown for

Dirichlet nodes), the grid cannot be covered with box aggregates only and the coarsening

is completed by pair and singleton aggregates. Then, the domain may be covered with

box aggregates starting from the left bottom corner (as on Figure 5.3(a)) or from the

right bottom corner (as on Figure 5.3(b)).

strategy (a) strategy (b)
N max

k=0,...,nc
µ

(k)
D µD max

k=0,...,nc
µ

(k)
D µD

32 3.385 3.181 2 1.993
64 3.385 3.286 2 1.998
128 3.385 3.336 2 2.000
256 3.385 3.361 2 2.000

Table 5.2: The value of µD and of its upper bound (5.21) for different aggregation
strategies and for d = 10.

Note that the quality of aggregates outside discontinuity is at most 2, as can be

concluded in the isotropic case (αx = αy) from (5.33) (for box aggregates) or from

(5.35) with m = 2 (for pair aggregates). The bound is therefore determined by the

quality of aggregates containing nodes on the discontinuity, which are given for d = 10

in Table 5.2. Observe that for the second strategy the convergence estimate is exactly

the same as in the constant coefficient case. For box aggregates, this follows from the

analysis in the previous subsection: the aggregates then obeys the “strong coefficient”

rule stated above. Regarding the first aggregation strategy, note that for box aggregates

one has

µ
(k)
D = λ2(D(k)−1

A(k))−1 =
4(1 + d)

3 + d
, (5.62)
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using (5.56) with α1 = α2 = 1 and α3 = α4 = d. This is also true in the pairwise case,

since then

A(k) =

(
1 −1

−1 1

)
, D(k) =

(
4

2(d+ 1)

)
.

Note that (5.62) implies µ(k)
D = 3.38 for d = 10 and µ

(k)
D → 4 for d→∞.

5.5.4 Sharpness of the estimate

Table 5.2 indicates that, once again, the upper bound (5.21) is seemingly asymptotically

exact. In fact, the reasoning developed at the end of Section 5.4 shows that, asymptot-

ically, µD cannot be smaller than 2 for an isotropic (αx = αy) PDE (5.37) with β = 0

and a regular covering by box aggregates in at least one subdomain in which the PDE

coefficients are constant. Hence, our analysis is accurate when discontinuity nodes are

aggregated with nodes in strong coefficient region, since then µ(k)
D ≤ 2.23. If, in addition,

µ
(k)
D ≤ 2, like in the numerical example above, then the bound is asymptotically sharp.

It is more challenging to show the sharpness when µ
(k)
D is significantly larger than

2 for some aggregates along discontinuity, essentially because the proportion of such

aggregates is O(h) or less. Nevertheless, it is interesting to confirm that, as seen in

Table 5.2, such a limited amount of low quality aggregates is sufficient to affect the

global convergence, and hence that the rule “aggregate discontinuity nodes with those

of the strong coefficient region” has some practical relevance.

In this view, we prove the sharpness of our estimate for the numerical example above

with the first aggregation strategy (depicted on Figure 5.3(a)), which does not follow

the “strong coefficient” rule. Note that, using the same trick as explained at the end of

Section 5.4, a similar lower bound on µD can be obtained in more complicated examples

whose domain would contain a rectangular region with two subdomains separated by a

line in the middle and covered similarly with box aggregates.

To apply Theorem 5.4, we need to construct two vectors ṽ and c̃ such that

∑nc
k=0 γ

2
kµ

(k)
D∑nc

k=0 γ
2
k

→ max
k=1,...,nc

µ
(k)
D for N →∞ , (5.63)

whereas ε, defined by (5.44), goes to 0 as N becomes large. In the example under

investigation, there are some pair and singleton aggregates (see Figure 5.3), but we limit

the support of both vectors to the (2`+1)×(2`+1) box aggregates, where ` = N/4−1. We

identify each such aggregate k with a couple (i(k)
x , i

(k)
y ) of indices, 1 ≤ i(k)

x , i
(k)
y ≤ 2`+ 1,

such that (i(k)
x +1, i(k)

y ), (i(k)
x −1, i(k)

y ), (i(k)
x , i

(k)
y +1) and (i(k)

x , i
(k)
y −1) are, respectively, its

right, left, top and bottom neighboring aggregates. Note that the center of the domain

is a node belonging to aggregate (`+ 1, `+ 1) and that discontinuity aggregates satisfy

i
(k)
x = `+ 1.
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Since p(k) = 1n(k) , the vector ṽk from Theorem 5.4 is given by the eigenvector

of D(k)−1
A(k), associated with the second smallest eigenvalue λ2(D(k)−1

A(k)); that

is, by vd = (τ 1 τ 1)T for discontinuity aggregate, with τ = −(d + 1)/2, and by

vo = (−1 1 − 1 1)T for the ordinary ones. The corresponding local energy (semi-

) norms are given by θ2
d = vTdA

(k)vd = (3 + d)2/2 for discontinuity aggregates, by

θ2
o = vTo A

(k)vo = 8 for the aggregates on the left of the discontinuity line and by d θ2
o

for those on the right of it.

Then, the vector ṽ is defined by ( ṽ(1) T , ṽ(2) T , · · · ṽ(nc) T )T with

ṽ(k) = `−1(`− |`+ 1− i(k)
y |)×



τ
2 `
−1vo if 1 ≤ i(k)

x < `+ 1

vd if i(k)
x = `+ 1

1
2`
−1vo if `+ 1 < i

(k)
x ≤ 2`+ 1

0 otherwise ,

(5.64)

and the vector c̃ corresponds to ( c̃(1) T , c̃(2) T , · · · c̃(nc) T )T with

c̃(k) = (`− |`+ 1− i(k)
x |+

1
2

)(`− |`+ 1− i(k)
y |)`−2 ×


τ14 if 1 ≤ i(k)

x < `+ 1

0 if i(k)
x = `+ 1

14 if `+ 1 < i
(k)
x ≤ 2`+ 1

0 otherwise .

From (5.64) we conclude that

γ2
k = `−2(`− |`+ 1− i(k)

y |)2 ×



τ2

4 `
−2 θ2

o if 1 ≤ i(k)
x < `+ 1

θ2
d if i(k)

x = `+ 1
1
4`
−2 dθ2

o if `+ 1 < i
(k)
x ≤ 2`+ 1

0 otherwise ,

(5.65)

and, setting

s(`) =
2`−1∑
i=1

(`− |`− i|)2 =
∑̀
i=1

(
i2 + (i− 1)2

)
= `(`+ 1)(2`+ 1)/3− `2 ,

there holds

∑
k: i

(k)
x =`+1

γ2
k = θ2

d

∑
1<i

(k)
y <2`+1

`−2(`− |`+ 1− i(k)
y |)2 = θ2

d`
−2s(`) ,

∑
k: i

(k)
x 6=`+1

γ2
k = θ2

o

d+ τ2

4

∑
1<i

(k)
y <2`+1

1≤i(k)x <`+1

`−4(`− |`+ 1− i(k)
y |)2 = θ2

o

d+ τ2

4
`−3s(`) .
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Hence,
∑

k γ
2
kµ

(k)
D = (1 +O(`−1))

∑
k: i

(k)
x =`+1

γ2
kµ

(k)
D , entailing (5.63) since µ(k)

D is maxi-

mal for i(k)
x = `+ 1.

On the other hand, observe that c̃ + ṽ takes the same value at any two connected

nodes belonging to aggregates (i(k)
x , i

(k)
y ) and (i(k)

x + 1, i(k)
y ). Moreover, c̃+ ṽ vanishes on

the boundary of the region delimited by box aggregates. Hence, the only contribution

to (c̃ + ṽ)TAr(c̃ + ṽ) as expressed by (5.38) comes from connections between (i(k)
x , i

(k)
y )

and (i(k)
x , i

(k)
y + 1). In this latter case, let j1 and j2 be two connected nodes belonging

to aggregates (i(k)
x , i

(k)
y ) and (i(k)

x , i
(k)
y + 1), respectively, with i

(k)
y ≤ 2`. For every box

aggregate k, let k+ (resp. k−) be the set of two nodes belonging to this aggregate with

larger (resp. smaller) abscise. One then has

|(c̃+ṽ)j1−(c̃+ṽ)j2 | =



τ`−2(`− |`+ 1− i(k)
x |) if 1 ≤ i(k)

x < `+ 1 and j1 ∈ k−
τ`−2(`− |`+ 1− i(k)

x |+ 1) if 1 ≤ i(k)
x < `+ 1 and j1 ∈ k+

τ`−1 if i(k)
x = `+ 1 and j1 ∈ k−

`−1 if i(k)
x = `+ 1 and j1 ∈ k+

`−2(`− |`+ 1− i(k)
x |+ 1) if `+ 1 < i

(k)
x ≤ 2`+ 1 and j1 ∈ k−

`−2(`− |`+ 1− i(k)
x |) if `+ 1 < i

(k)
x ≤ 2`+ 1 and j1 ∈ k+ .

