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We consider multigrid methods with V-cycle for symmetric positive definite linear systems.
We compare bounds on the convergence factor that are characterized by a constant which
is the maximum over all levels of an expression involving only two consecutive levels.
More particularly, we consider the classical bound by Hackbusch, a bound by McCormick,
and a bound obtained by applying the successive subspace correction convergence theory
with so-called a-orthogonal decomposition. We show that the constants in these bounds
are closely related, and hence that these analyses are equivalent from the qualitative point
of view. From the quantitative point of view, we show that the bound due to McCormick
is always the best one. We also show on an example that it can give satisfactory sharp
prediction of actual multigrid convergence.

© 2009 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

We consider multigrid methods for solving symmetric positive definite (SPD) n × n linear systems:

Ax = b. (1.1)

Multigrid methods are based on the recursive use of a two-grid scheme. A basic two-grid method combines the action of a
smoother, often a simple iterative method such as Gauss–Seidel, and a coarse grid correction, which involves solving a smaller
problem on a coarser grid. A V-cycle multigrid method is obtained when this coarse problem is solved approximately with
1 iteration of the two-grid scheme on that level, and so on, until the coarsest level, where an exact solve is performed.
Other cycles may be defined, including the W-cycle based on two recursive applications of the two-grid scheme at each
level; see, e.g., [16].

When the system (1.1) stems from the discretization of an elliptic PDE, V-cycle multigrid has often optimal convergence
properties; that is, the convergence is independent of the number of levels or, equivalently, of the mesh discretization
parameter h. There are two classical ways for proving this. One way consists in checking the so-called smoothing and
approximation properties [3,4,7,8,10,11,15]. Another possibility consists in defining an appropriate subspace decomposition
and then analyze the constants involved in the successive subspace correction (SSC) convergence theory [13,14,6,18,20,
19]. So far, these approaches have only been compared (e.g., in [20]) on the basis of the regularity assumptions that an
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elliptic boundary value problem should fulfill in order to guarantee optimal bounds for the multigrid method applied to its
finite element discretization. This allows only qualitative conclusions which are further restricted to a specific context. For
instance, such a comparison does not cover V-cycle multigrid for structured linear systems [1]. In fact, a detailed comparison
of the convergence theories for V-cycle is difficult because they may be (and have been) formulated diversely. There is some
freedom in choosing the subspace decomposition for the SSC convergence theory and there is no unique definition of the
smoothing and approximation properties.

The smoothing and approximation property ideas form the basis of the early proofs [3,4,7] of h-independent V-cycle
convergence. For the case when A is SPD, the classical proof is presented in [8, Theorem 7.2.2] by Hackbusch. The conver-
gence estimate is then characterized by the approximation property constant cA , which is a maximum over all levels of an
expression involving only two consecutive levels.

An alternative approach has been developed by McCormick in [11] (see also [10,15]). Here again, the convergence esti-
mate depends on a constant δ which is a minimum over all levels of an expression involving two consecutive levels.

The SSC convergence theory is more recent and also more general, since by tuning the choice of the space decomposition
one can prove some results for elliptic PDEs without requiring regularity assumptions [5]. The comparison with other
approaches is not easy because this theory is traditionally formulated in an abstract setting. In this paper, we first develop
an algebraic formulation of the theory, resulting in a bound which also depends on freely chosen quantities. Next, we
justify that this degree of freedom seemingly disappears if one adds the constraint that one must be able to assess the
main constant in the bound considering only two levels at a time. Note that this latter constraint is not only mandatory to
develop the comparison with the other two approaches. It is also very sensible in view of a quantitative analysis, where, as
we illustrate on an example, Fourier analysis setting is used to numerically calculate the bounds and compare them with
the actual convergence factor.

Transferred back into the original SSC setting, the choice for which this two-level assessment is possible corresponds
to the so-called a-orthogonal decomposition, which is also the decomposition that has been most extensively used when
analyzing multigrid methods for the class of (H2-)regular problems. Then, the bound depends mainly on a constant K and,
in this paper, we show that the three constants cA , δ and K are in fact closely related, namely

K = max(1, cA)

and

δ−1 = c(2)
A ,

where c(2)
A is a Hackbusch approximation property constant for the number of smoothing steps being doubled. Hence the

three approaches are qualitatively equivalent, in the sense that they simultaneously succeed or fail to prove optimal conver-
gence. From the quantitative point of view, it further turns out that McCormick’s bound is the best one.