Therefore, using (5.38) with, this time, the first term being nonzero and the second one

vanishing because of the limited scope of c̃ + ṽ, we have

(c̃ + ṽ)TAr(c̃ + ṽ) =
(
τ2 +

1 + d

2

) ∑
i
(k)
x =`+1

1≤i(k)y ≤2`

`−2

+
(
τ2 + d

) ∑
1≤i(k)x <`+1

1≤i(k)y ≤2`

`−4
(

(`− |`+1−i(k)
x |+1)2 + (`−|`+1−i(k)

x |)2
)

=
(
2τ2 + 1 + d

)
`−1 + 2

(
τ2 + d

)
`−3

∑
1≤i(k)x <`+1

(
i(k)
x

2
+
(
i(k)
x − 1

)2
)

=
(
2τ2 + 1 + d

)
`−1 + 2

(
τ2 + d

)
`−3s(`) ,

whereas

ṽTDṽ =vTd vd(2d+ 2)
∑

1<i
(k)
y <2`+1

i
(k)
x =`+1

`−2(`− |`+ 1− i(k)
y |)2

+ vTo vo(d+ τ2)
∑

1<i
(k)
y <2`+1

1≤i(k)x <`+1

`−4(`− |`+ 1− i(k)
y |)2

=4
(
(τ2 + 1)(d+ 1) + (d+ τ2)`−1

)
`−2s(`) .
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Hence, ṽTDṽ = O(`) whereas (c̃ + ṽ)TArest(c̃ + ṽ) = O(1), showing with (5.55) that

(5.44) holds with ε = O(`−1) , and therefore, together with (5.63), proving the asymp-

totical sharpness of the estimate.

5.6 Conclusion

We have developed an analysis of an aggregation-based two-grid method for SPD linear

systems. When the system matrix is diagonally dominant, an upper bound on the

convergence factor can be obtained in a purely algebraic way, assessing locally and

independently the quality of each aggregate by solving an eigenvalue problem of the size

of the aggregate. Our analysis also shows that nodes for which the corresponding row

is strongly dominated by its diagonal element can be safely kept outside the coarsening

process (see Proposition 5.1).

We have applied our bound to scalar elliptic PDE problems in two dimensions,

showing that aggregation-based two-grid methods are robust if

• in the presence of anisotropy, one uses linewise aggregates aligned with the direc-

tion of strong coupling;

• in the presence of discontinuities, one avoids mixing inside an aggregate nodes

belonging to a strong coefficient region or its boundary with nodes interior to a

weak coefficient region.

Furthermore, we have shown that the bound is asymptotically sharp when a significant

part of the domain is regularly covered by box or line aggregates of the same shape.

Note that we have conducted the analysis in two dimensions for the sake of simplicity.

The same type of analysis can be developed for three dimensional problems, leading to

similar conclusions.

Our results may also have an impact on practical aggregation schemes. Because of

the above mentioned sharpness, it is indeed sensible to expect that aggregation methods

can be improved by improving aggregates’ quality. And because aggregates’ quality is

cheap to assess, this parameter can effectively be taken into account in the design of

aggregation algorithms. For instance, one may a posteriori check aggregates’ quality

and break low quality aggregates into smaller pieces. It is also possible, in a greedy-

like approach, to decide whether a node (or a group of nodes) should be added to an

aggregate according its impact on the aggregate’s quality and/or select the neighboring

(sets of) nodes that are the most favorable in this respect. These practical aspects are

subject to further research.



Chapter 6
Fourier Analysis of aggregation-based two-grid

method for edge element

Summary

We consider Reitzinger and Schöberl multigrid method for curl-curl problems discretized

with edge finite elements. We perform a Fourier analysis of its two-grid variant and show

that the corresponding convergence rate can be bounded independently of the problem

size. This result is also compared with the actual two-grid convergence, indicating that

the analysis is accurate. Some numerical experiments are further performed in multigrid

setting with various cycling strategies, showing that an optimal implementation of the

method may be obtained when using the K-cycle.

6.1 Introduction

We consider multigrid methods for linear systems resulting from the discretization with

edge elements of

curl(α curl(E)) + βE = f on Ω , (6.1)

where α, β > 0 and Ω ⊂ R3. This problem arises when the vector potential is computed

in magnetostatics, when time-harmonic formulation of Maxwell’s equations is used, or

when eddy current approximation is considered (see [8, 5] and the references therein).

Note that, since edge element discretization is performed on (6.1), the degrees of freedom

in the linear system are associated with edges.

It is well known that standard multigrid techniques, if applied to such discretized

problems, have poor convergence properties. When the multigrid hierarchy is induced

by the refinement of an underlying coarse mesh, as in geometric multigrid, it is further

proved in [77] that a two-grid method can not be optimal if based on a simple point

smoother (like standard Jacobi or Gauss-Seidel). Modifications of standard multigrid by

either using special smoothing techniques [29, 2] or by decoupling multilevel hierarchies

113
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for edge and node unknowns [30, 35, 4] have been proposed recently to overcome this

difficulty.

Here we consider more precisely an algebraic multigrid method based on the coarsen-

ing by aggregation of edge unknowns, as introduced by Reitzinger and Schöberl in [52].

The main idea behind this approach is to perform the aggregation of edge unknowns

so that it also corresponds (via a given edge-node incidence matrix) to an aggregation

of nodes. Doing so, one insures the correct representation of the near null space of the

problem on coarser levels.

Note that, alike classical multigrid methods based on coarsening by aggregation

[11, 20, 48], Reitzinger and Schöberl (RS) approach has low computational cost per it-

eration and modest storage requirements. However, similarly to classical aggregation

techniques, piecewise constant (up to the edge’s orientation) prolongation is used, which

in turn results in level-dependent convergence behaviour with V-cycle setting (as already

observed in [52]).

Regarding aggregation techniques for elliptic boundary value problems, several ap-

proaches have been proposed recently to overcome this lack of optimality. One consists

in using, instead of simple V-cycle, a more sophisticated K-cycle, in which Krylov sub-

space acceleration is performed at each level [49]. It is also possible to improve the

scalability by increasing the number of smoothing steps on coarser levels [32]. Such

approaches can also be implemented with RS algebraic multigrid, keeping the original

advantage of modest resource requirements. As for the second implementation, numer-

ical experiments in the original RS paper [52] seem to indicate that this approach has

level-dependent convergence similar to that of V-cycle. Regarding the implementation

of RS approach with Krylov-based (K-) cycling strategy, it is however an open question

to what extent level-independent convergence properties can be obtained.

Here we investigate this point. We start by assessing the two-grid convergence of the

RS approach, since a (truly) multigrid method can not be optimal if the convergence rate

of the corresponding two-grid scheme deteriorates with the problem size. We evaluate

the convergence properties using Fourier analysis. This technique was adapted only

recently in [9] to curl-curl problems and, as far as we know, no such analysis is available

for the RS approach.

More precisely, a (local) two-grid Fourier analysis for a two-dimensional model prob-

lem based on geometrical (bilinear) prolongation operator is performed in [9] for hy-

brid [29] and AFW block [2] smoothers. Here we extend presented ideas to a piecewise

constant (RS-like) edge prolongation and show that the considered two-grid scheme with

hybrid smoother has level independent convergence properties in three dimensions. The

use of three-dimensional setting is motivated by its importance in the field of electro-

magnetical computations.
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Note that instead of using the local Fourier analysis framework, we perform an ex-

act Fourier analysis for problems with periodic boundary conditions. Both approaches

are quite similar, the latter allowing however to account for the grid size. This further

enables to supplement the Fourier analysis results with the assessment of convergence

properties of the two-grid scheme for the same problem with Dirichlet boundary condi-

tions. Their comparison indicates that Fourier analysis gives an accurate prediction of

the convergence rate.

Once the level-independent convergence is proved for a two-grid scheme, some nu-

merical experiments are performed using the corresponding multigrid ingredients with

V-, W- and K-cycles (the two latter approaches have similar operation count per itera-

tion). The results indicate that the convergence speed in the case of the first two cycling

strategies deteriorates with the number of levels, whereas the last approach has almost

the same iteration count as the two-grid scheme on the finest level.

The reminder of this paper is organized as follows. In Section 6.2 we recall some

useful properties of discrete curl-curl problems and present the main ingredients of the

RS approach. In Section 6.3 we give the Fourier representation of these ingredients for

the considered three-dimensional model problem. The results of the Fourier analysis

together with numerical experiments are presented and discussed in Section 6.4.

6.2 Preliminaries

6.2.1 Discretized problem

The use of edge finite elements requires the weak formulation of the problem (6.1) as

can be found, for instance, in [29]. More precisely, letting

H(curl; Ω) =
{
v ∈ L2(Ω); curl(v) ∈ L2(Ω)

}
,

the “weak” problem consists in determining the vector E ∈ H∗(curl; Ω) ⊂ H(curl; Ω)

such that∫
Ω
α curl(E) · curl(v)dV +

∫
Ω
βE · vdV =

∫
Ω

f · vdV ∀v ∈ H∗(curl; Ω) . (6.2)

This formulation can be recovered from the original problem, assuming that∫
∂Ω

(curl(E)× v) · n dσ =
∫
∂Ω

curl(E) · (v × n) dσ = 0 (6.3)
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holds, through the multiplication of (6.1) by a test function v followed by the application

of Green’s identity∫
Ω

curl(w) · vdV −
∫

Ω
w · curl(v)dV =

∫
∂Ω

(w × v)ndσ .

The condition (6.3) is fulfilled, for instance, when homogeneous Dirichlet boundary

conditions

v × n = 0 ∀v ∈ H∗(curl; Ω)) = H0(curl; Ω)) (6.4)

are used.

In edge element discretization the degrees of freedom are associated with edges; that

is, to any edge denoted by k = (j1, j2) with nodes j1 and j2 being, respectively, the

starting and the end points, corresponds an unknown given by

xk =
∫ j2

j1

E · ds .

The resulting system

Ax = b

is then such that

A = αKcc + βh2M , (6.5)

where Kcc and M are matrices that correspond, respectively, to the stiffness (curl-curl)

and the mass terms in (6.2).

One of the reasons why classical multigrid does not suit for such problems is the large

near null space of A induced by the null space N (Kcc) of Kcc. This latter is a discrete

representation of the null space of curl(·) operator, which contains all vectors of the form

grad(f). That is, N (Kcc) is formed by the vectors Gv, where G is a discrete gradient

matrix. As a straightforward consequence, we thus have KccG = O. When edge shape

functions are properly normalized, it can be proved (see [8] and the references therein)

that G coincides with the edge-node incidence matrix; that is, denoting by (j1, j2) an

edge with j1 as a starting node and j2 as the end node, we have

(G)kj =


1 if k = (∗, j) ,
−1 if k = (j, ∗) ,

0 otherwise .

(6.6)

Since G associates a given node with several edges, it can be viewed as a transfer

operator from nodal to edge representation, its transpose GT performing the inverse

operation. Note, however, that the number of nodes and edges is generally not the same

and GTG, GGT 6= I.
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6.2.2 Reitzinger and Schöberl (RS) multigrid

It is a common practice to base the design of an algebraic multigrid method on the

definition of a problem-dependent prolongation matrix P . Once the prolongation is

available, the restriction is set to its transpose P T and the coarse grid matrix is given

by the Galerkin formula Ac = P TAP . The same procedure can then be applied to the

coarse grid system, and so on, until the coarsest grid which is chosen small enough.

The above ideas can be extended to algebraic multigrid for edge element discretizations

of (6.2), provided that they are combined with an appropriate smoothing scheme (for

instance, hybrid [29] or AFW [2] smoothers).

Now, in the RS approach, one first performs an agglomeration of n nodes into nc > 0

aggregates Γk, k = 1, ..., nc. The edge prolongation matrix is then defined by

(P (e))jk =


1 if j = (j1, j2) and k = (k1, k2) with j1 ∈ Γk1 , j2 ∈ Γk2
−1 if j = (j1, j2) and k = (k2, k1) with j1 ∈ Γk1 , j2 ∈ Γk2

0 otherwise .

(6.7)

In other words, edges are grouped together in a unique “edge” aggregate if they connect

nodes belonging to same “node” aggregates.

Note that, setting the auxiliary “nodal” prolongation to

(P )(n)
jk =

{
1 if j ∈ Γk, k = 1, ..., nc ,

0 otherwise ,
(6.8)

one satisfies a seemingly important commutation property (see [52] for the proof)

GP (n) = P (e)Gc , (6.9)

with G and Gc being, respectively, the fine and coarse edge-node incidence matrices.

The importance of the property (6.9) mainly resides in the fact that the columns of G

span the near null space of A. The commutation property then ensures that the columns

of Gc belong to the near null space of Ac = P (e) T AP (e).

We also observe that the range of the prolongation matrix P (e) as defined by (6.7)

does not contain the entirety of the near null space of A. Therefore, some near null space

components of the error are not reduced appropriately by the coarse-grid correction. On

the other hand, a simple pointwise smoother R cannot reduce these components as well,

since (I − R−1A)v ≈ (1−O(h2))v for any v ∈ N (Kcc). More sophisticated smoothers

should therefore be used which treat appropriately the near null space modes that are

not in the range of the prolongation.

Here we consider one of such approaches known as the hybrid smoother. Its main

idea is to smooth separately the near null space components of the error, so that they
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can be correctly approximated on the coarser grid. The hybrid smoother involves two

additional matrices: an edges R(e) and a nodal R(n) smoother. If these matrices are

chosen to be the lower (or upper) triangular part of, respectively, A and A(n) = GTAG,

we recover the classical version of the hybrid smoother. In what follows we however

also consider diagonal (or Jacobi-like) smoothers. In the smoothing procedure given

below, the number of smoothing steps can be integer or half-integer. In the former case

an additional binary parameter η is used to determine if the extra half-step should be

performed in the beginning (η = ↑) or at the end (η = ↓) of the hybrid smoothing

scheme.

Hybrid smoother: xn+1 = HS(xn,b, ν, η)

(1) if ν is half-integer and η = ↑ : perform the steps (b), (d)-(f) below

(2) repeat bνc times:

(a) Edge pre-smoothing: xn ← xn + R(e)−1
(b−Axn)

(b) Restrict to nodal variables: r = GT (b−Axn); e = 0

(c) Forward sweep: e← e + R(n)−1 (
r−A(n)e

)
(d) Backward sweep: e← e + R(n)−T (r−A(n)e

)
(e) Transfer back to edge variables: xn ← xn +Ge

(f) Edge post-smoothing: xn+1 ← xn + R(e)−T (b−Axn)

(3) if ν is half-integer and η = ↓ : perform the steps (a)-(c), (e) above

Now, the two-grid version of the RS approach based on the hybrid smoother is presented

below. Note that the pre- and post-smoothing setting are treated differently when the

number of smoothing steps is half-integer. The reason for doing so is that the resulting

two-grid (and the induced multigrid) preconditioner is then symmetric when ν1 = ν2.

RS two-grid cycle: xn+1 = RSTG(b,xn, ν1, ν2)

(1) ν1 steps of pre-smoothing : xn ← HS(xn, ν1,b, ↑ )

(2) Compute residual: r = b−Axn
(3) Restrict residual: rc = P (e) T r

(4) Coarse grid correction: ec = A−1
c rc

(5) Prolongate coarse-grid correction: xn ← xn + P (e)ec
(6) ν2 steps of post-smoothing : xn+1 ← HS(xn, ν2,b, ↓ )

When applying this algorithm, the error satisfies

A−1b− xn+1 = ETG
(
A−1b− xn

)
,

where the iteration matrix ETG is given by

E
(ν1,ν2)
TG = S

(ν2)
↓

(
I − P (e)

(
P (e) T AP (e)

)−1
P (e) T A

)
S

(ν1)
↑ . (6.10)
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The pre-smoothing iteration matrix satisfies

S
(ν1)
↑ =

{
S ν1 if ν1 is integer

S ν1 (I − R(e)−T A)(I −G R(n)−T GTA) if ν1 is half-integer ,
(6.11)

where

S = (I − R(e)−T A)(I −G X(n)−1
GTA)(I − R(e)−1

A) , (6.12)

with X(n) defined by

I − X(n)−1
A(n) = (I − R(n)−T A(n))(I − R(n)−1

A(n)) . (6.13)

Similarly, the post-smoothing iteration matrix is given by

S
(ν2)
↓ =

{
S ν2 if ν2 is integer

(I −G R(n)−1
GTA)(I − R(e)−1

A) S ν2 if ν2 is half-integer ,
(6.14)

Our main objective is the analysis of the spectral radius ρ (ETG) of ETG , which

governs convergence of the two-grid method. We note, however, that the RS multigrid

method can be used as a preconditioner, with the preconditioner matrix BTG in the

two-grid case given by

ETG = I −BTGA .

Since the system matrix A resulting from the edge element discretization of (6.2) is

symmetric positive definite (SPD), and since BTG can be checked to be SPD for ν1 = ν2,

the linear system can be solved by the preconditioned conjugated gradient method [28].

In this latter case, the relevant convergence parameter is the condition number (see,

e.g., [24, Theorem 10.2.6]), given by

κ (BTGA) =
λmax (BTGA)
λmin (BTGA)

=
1− λmin (ETG)
1− λmax (ETG)

.