The reminder of this paper is organized as follows. In Section 2, we state the general setting of this study and gather the
needed assumptions. In Section 3, we develop our algebraic variant of the SSC theory and recall the results of Hackbusch
and McCormick. The comparison is performed in Section 4, and an example is analyzed in Section 5.

1.1. Notation

Let I denote the identity matrix and O the zero matrix. When the dimensions are not obvious from the context, we
write more specifically Im for the m ×m identity matrix, and Om×l for the m × l zero matrix.

For any real matrix B , R(B) is the range of B and N (B) is its null space. For any square real matrix C , ρ(C) is its

spectral radius (that is, its largest eigenvalue in modulus), ‖C‖ = √
ρ(CT C) is the usual 2-norm and ‖C‖F =

√∑
i, j C

2
i j the

Frobenius norm. For a SPD matrix D , ‖v‖D = (vT Dv)1/2 = ‖D1/2v‖ is the associated D-norm of a vector v (if D = A, it is
also called energy norm) and

‖C‖D = max
v

‖C v‖D

‖v‖D
= ∥∥D1/2CD−1/2

∥∥
is the induced matrix D-norm.

2. General setting

We consider a multigrid method with J + 1 levels ( J � 1); index J refers to the finest level (on which the system (1.1)
is to be solved), and index 0 to the coarsest level. The number of unknowns at level k, 0 � k � J , is denoted nk (hence
n J = n).

Our analysis applies to symmetric multigrid schemes based on the Galerkin principle for the SPD system (1.1); that is,
restriction is the transpose of prolongation and the matrix Ak at level k, k = J −1, . . . ,0, is given by Ak = P T

k Ak+1Pk , where
Pk is the prolongation operator from level k to level k+1; we also assume that the smoother Rk is SPD and that the number
of pre-smoothing steps ν (ν > 0) is equal to the number of post-smoothing steps. The algorithm for V-cycle multigrid is
then as follows.
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Multigrid with V-cycle at level k: xn+1 = MG(b, Ak, xn,k)

(1) Relax ν times with smoother Rk: x̄n = Smooth(xn, Ak, Rk, ν,b)
(2) Compute residual: rk = b − Akx̄n
(3) Restrict residual: rk−1 = P T

k−1rk
(4) Coarse grid correction: if k = 1, e0 = A−1

0 r0
else ek−1 = MG(rk−1, Ak−1,0,k − 1)

(5) Prolongate coarse grid correction: ˆ̄xn = x̄n + Pk−1ek−1

(6) Relax ν times with smoother Rk: xn+1 = Smooth( ˆ̄xn, Ak, Rk, ν,b)

When applying this algorithm, the error satisfies

A−1
k b − xn+1 = E(k)

MG

(
A−1
k b − xn

)
where the iteration matrix E(k)

MG is recursively defined from

E(0)
MG = 0 and, for k = 1,2, . . . , J :

E(k)
MG = (

I − R−1
k Ak

)ν(
I − Pk−1

(
I − E(k−1)

MG

)
A−1
k−1P

T
k−1Ak

)(
I − R−1

k Ak
)ν

(2.1)

(see, e.g., [16, p. 48]). Our main objective is the analysis of the spectral radius of E( J )
MG , which governs convergence on the

finest level. Our analysis makes use of the following general assumptions.

General assumptions

• n = n J > n J−1 > · · · > n0;
• Pk is an nk+1 × nk matrix of rank nk , k = J − 1, . . . ,0;
• A J = A and Ak = P T

k Ak+1Pk , k = J − 1, . . . ,0;

• Rk is SPD and such that ρ(I − R−1
k Ak) < 1, k = J , . . . ,1.

Note also that most of our results do not refer explicitly to the smoother Rk , but are stated with respect to the matrices
M(ν)

k defined from

I − M(ν)

k

−1
Ak = (

I − R−1
k Ak

)ν
. (2.2)

That is, M(ν)

k is the smoother that provides in 1 step the same effect as ν steps with Rk . The results stated with respect

to M(ν)

k may then be seen as results stated for the case of 1 pre- and 1 post-smoothing step, which can be extended to the
general case via the relations (2.2).