Unless the coarse grid matrix is weighted (as it is sometimes the case below), one can

check that A1/2ETGA
−1/2 = I − A1/2BTGA

1/2 is semi-positive definite (see Theorem

3.19 in [65] for nonnegative definiteness of BTG−1 − A and Theorem 2.1 in [44] with

nc > 0 for presence of zero eigenvalues) and, hence, λmin(ETG) = 0. The condition

number in such case can therefore be deduced from

κ (BTGA) =
1

1− ρ (ETG)
, (6.15)

and will not be reported explicitly.
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Note that, since AS(ν)
↑ = S

(ν)
↓

T
A and AC = CTA, where C stands for the coarse

grid correction, we have

ρ
(
E

(ν1,ν2)
TG

)
= ρ

(
E

(ν1,ν2)
TG

T
)

= ρ

(
A−1E

(ν1,ν2)
TG

T
A

)
= ρ

(
A−1 S

(ν1)
↑

T
C T S

(ν2)
↓

T
A

)
= ρ

(
S

(ν1)
↓ CS

(ν2)
↑

)
= ρ

(
E

(ν2,ν1)
TG

)
, (6.16)

and the number of pre- and post-smoothing iterations can be interchanged without any

impact on the asymptotic two-grid convergence. Moreover, if ν1 and ν2 are both integers

or half-integers, using A(n) = GTAG we have S(1/2)
↑ S

(1/2)
↓ = S, which further implies

S
(ν1)
↑ S

(ν2)
↓ = Sν1+ν2 = S

(ν1+ν2)
↑ = S

(ν1+ν2)
↓ ,

and, hence,

ρ
(
E

(ν1,ν2)
TG

)
= ρ

(
S

(ν2)
↓ CS

(ν1)
↑

)
= ρ

(
CS

(ν1)
↑ S

(ν2)
↓

)
= ρ

(
CS

(ν1+ν2)
↑

)
= ρ

(
E

(ν1+ν2,0)
TG

)
.

In this case the two-grid convergence factor depends only on the overall number ν =

ν1 + ν2 of smoothing steps.

Now, in what follows we consider the hybrid smoother with ν = 1/2, 1 and 2 smooth-

ing iterations. In the two latter cases both ν1 and ν2 are either integer or half-integer;

hence, the asymptotic convergence factor then depends only on ν. The case ν = 1/2

corresponds to either (ν1, ν2) = (1/2, 0) or (0, 1/2). However, it follows from (6.16)

that both have the same asymptotic convergence, this latter depending again on ν. We

therefore report the results with respect to ν instead of (ν1, ν2), at least in the two-grid

setting.

6.3 Fourier analysis

6.3.1 Model problem

Consider now Ω = (0, 1)3 with periodic boundary conditions. The vectors in

H∗(curl; Ω) = HP (curl; Ω) are therefore also assumed periodic; that is, for any v ∈
HP (curl; Ω) we have v(0, y, z) = v(1, y, z) , v(x, 0, z) = v(x, 1, z) and v(x, y, 0) =

v(x, y, 1) . Note that the constraint (6.3) is then satisfied since the contributions of
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opposite faces of ∂Ω are opposite. The weak formulation (6.2) can therefore be consid-

ered and the resulting problem is further discretized by trilinear (brick) edge elements1

(see, e.g., [66, p.54]) on the cubic grid (N + 1)× (N + 1)× (N + 1) of grid size h = N−1.

Since it is sometimes convenient to refer to an edge via its position on the grid, we

also associate a triple k = (kx, ky, kz) to any node unknown such that hk gives node’s

coordinate position, and to any edge unknown such that hk correspond to coordinate

position of the corresponding edge’s middle point. Note that ka, a = x, y, z, is a half-

integer if the corresponding edge is oriented in the a direction and integer otherwise.

Now, following the notation in [9], we set

I(∆x,∆y,∆z) = {(kx + ∆x, ky + ∆y, kz + ∆z|0 ≤ kx, ky, kz < N)} ,

and let E [x] = I(1/2, 0, 0), E [y] = I(0, 1/2, 0), E [z] = I(0, 0, 1/2) and N = I(0, 0, 0) be

the index set of, respectively, edge unknowns in x, y and z directions and node unknowns.

We also note that, for any edge k, the set of its neighbours; that is, the set of edges that

have a common element with k is given by 〈k + t〉 = (〈kx + tx〉, 〈ky + ty〉, 〈kz + tz〉)T ,

where t ∈ T , with

T = {t = (tx, ty, tz) | tx, ty, tz ∈ {1,
1
2
, 0, −1

2
, −1} and tx + ty + tz ∈ Z}

and

〈k〉 =

{
k if k < N ,

k −N otherwise .

Assuming that the matrix A arises from the discretization of (6.2) with coefficients

α and β being constant, the entry (A)kk′ for a given edge orientation depends on the

relative edge’s position k− k
′
, and, hence, satisfies

(Av)k =


∑

t∈T s
[x]
t (v)〈k+t〉 if k ∈ E [x] ,∑

t∈T s
[y]
t (v)〈k+t〉 if k ∈ E [y] ,∑

t∈T s
[z]
t (v)〈k+t〉 if k ∈ E [z] .

(6.17)

Similarly to the two-dimensional analysis in [9], we associate a stencil to edges in any of
the three directions. For instance, for edges in x direction the stencil can be represented

1the elements that belong to the boundary edges being periodically extended to the opposite bound-
ary.
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Figure 6.1: Edge neighbourhood.

as a triple of two-dimensional stencils

ST [x](L) =





◦ s
[x]

− 1
2 ,−

1
2 ,1

◦ s
[x]

− 1
2 ,

1
2 ,1

◦

s
[x]

− 1
2 ,−1, 12

s
[x]

− 1
2 ,0,

1
2

s
[x]

− 1
2 ,1,

1
2

◦ s
[x]

− 1
2 ,−

1
2 ,0

• s
[x]

− 1
2 ,

1
2 ,0

◦

s
[x]

− 1
2 ,−1,− 1

2
s
[x]

− 1
2 ,0,−

1
2

s
[x]

− 1
2 ,1,−

1
2

◦ s
[x]

− 1
2 ,−

1
2 ,−1,

◦ s
[x]

− 1
2 ,

1
2 ,−1

◦




s
[x]
0,−1,1 s

[x]
0,0,1 s

[x]
0,1,1

s
[x]
0,−1,0 s

[x]
0,0,0 s

[x]
0,1,0

s
[x]
0,−1,−1 s

[x]
0,0,−1 s

[x]
0,1,−1





◦ s
[x]
1
2 ,−

1
2 ,1

◦ s
[x]
1
2 ,

1
2 ,1

◦

s
[x]
1
2 ,−1, 12

s
[x]
1
2 ,0,

1
2

s
[x]
1
2 ,1,

1
2

◦ s
[x]
1
2 ,−

1
2 ,0

• s
[x]
1
2 ,

1
2 ,0

◦

s
[x]
1
2 ,−1,− 1

2
s
[x]
1
2 ,0,−

1
2

s
[x]
1
2 ,1,−

1
2

◦ s
[x]
1
2 ,−

1
2 ,−1,

◦ s
[x]
1
2 ,

1
2 ,−1

◦




,

the edges in this stencil being also represented on Figure 6.1. More particularly, the

“bold” segment corresponds to the considered edge and to the entry s
[x]
0,0,0, the other 8

edges in x direction forming the rest of the central 2D stencil; the remaining 24 edges are

oriented in y and z direction and belong to two planes, those with smaller x coordinate

corresponding to the first 2D stencil, the others being associated to the third one. For

these two stencils, the black and white bullets schematize the nodes (as on Figure 6.1)

and the value between two bullets in the stencil corresponds to the edge between them

on the figure.

Note that the same stencil representation can be used in y and z directions. In

these latter cases, to avoid any confusion on the choice of directions perpendicular to

the considered edge, we assume that stencil entries s[a]
tx,ty ,tz , a = y, z, of every column

have the same tx, and the entries of every line have the same tz. Note that the stencil

in the x direction given above also satisfies this assumption.
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Now, assuming edge elements oriented in the positive axis direction, the matrices
Kcc and M for the considered problem satisfy (6.17) with

ST [x](Kcc) =
1
6





◦ 1 ◦ −1 ◦
−1 −4 −1

◦ 4 • −4 ◦
1 4 1

◦ 1 ◦ −1 ◦





−2 −2 −2

−2 16 −2

−2 −2 −2





◦ −1 ◦ 1 ◦
1 4 1

◦ −4 • 4 ◦
−1 −4 −1

◦ −1 ◦ 1 ◦




,

(6.18)

and

ST [x](M) =
1
36


[
•
]


1 4 1

4 16 4

1 4 1


[
•
]

, (6.19)

respectively. The stencils are the same in the y and z directions.

6.3.2 Fourier analysis setting

For edge unknowns, we define the Fourier modes separately in each direction:

(
u[a](θ)

)
k

=

{
eikθ = 1√

N3
ei(kxθx+kyθy+kzθz) if k ∈ E [a]

0 otherwise ,
(6.20)

whereas for the node unknowns the usual definition is adopted

(u(θ))k = eikθ =
1√
N3

ei(kxθx+kyθy+kzθz) , k ∈ N . (6.21)

The following abbreviations are used in the rest of the chapter:

ca = cos(θa/2) and sa = sin(θa/2) , a = x, y, z . (6.22)

The proposition below shows that the subspace spanned by a triple of edge modes(
u[x](θ) u[y](θ) u[z](θ)

)
is invariant with respect to the system matrix A if θ ∈ Θ, where

Θ =

{(
2π`x
N

,
2π`y
N

,
2π`z
N

)T
| `x, `y, `z ∈ N and 0 ≤ `x, `y, `z < N

}
. (6.23)

That is, in Fourier basis we have A = diag(A(θ)), with A(θ) given by (6.25).

Proposition 6.1. Let A be defined by (6.5), where Kcc and M are edge matrices on

a (N + 1) × (N + 1) × (N + 1) cubic grid satisfying (6.17) with stencils in x, y and
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z directions given by (6.18) and (6.19), respectively. Let u[a](θ), a = x, y, z and Θ be

defined by (6.20) and (6.23), respectively.

Then, for any θ ∈ Θ there holds

A
(
u[x](θ) u[y](θ) u[z](θ)

)
=
(
u[x](θ) u[y](θ) u[z](θ)

)
A(θ) (6.24)

where

A(θ) = αKcc(θ) + βh2M(θ) (6.25)

with

Kcc(θ) =
4
3


3s2
y + 3s2

z − 4s2
ys

2
z −sxsy(3− 2s2

z) −sx(3− 2s2
y)sz

−sxsy(3− 2s2
z) 3s2

x + 3s2
z − 4s2

xs2
z −(3− 2s2

x)sysz
−sx(3− 2s2

y)sz −(3− 2s2
x)sysz 3s2

x + 3s2
y − 4s2

xs2
y

 (6.26)

M(θ) =
1
9


(3− 2s2

y)(3− 2s2
z)

(3− 2s2
x)(3− 2s2

z)

(3− 2s2
x)(3− 2s2

y)

 (6.27)

and with sa, a = x, y, z , given by (6.22).

Proof. Note that, using (6.17), (6.18) and (6.19), we have

Au[z](θ) = α
1
3

(
8− eiθx − e−iθx − eiθy − e−iθy

− ei(θx+θy) − ei(−θx+θy) − ei(θx−θy) − e−i(θx+θy)
)
u[x](θ)

+ α
1
6

(
e−iθz/2(4e−iθy/2 − 4eiθy/2 − ei(θy/2+θx) + ei(−θy/2+θx) − ei(θy/2−θx) + ei(−θy/2−θx))

+ eiθz/2(4eiθy/2 − 4e−iθy/2 + ei(θy/2+θx) − ei(−θy/2+θx) + ei(θy/2−θx) − ei(−θy/2−θx))
)
u[y](θ)

+ α
1
6

(
e−iθz/2(4e−iθx/2 − 4eiθx/2 − ei(θx/2+θy) + ei(−θx/2+θy) − ei(θx/2−θy) + ei(−θx/2−θy))

+ eiθz/2(4eiθx/2 − 4e−iθx/2 + ei(θx/2+θy) − ei(−θx/2+θy) + ei(θx/2−θy) − ei(−θx/2−θy))
)
u[z](θ)

+ β
1
36
h2
(

16 + 4eiθx + 4e−iθx + 4eiθy + 4e−iθy

+ +ei(θx+θy) + ei(−θx+θy) + ei(θx−θy) + e−i(θx+θy)
)
u[x](θ)
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and, after some tedious trigonometry, the last column of (6.26) and (6.27) follows. The

other lines are determined similarly.

Regarding the edge-node incidence matrix, the general expression (6.6) can be further

rewritten for the considered grid as

(G)kekn =


1 if kn = 〈ke+(1

2 , 0, 0)〉 , 〈ke+(0, 1
2 , 0)〉 or 〈ke+(0, 0, 1

2)〉
−1 if kn = 〈ke−(1

2 , 0, 0)〉 , 〈ke−(0, 1
2 , 0)〉 or 〈ke−(0, 0, 1

2)〉
0 otherwise .

(6.28)

The following theorem gives the Fourier representation of G.

Proposition 6.2. Let G be defined by (6.28) on a (N+1)×(N+1)×(N+1) cubic grid.

Let u[a](θ), a = x, y, z, u(θ) and Θ be defined by (6.20), (6.21) and (6.23), respectively.

Then, for any θ ∈ Θ there holds

GT
(
u[x](θ) u[y](θ) u[z](θ)

)
= 2iu(θ)(sx sy sz) (6.29)

and with sa, a = x, y, z , given by (6.22).

Proof. Note that for any k ∈ N there holds

(GTu[x](θ))k =
1√
N3

(
ei((kx+1/2)θx+kyθy+kzθz) − ei((kx−1/2)θx+kyθy+kzθz)

)
=
(
eiθx/2 − e−iθx/2

)
(u(θ))k

= 2i sin (θx/2) (u(θ))k ,

which gives the first entry of (6.29). The proof for the other entries is similar.

Now, we assume that N is even and consider two types of aggregation patterns:

(xy) we aggregate nodes into squares in xy-plane, leading to

Γxyk = {(2kx, 2ky, kz), (2kx+1, 2ky, kz), (2kx, 2ky+1, kz), (2kx+1, 2ky+1, kz)}

with kx, ky, kz being integer and such that 0 ≤ 2kx, 2ky, kz < N .

(xyz) we aggregate nodes into cubes by grouping the nodes

Γxyzk = {(2kx, 2ky, 2kz), (2kx+1, 2ky, 2kz), (2kx, 2ky+1, 2kz), (2kx+1, 2ky+1, 2kz),

(2kx, 2ky, 2kz+1), (2kx+1, 2ky, 2kz+1), (2kx, 2ky+1, 2kz+1), (2kx+1, 2ky+1, 2kz+1)} ,

with kx, ky, kz being integer and such that 0 ≤ 2kx, 2ky, 2kz < N .
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We extend our coordinate notation to the coarse grid edge unknowns, letting

I`(∆x,∆y,∆z) =

{
{(kx+∆x, ky+∆y, kz+∆z|0 ≤ 2kx, 2ky, kz < N)} if ` = xy ,

{(kx+∆x, ky+∆y, kz+∆z|0 ≤ 2kx, 2ky, 2kz < N)} if ` = xyz ,

and setting their index set to E [x]
` = I`(1/2, 0, 0), E [y]

` = I [z]
` (0, 1/2, 0) and E [z]

` =

I`(0, 0, 1/2), ` = xy, xyz, for edges oriented in x, y and z direction, respectively.
The edge prolongation defined by (6.7) is then given for any k = (kx, ky, kz) by

(P (e)
xy

T
w)k =



(w)k1 + (w)k2 ,

k1 =(2kx+1/2, 2ky+1, kz),k2 =(2kx+1/2, 2ky, kz) if k ∈ E [x]
xy ,

(w)k1 + (w)k2 ,

k1 =(2kx+1, 2ky+1/2, kz), k2 =(2kx, 2ky+1/2, kz) if k ∈ E [y]
xy ,

(w)k1 + (w)k2 + (w)k3 + (w)k4 ,

k1 =(2kx+1, 2ky+1, kz) ,k2 =(2kx+1, 2ky, kz) ,

k3 =(2kx, 2ky+1, kz) ,k4 =(2kx, 2ky, kz) if k ∈ E [z]
xy .

(6.30)

in (xy) case and by

(P (e)
xyz

T
w)k =



(w)k1 + (w)k2 + (w)k3 + (w)k4 ,

k1 =(2kx+1/2, 2ky+1, 2kz+1), k2 =(2kx+1/2, 2ky, 2kz),

k3 =(2kx+1/2, 2ky, 2kz+1), k4 =(2kx+1/2, 2ky+1, 2kz) if k ∈ E [x]
xyz ,

(w)k1 + (w)k2 + (w)k3 + (w)k4 ,

k1 =(2kx+1, 2ky+1/2, 2kz+1), k2 =(2kx, 2ky+1/2, 2kz),

k3 =(2kx, 2ky+1/2, 2kz+1), k4 =(2kx+1, 2ky+1/2, 2kz) if k ∈ E [y]
xyz ,

(w)k1 + (w)k2 + (w)k3 + (w)k4 ,

k1 =(2kx+1, 2ky+1, 2kz+1/2), k2 =(2kx, 2ky, 2kz+1/2),

k3 =(2kx, 2ky+1, 2kz+1/2), k4 =(2kx+1, 2ky, 2kz+1/2) if k ∈ E [z]
xyz

(6.31)

in (xyz) case. Further, we define the coarse grid Fourier modes for ` = xy, xyz, and

a = x, y, z, as

(
u[a]
` (θ)