Most results depend on the following parameter:

ω(ν) = max

(
1, max

1�k� J
max

wk∈R
nk

wT
k Akwk

wT
k M

(ν)

k wk

)
. (2.3)

From ρ(I − R−1
k Ak) < 1, it follows that ω(1) < 2, whereas (2.2) implies

ω(ν) =
{
1 if ν is even,

1+ (ω(1) − 1)ν if ν is odd.
(2.4)

Hence one has also ω(ν) < 2 for all ν . Further, if ω(1) = 1, then ω(ν) = 1 for all ν .
We close this subsection by introducing the projector πAk which plays an important role throughout this paper:

πAk = Pk−1A
−1
k−1P

T
k−1Ak. (2.5)

3. Bounds on the V-cycle multigrid convergence factor

3.1. SSC theory

We consider the SSC convergence analysis as presented in Theorem 4.4 and Lemma 4.6 in [18], and Theorem 5.1 in [20].
Of course, there are more recent versions of this theory, e.g., in [19] it is obtained an identity (known as XZ-identity) which
provides the exact convergence factor. However, we do not see how to transform these further versions so that, according
to the focus of this paper, they deliver a bound that could be assessed considering only two levels at a time (while being
significantly different from the bound given by Theorem 3.1 together with Theorem 3.3). In particular, it seems clear that the
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exact convergence factor is a global quantity whose knowledge necessarily involves information from all levels. Note that
SSC ideas are also treated in algebraic setting in [17, Section 5], where both the XZ-identity and approximation property
approaches are presented, without however comparing them.

Now, we first develop in Theorem 3.1 below an algebraic version of Theorem 5.1 in [20]. We give a complete proof since
this version slightly improves the original formulation, which uses a matrix Γ with same entries in the strict upper part,
but nonnegative entries in the strict lower part and positive entries on the diagonal.

Observe that in Theorem 3.1 below the freedom left in choosing the pseudo restrictions Gk corresponds, in the original
formulation, to the freedom associated with the choice of the space decomposition. More precisely, given a set of Gk ,
k = 0, . . . , J − 1, we can construct a corresponding space decomposition as defined in [20]. In Appendix A we show that the
converse is also true; that is, with any admissible space decomposition in the original theory, one may associate a set of
pseudo restrictions Gk such that Theorem 3.1 will yield the same bound as Theorem 5.1 in [20], except for the improvement
associated with the refined definition of Γ .

Theorem 3.1. Let E( J )
MG be defined by (2.1) with Pk, k = 0, . . . , J − 1, Ak, k = 0, . . . , J , and Rk, k = 1, . . . , J , satisfying the general

assumptions stated in Section 2. For k = 1, . . . , J , let M(ν)

k be defined by (2.2), and set M(ν)
0 = A0 .

Let Gk, k = 0, . . . , J − 1, be nk × nk+1 matrices, and, for k = 0, . . . , J , let P̌k and Ǧk be defined by, respectively,

P̌ J = I,

P̌k = P̌k+1Pk, k = J − 1, . . . ,0, (3.1)

and

Ǧ J = I,

Ǧk = GkǦk+1, k = J − 1, . . . ,0, (3.2)

with P−1 = G−1 = O .
There holds

ρ
(
E( J )
MG

)
� 1− 2− ω(ν)

K (ν)(1 + ‖Γ ‖)2 , (3.3)

where ω(ν) is defined by (2.3),

K (ν) = max
v∈Rn

∑ J
k=0 v

T ǦT
k (I − Pk−1Gk−1)

T M(ν)

k (I − Pk−1Gk−1)Ǧkv

vT Av
, (3.4)

and

Γ =

⎛⎜⎜⎜⎜⎝
0 γ01 · · · γ0 J

0 · · · γ1 J

. . .
...