)
k

=

{
eikθ = 1√

N3
ei(kxθx+kyθy+kzθz) if k ∈ E [a]

`

0 otherwise .
(6.32)

As shown in the following proposition, the frequency aliasing is then such that all Fourier
modes (6.20) corresponding to the frequencies in Θ`(θ), ` = xy, xyz, lead to a unique
frequency on the coarse grid, with

Θxy(θ) =
(
(θx, θy, θz)T , (θx + π, θy, θz)T , (θx, θy + π, θz)T , (θx + π, θy + π, θz)T

)
, (6.33)

and

Θxyz(θ) =
(
(θx, θy, θz)T , (θx+π, θy, θz)T , (θx, θy+π, θz)T , (θx+π, θy+π, θz)T
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(θx, θy, θz+π)T , (θx+π, θy, θz+π)T , (θx, θy+π, θz+π)T , (θx+π, θy+π, θz+π)T
)
. (6.34)

Proposition 6.3. Let P (e)
xy , Θxy and P

(e)
xyz, Θxyz be defined by (6.30), (6.33) and by

(6.31), (6.34), respectively. Let u[a](θ) and u[a]
` (θ), a = x, y, z, ` = xy, xyz, be defined

by (6.20) and (6.32) and set sa and ca as in (6.22).
Then, for any (θ1, θ2, θ3, θ4) = Θxy(2π`x

N ,
2π`y
N , 2π`z

N ), `x, `y, `z ∈ N, and for any
a = x, y, z , there holds

P (e)
xy

T
(
u[a](θ1) u[a](θ2) u[a](θ3) u[a](θ4)

)
= u[a]

xy(θc) Pxy(θc)
H
,

where θc =
(

22π`x
N , 22π`y

N , 2π`z
N

)T
and

Pxy(θc)H =


−2ei(θx+θy)/2 (−cy icy isy sy ) if a = x ,

−2ei(θx+θy)/2 (−cx isx icx sx ) if a = y ,

−4ei(θx+θy)/2 (−cycx icysx isycx sysx ) if a = z .

Similarly, for any (θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8) = Θxyz(2π`x
N ,

2π`y
N , 2π`z

N ), `x, `y, `z ∈ N,
and for any a = x, y, z , there holds

P (e)
xyz

T
(
u[a](θ1) u[a](θ2) u[a](θ3) u[a](θ4) u[a](θ5) u[a](θ6) u[a](θ7) u[a](θ8)

)
= u[a]

xyz(θc) P [a]
xyz(θc)

H
,

where θc =
(

22π`x
N , 22π`y

N , 22π`z
N

)T
and

P [a]
xyz(θc)

H
=


−4ei(θx+θy+θz)/2(−cycz icycz isycz sycz icysz cysz sysz −isysz ) if a = x ,

−4ei(θx+θy+θz)/2(−cxcz isxcz icxcz sxcz icxsz sxsz cxsz −isxsz ) if a = y ,

−4ei(θx+θy+θz)/2(−cxcy isxcy icxsy sxsy icxcy sxcy cxsy −isxsy ) if a = z .

Proof. We indicate the proof for P (e)
xy when a = x, the proof is similar in the other

cases. For any k ∈ E [x]
xy , setting θ1 = (θx, θy, θz), we have(

P (e)
xy

T
u[x](θ1)

)
k

= ei((2kx+1/2)θx+(2ky+1)θy+kzθz) + ei((2kx+1/2)θx+2kyθy+kzθz)

= eikθceiθx/2(1 + eiθy)(
P (e)
xy

T
u[x](θ2)

)
k

= ei((2kx+1/2)(θx+π)+(2ky+1)θy+kzθz) + ei((2kx+1/2)(θx+π)+2kyθy+kzθz)

= eikθcei2kxπei(θx+π)/2(1 + eiθy)(
P (e)
xy

T
u[x](θ3)

)
k

= ei((2kx+1/2)θx+(2ky+1)(θy+π)+kzθz) + ei((2kx+1/2)θx+2ky(θy+π)+kzθz)

= eikθceiθx/2(1− eiθy)(
P (e)
xy

T
u[x](θ4)

)
k

= ei((2kx+1/2)(θx+π)+(2ky+1)(θy+π)+kzθz) + ei((2kx+1/2)(θx+π)+2kyθy+kzθz+)

= eikθcei2kxπei(θx+π)/2(1− eiθy)
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and, since 1+eiθy = cyeiθy/2, 1−eiθy = −isyeiθy/2, eiπ/2 = i and ei2kxπ = −1, the desired

result follows.

Now, note that the Propositions 6.1 and 6.3 imply that both the system matrix A

and the coarse grid correction matrix I − P (e)
`

(
P

(e)
`

T
AP

(e)
`

)−1

P
(e)
`

T
A, ` = xy, xyz ,

with P` given either by (6.30) or by (6.31), possess invariant subspaces{
u[a](θ) | a = x, y, z and θ ∈ Θ`(

2π`x
N

,
2π`y
N

,
2π`z
N

)
}

(6.35)

with `x, `y, `z being integer. Since the union of such subspaces for 0 ≤ `x, `y, `z < N

forms an orthogonal basis in R3N3
, the coarse grid correction matrix has a block diagonal

structure in such basis with m×m blocks (m = 12 in the (xy) case and m = 24 if (xyz)

is considered). If, in addition, the subspace (6.35) is invariant under the smoothing

iteration matrix (6.14), the same conclusion on the block structure holds for the two-

grid iteration matrix (6.10); that is, in the Fourier basis ETG = diag
(
Ξ`x,`y ,`z

)
with

Ξ`x,`y ,`z being a m×m matrix. The invariance requirement on the smoothing iteration

matrix is in turn fulfilled if there exist matrices R(e) and R(n) such that

R(e)
(
u[x](θ) u[y](θ) u[z](θ)

)
=
(
u[x](θ) u[y](θ) u[z](θ)

)
R(e)(θ) , (6.36)

R(n)u(θ) = u(θ)R(n)(θ) . (6.37)

It is then possible to assess the two-grid convergence factor via the spectral radii of

Ξ`x,`y ,`z , namely

ρ (ETG) = max
`x,`y ,`z

ρ
(
Ξ`x,`y ,`z

)
.

If both R(e) and R(n) are of Jacobi type; that is, if

R(e) =
1
ω(e)

diag(A) , (6.38)

R(n) =
1
ω(n)

diag(A(n)) , (6.39)

then (6.36) and (6.37) hold with

R(e)(θ) =
1
ω(e)

(
α

16
6

+ βh2 16
36

)
Im ,

R(n)(θ) =
1
ω(n)

diag(A(n)) =
1
ω(n)

diag(GTMG) =
1
ω(n)

βh2 8
3
,

the second equality of the second line coming from KccG = O.

If R(e) and R(n) are of Gauss-Seidel type; that is, if R(e) and R(n) are (up to some

reordering of unknowns) upper (or lower) triangular part of A and GTAG, respectively,

then the relations (6.36) and (6.37) are not satisfied. However, following the usual
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practice [61, 68, 8], we can approximate these matrices by R̃(e) and R̃(n) which satisfy

(6.36) and (6.37), respectively.

In particular, since A(n) = GTMG has the following three-dimensional stencil

−1 −2 −1

−2 0 −2

−1 −2 −1



−2 0 −2

0 32 0

−2 0 −2



−1 −2 −1

−2 0 −2

−1 −2 −1


 ,

which also correspond to a trilinear discretization of Poisson equation, the stencil of R̃(n)

can be chosen as

ST (R̃(n)) =
1
12

[ · ]


0 0 0

0 32 0

−2 0 −2



−1 −2 −1

−2 0 −2

−1 −2 −1


 ,

if the nodal unknowns are updated in lexicographical order. Then,

R(n)(θ) =
1
12

(32− 4e−iθz
(
3− 3s2

x − 3s2
y + 4s2

xs2
y

)
− 4e−iθy(1− 2s2

x)) ,

with θ = (θx, θy, θz) ∈ Θ.

For the edge Gauss-Seidel smoother, different strategies can be considered, depending

on the order in which the edge unknowns are updated.

direction-based strategy: edges in x direction are updated before those in y direction,

which in turn are updated before those in z direction; the ordering inside each direction

is lexicographical.

point-based strategy: edges that are associated to a particular node are updated

one after another (if not associated to an already updated node; that is, if not already

updated) ; the nodes are considered in lexicographical order.
The first strategy can by approximated by the stencil

ST [x](R̃(e)) =
1
6
α


[
•
]


0 0 0

−2 16 0

−2 −2 −2


[
•
]


+
1
36
βh2


[
•
]


0 0 0

4 16 0

1 4 1


[
•
]

,
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in x direction, by

ST [y](R̃(e)) =
1
6
α





◦ 1 ◦ −1 ◦
0 0 0

◦ 4 • −4 ◦
0 0 0

◦ 1 ◦ −1 ◦





0 0 0

−2 16 0

−2 −2 −2





◦ −1 ◦ 1 ◦
0 0 0

◦ −4 • 4 ◦
0 0 0

◦ −1 ◦ 1 ◦





+
1
36
βh2


[
•
]


0 0 0

4 16 0

1 4 1


[
•
]

,

in y direction and by

ST [z](R̃(e)) =
1
6
α





◦ 1 ◦ −1 ◦
−1 −4 −1

◦ 4 • −4 ◦
1 4 1

◦ 1 ◦ −1 ◦





0 0 0

−2 16 0

−2 −2 −2





◦ −1 ◦ 1 ◦
1 4 1

◦ −4 • 4 ◦
−1 −4 −1

◦ −1 ◦ 1 ◦





+
1
36
βh2


[
•
]


0 0 0

4 16 0

1 4 1


[
•
]

,

in z direction. The corresponding Fourier block can be evaluated as in the proof of

Proposition 6.1, and is given by

(R̃(e)(θ))11 = α
1
3

(8− e−iθy − e−iθz − 2(1− 2s2
y)e
−iθz) + βh2 1

9
(4 + e−iθy + e−iθz +

1
2

(1− 2s2
y)e
−iθz)

(R̃(e)(θ))12 = 0

(R̃(e)(θ))13 = 0

(R̃(e)(θ))21 = −α4
3

sxsy(3− 2s2
z)

(R̃(e)(θ))22 = α
1
3

(8− e−iθx − e−iθz − 2(1− 2s2
x)e−iθz) +

1
9
βh2(4 + e−iθx + e−iθz +

1
2

(1− 2s2
x)e−iθz)

(R̃(e)(θ))23 = 0

(R̃(e)(θ))31 = −α4
3

sx(3− 2s2
y)sz

(R̃(e)(θ))32 = −α4
3

(3− 2s2
x)sysz

(R̃(e)(θ))33 = α
1
3

(8− e−iθx − e−iθy − 2(1− 2s2
x)e−iθy) + βh2 1

9
(4 + e−iθx + e−iθy +

1
2

(1− 2s2
x)e−iθy) .
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The second strategy corresponds to the stencil

ST [x](R̃(e)) =
1
6
α





◦ 0 ◦ 0 ◦
−1 0 0

◦ 4 • 0 ◦
1 4 1

◦ 1 ◦ −1 ◦





0 0 0

−2 16 0

−2 −2 −2





◦ 0 ◦ 0 ◦
1 0 0

◦ −4 • 0 ◦
−1 −4 −1

◦ −1 ◦ 1 ◦





+
1
36
βh2


[
•
]


0 0 0

4 16 0

1 4 1


[
•
]

,

in x direction, to the stencil

ST [y](R̃(e)) =
1
6
α





◦ 0 ◦ 0 ◦
−1 0 0

◦ 4 • −4 ◦
1 4 1

◦ 1 ◦ −1 ◦





0 0 0

−2 16 0

−2 −2 −2





◦ 0 ◦ 0 ◦
0 0 0

◦ 0 • 0 ◦
−1 −4 −1

◦ −1 ◦ 1 ◦





+
1
36
βh2


[
•
]


0 0 0

4 16 0

1 4 1


[
•
]

,

in y direction and to the stencil

ST [z](R̃(e)) =
1
6
α





◦ 0 ◦ 0 ◦
−1 −4 0

◦ 4 • −4 ◦
1 4 1

◦ 1 ◦ −1 ◦





0 0 0

−2 16 0

−2 −2 −2


[
•
]


+
1
36
βh2


[
•
]


0 0 0

4 16 0

1 4 1


[
•
]

,

in z direction. The corresponding Fourier block is given by

(R̃(e)(θ))11 = α
1
3

(8− e−iθy − e−iθz − 2(1− 2s2
y)e
−iθz) + βh2 1

9
(4 + e−iθy + e−iθz +

1
2

(1− 2s2
y)e
−iθz)

(R̃(e)(θ))12 = α
i

3
sx(−4e−iθy/2 + 2isye−iθz)
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N ν = 1/2 ν = 1 ν = 2
50 xy. 0.852 0.794 0.755

xyz. 0.852 0.794 0.755
100 xy. 0.853 0.796 0.759

xyz. 0.853 0.796 0.759
150 xy. 0.853 0.796 0.760

xyz. 0.853 0.796 0.760

Table 6.1: Convergence factor of a two-grid method with Jacobi hybrid smoother,
estimated via Fourier analysis.

point-based direction-based
N ν = 1/2 ν = 1 ν = 2 ν = 1/2 ν = 1 ν = 2
50 xy. 0.745 0.770 0.723 0.716 0.739 0.716

xyz. 0.770 0.777 0.726 0.716 0.740 0.716
100 xy. 0.751 0.782 0.748 0.722 0.752 0.741

xyz. 0.776 0.789 0.751 0.722 0.753 0.741
150 xy. 0.752 0.785 0.753 0.723 0.755 0.746

xyz. 0.777 0.792 0.756 0.723 0.755 0.746
200 xy. 0.752 0.786 0.755 0.724 0.756 0.748

xyz. 0.777 0.793 0.758 0.724 0.756 0.748

Table 6.2: Convergence factor of a two-grid method with various Gauss-Seidel variants
of hybrid smoother, estimated via Fourier analysis.

(R̃(e)(θ))13 = α
i

3
sx(−(4 + eiθy)e−iθz/2 + 2isze−iθy)

(R̃(e)(θ))21 = α
2
3

sx(−sye−iθz − ie−iθy/2)

(R̃(e)(θ))22 = α
1
3

(8− e−iθx − e−iθz − 2(1− 2s2
x)e−iθz) + βh2 1

9
(4 + e−iθx + e−iθz +

1
2

(1− 2s2
x)e−iθz)

(R̃(e)(θ))23 = α
1
6

(
−4isy(3− 2s2

x)e−iθz/2 − e−iθy/2e−iθxeiθz/2
)

(R̃(e)(θ))31 = α
i

3
sxe−θz/2(−4− e−iθy)

(R̃(e)(θ))32 = α
1
6
e−iθz/2(eiθxe−iθy/2 − 2isy(4− e−iθx))

(R̃(e)(θ))33 = α
1
3

(8− e−iθx − e−iθy − 2(1− 2s2
x)e−iθy) + βh2 1

9
(4 + e−iθx + e−iθy +

1
2

(1− 2s2
x)e−iθy) .

6.4 Numerical results

6.4.1 Two-grid method

For the numerical investigations that follow, we set α = 1 and β = 0.01. When Jacobi

smoothers (6.38) and (6.39) are considered, the weights are chosen to be ω(e) = 1/3

and ω(n) = 2/3. This choice corresponds to the biggest values of weights such that the

iteration matrices I − R(e)−1
A and I − R(n)−1

A are still positive definite for any N .
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ν = 1/2 ν = 1 ν = 2
N FA D FA D FA D
20 xy. 0.845 0.825 0.779 0.743 0.725 0.671

xyz. 0.845 0.844 0.779 0.775 0.725 0.721
30 xy. 0.850 0.835 0.788 0.763 0.744 0.707

xyz. 0.850 0.849 0.788 0.786 0.744 0.741
40 xy. 0.851 0.840 0.792 0.772 0.752 0.721

xyz. 0.851 0.851 0.792 0.791 0.752 0.749

Table 6.3: Comparison of Fourier analysis and actual two-grid convergence factors in
the case of Jacobi hybrid smoother.

ν = 1/2 ν = 1 ν = 2
N FA P D FA P D FA P D
20 xy. 0.711 0.640 0.600 0.689 0.683 0.646 0.573 0.587 0.583

xyz. 0.733 0.680 0.681 0.702 0.698 0.717 0.583 0.600 0.659
30 xy. 0.733 0.675 0.639 0.741 0.746 0.693 0.667 0.678 0.636

xyz. 0.757 0.714 0.715 0.749 0.746 0.746 0.672 0.683 0.706
40 xy. 0.741 0.687 0.662 0.760 0.750 0.715 0.705 0.711 0.672

xyz. 0.766 0.727 0.710 0.768 0.763 0.758 0.708 0.715 0.724

Table 6.4: Comparison of Fourier analysis and actual two-grid convergence factors
for point-based Gauss-Seidel hybrid smoother.

We first consider Fourier analysis for large problem sizes. The corresponding results

are given in Table 6.1 for the Jacobi version of the hybrid smoother and in Table 6.2

for the different variants of its Gauss-Seidel version. The asymptotical values of the

convergence are (approximately) reached for N = 100 in the former case and for N = 150

in the latter. In both cases, the (almost) asymptotical values are bounded away from 1,

showing that RS approach has h-independent convergence properties in two-grid setting.

Note that periodic boundary conditions are rarely used in practice, their main pur-

pose here is to make the exact Fourier analysis possible. It is therefore instructive

to compare previous results with convergence factors of similar problems with realis-

tic boundary conditions. Here, the comparison is made with the problem (6.2) having

Dirichlet boundary conditions and discretized on the cubic grid (N+2)×(N+2)×(N+2)

of mesh size h = (N + 1)−1. Observe that, assuming the same number of unknowns,

this value of h differs slightly from the one defined in periodic case.

Now, the convergence factors for problems with periodic (FA) and Dirichlet (D)

boundary conditions are given in Table 6.3 for the Jacobi hybrid smoother. Tables 6.4

and 6.5 present the same information for smoothers of Gauss-Seidel type. In both cases,

we have evaluated real convergence factors using ARPACK [36] routines. Note that,

when a Gauss-Seidel smoother is considered, the corresponding matrices R(e) and R(n)

are approximated by R̃(e) and R̃(n) in order for Fourier analysis to be applicable. That
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ν = 1/2 ν = 1 ν = 2
N FA P D FA P D FA P D
20 xy. 0.673 0.662 0.602 0.479 0.642 0.599 0.560 0.538 0.537

xyz. 0.675 0.665 0.668 0.659 0.655 0.670 0.568 0.554 0.608
30 xy. 0.701 0.698 0.652 0.709 0.702 0.652 0.658 0.651 0.603

xyz. 0.701 0.698 0.697 0.710 0.702 0.697 0.660 0.657 0.679
40 xy. 0.711 0.709 0.671 0.730 0.726 0.685 0.697 0.694 0.643

xyz. 0.711 0.709 0.709 0.730 0.726 0.729 0.698 0.697 0.707
50 xy. 0.716 0.715 0.682 0.739 0.739 0.702 0.716 0.714 0.670

xyz. 0.716 0.715 0.713 0.739 0.741 0.739 0.716 0.716 0.720

Table 6.5: Comparison of Fourier analysis and actual two-grid convergence factors
for direction-based Gauss-Seidel hybrid smoother.

γ point-based GS direction-based GS Jacobi
ν = 1/2 ν = 1 ν = 2 ν = 1/2 ν = 1 ν = 2 ν = 1/2 ν = 1 ν = 2

1 0.777 0.792 0.756 0.723 0.755 0.746 0.853 0.796 0.759
0.8 0.737 0.755 0.701 0.639 0.697 0.684 0.837 0.760 0.704
0.6 0.686 0.706 0.614 0.472 0.605 0.581 0.819 0.712 0.618
0.5 0.659 0.675 0.551 0.447 0.536 0.499 0.809 0.682 0.555
0.4 0.644 0.642 0.376 0.594 0.444 0.376 0.798 0.667 0.474
0.3 0.854 0.809 0.673 0.854 0.809 0.673 1.166 0.667 0.667

Table 6.6: Dependence of convergence rate on γ for (xyz) prolongation and various
smoothers.

is why in this latter case the convergence assessed via Fourier analysis (FA) does not

coincide with the actual two-grid convergence for problem with periodic (P) boundary

conditions.

Regarding the values in these three tables, we observe that the Fourier analysis

seems to give an accurate, although sometimes pessimistic, estimate of the real two-

grid convergence. More generally, in view of all results presented so far it appears that

Gauss-Seidel implementations are superior to the Jacobi ones; the difference between

point-based and direction-based variants of Gauss-Seidel is small, the latter performing

globally better. We also observe that the use of more smoothing steps does not neces-

sarily pay off, and in some cases it can even slightly deteriorates the convergence; the

use of ν = 1/2 (or ν1, ν2 = 1/2 in case of symmetric multigrid method) seems to be

a good choice. Regarding the prolongations considered, the performance of (xy) and

(xyz) variants is similar, the latter being more attractive because of the faster decrease

in the size of coarser grid(s).

It is observed in [11] in the context of aggregation-based multigrid for Poisson-like

problems that a simple way to improve convergence is to use a weighted coarse grid
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γ point-based GS direction-based GS Jacobi
ν1, ν2 = 1/2 ν1, ν2 = 1 ν1, ν2 = 1/2 ν1, ν2 = 1 ν1, ν2 = 1/2 ν1, ν2 = 1

1 4.80 4.10 4.08 3.94 4.90 4.15
0.8 4.26 3.36 3.45 3.19 4.43 3.43
0.6 3.82 2.32 2.82 2.43 4.05 2.73
0.5 3.70 2.32 2.56 2.08 3.94 2.39
0.4 3.93 2.38 2.53 2.02 3.92 2.37
0.3 4.58 2.67 2.68 2.04 4.23 2.66

Table 6.7: Dependence of condition number on γ for (xyz) prolongation and various
smoothers.

correction instead of the usual one. The same observations hold in the present edge-

based two-grid setting, replacing (6.10) by

ETG = S
(ν2)
↓

(
I − γ−1P (e)

(
P (e) T AP (e)

)−1
P (e) T A

)
S

(ν1)
↑ ,

as can be seen in (xyz) case from Table 6.6. Since the relation (6.15) is not necessary

satisfied for γ 6= 1, we report in Table 6.7 the variation of condition number with the

weighting factor. Note that the optimal value γ ≈ 0.4 of the weighting parameter is

almost independent of the smoother (except for the condition number in case of point-

based Gauss-Seidel), and leads to a substantial decrease in the convergence rate (by

a factor of two or more for both Gauss-Seidel variants) and slightly less substantial

decrease in the condition number.

6.4.2 Multigrid implementation

We now consider the multigrid implementation of the RS algorithm. The convergence

behaviour of the method is investigated for V- and W-cycles [61], as well as for the

Krylov-based cycling strategy [49]. This latter is implemented as in Algorithm 3.2

from [48], with flexible conjugated gradient (FCG) acceleration at every level and with

t = 0 (that is, exactly two FCG iterations are performed). Since the choice of FCG

is relevant if the preconditioner is symmetric, we set ν1 = ν2 in what follows. The

resulting multigrid method is itself used on the finest grid as a preconditioner for the

FCG(1) method from [45] (which amounts to standard conjugate gradient method in

the case of V- and W-cycles).

In what follows we consider (xyz) prolongation with a direction-based Gauss-Seidel

smoother as the most interesting combination. This case is supplemented with the

Jacobi hybrid smoother to illustrate the effect of a less efficient smoothing scheme. The

iteration counts for the three cycling strategies are given in Table 6.8 for the periodic

case and in Table 6.9 for the Dirichlet one. In all cases the iterations counts are obtained

using 10 randomly chosen right hand sides (the same for three cycling strategies) and
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Jacobi direction-based GS
nbr. ν1, ν2 = 1/2 ν1, ν2 = 1 ν1, ν2 = 1/2 ν1, ν2 = 1
grids V W K V W K V W K V W K
2 22 22 22 19 19 19 18-19 18-19 18-19 16 16 16
3 35-36 30 24-25 29 24 20-21 25-26 22 19 21 17-18 16
4 43-44 36-37 25 33 27-28 20-21 29 24 19 25 20 16
5 51 41 25-26 38 31 21-22 35 28-29 19 28-29 24 16

Table 6.8: Iteration counts for various cycling strategies; periodic boundary conditions
are considered; the finest grid corresponds to N = 33 (98304 edge unknowns).

Jacobi direction-based GS
nbr. ν1, ν2 = 1/2 ν1, ν2 = 1 ν1, ν2 = 1/2 ν1, ν2 = 1
grids V W K V W K V W K V W K
2 23 23 23 20-21 20-21 20-21 19 19 19 16 16 16
3 39 32-33 28 32-33 27 23 28 23-24 20 22-23 19 17-18
4 51-52 42 29 40-41 33 23 31 26-27 20 23-24 19-20 17-18
5 57-58 45-47 30 42-43 34-35 23 31-32 27 20 24 20-21 17-18

Table 6.9: Iteration counts for various cycling strategies; Dirichlet boundary condi-
tions are considered; the finest grid corresponds to N = 34 (101376 edge unknowns).

reducing the residual by a factor of 1010. Regarding the results for the Gauss-Seidel case

we conclude that, at least for the considered problem, the K-cycle multigrid converges

in almost the same number of iterations as the two-grid cycle implemented on the finest

grid. A slight increase is observed in the case of the Jacobi smoother, which is however

less pronounced than the one for V- and W-cycles.

6.5 Conclusion

We have performed the Fourier analysis of Reitzinger and Schöberl multigrid approach

on 3D curl-curl problems discretized with edge finite elements. We have shown that the

approach has level-independent convergence properties for various smoother configura-

tions and aggregates’ shapes. We have compared the results of the analysis with the

convergence rate of similar model problems and observed that the former give accurate

estimates of the later. We have observed that a few iterations of the Gauss-Seidel hybrid

smoother combined with the cubwise aggregation coarsening leads to a good compromise

between resource requirements and convergence speed. In multi-level setting, we have

observed that an almost level-independent convergence can be recovered when using

K-cycle.
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