0 γ( J−1) J
0

⎞⎟⎟⎟⎟⎠ , (3.5)

with, for k = 0, . . . , J − 1 and l = k + 1, . . . , J ,

γkl = max
wk∈R

nk
max
v∈Rn

vT ǦT
l (I − Pl−1Gl−1)

T P̌ T
l A P̌kwk

(wT
k M

(ν)

k wk)
1/2(vT ǦT

l (I − Pl−1Gl−1)
T M(ν)

l (I − Pl−1Gl−1)Ǧl v)1/2
. (3.6)

Moreover,

‖Γ ‖ � ω(ν)
√

J ( J + 1)/2. (3.7)

Proof. In what follows, we omit the superscript (ν) in M(ν)

k . We first gather some useful definitions:

Qk = (I − Pk−1Gk−1)Ǧk, k = 0, . . . , J ; (3.8)

Tk = P̌k(Mk)
−1 P̌ T

k A, k = 0, . . . , J ; (3.9)

Fk = (I − Tk)(I − Tk−1) · · · (I − T1)(I − T0), k = 0, . . . , J . (3.10)

In addition we set F−1 = I ,
As shown in [17, Proposition 5.1.1] there holds

E( J )
MG = (I − T J )(I − T J−1) · · · (I − T1)(I − T0)(I − T1) · · · (I − T J−1)(I − T J ).
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Further, since A−1(I − Tk)T = (I − Tk)A−1 and (I − T0)
2 = I − T0, one has E( J )

MG = F J A−1F T
J A, showing that

ρ
(
E( J )
MG

) = ‖F J‖2A = max
v∈Rn

‖F J v‖2A
vT Av

. (3.11)

Using this relation, we first show that (3.3) holds if

vT Av � K
(
1+ ‖Γ ‖)2( J∑

l=0

vT F T
l−1ATl Fl−1v

)
∀v ∈ R

n. (3.12)

Indeed, since ATk = T T
k A and using (2.3), one has, ∀v ∈ R

n ,

‖Fk−1v‖2A − ‖Fkv‖2A = (Fk−1v)T AFk−1v − (Fk−1v)T (I − Tk)
T A(I − Tk)Fk−1v

= 2vT F T
k−1ATk Fk−1v − (Fk−1v)T T T

k ATk(Fk−1v)

= 2vT F T
k−1ATk Fk−1v − (Fk−1v)T A P̌kM

−1
k P̌ T

k A P̌kM
−1
k P̌ T

k A(Fk−1v)

= 2vT F T
k−1ATk Fk−1v − (Fk−1v)T A P̌kM

−1
k AkM

−1
k P̌ T

k A(Fk−1v)

� 2vT F T
k−1ATk Fk−1v − ω(ν)(Fk−1v)T A P̌kM

−1
k P̌ T

k A(Fk−1v)

= (
2− ω(ν)

)
vT F T

k−1ATk Fk−1v.

Summing both sides for k = 0, . . . , J shows that, ∀v ∈ R
n ,

‖v‖2A − ‖F J v‖2A �
(
2− ω(ν)

)( J∑
l=0

vT F T
l−1ATl Fl−1v

)
,

and it is straightforward to check that this relation, together with (3.12) and (3.11), implies (3.3).
We now prove (3.12). Observe that, using (3.8), there holds

J∑
l=0

P̌ l Q l =
J∑

l=0

P̌ l(I − Pl−1Gl−1)Ǧl =
J∑

l=0

(
P̌ l Ǧl − P̌ l−1Ǧl−1

) = P̌ J Ǧ J − P̌−1Ǧ−1 = I.

For any v ∈ R
n , one may then decompose vT Av as the sum of two terms (remembering that F−1 = I):

vT Av =
J∑

l=0

vT A P̌l Q lv =
J∑

l=0

vT F T
l−1A P̌l Q lv +

J∑
l=1

vT (
I − F T

l−1

)
A P̌l Q lv. (3.13)

In order to prove (3.12), we bound separately the two terms in the right-hand side of (3.13).
Regarding the first term, one has, applying twice Cauchy–Schwartz inequality,

J∑
l=0

vT F T
l−1A P̌l Q lv �

J∑
l=0

(
vT Q T

l Ml Q lv
)1/2(

vT F T
l−1A P̌lM

−1
l P̌ T

l AFl−1v
)1/2

�
( J∑

l=0

vT Q T
l Ml Q lv

)1/2( J∑
l=0

vT F T
l−1ATl Fl−1v

)1/2

. (3.14)

To estimate the second term, first observe that

I − Fl−1 = I − (I − Tl−1)Fl−2 = (I − Fl−2) + Tl−1Fl−2 = · · · =
l−1∑
k=0

Tk Fk−1.

Therefore,

J∑
l=1

vT (
I − F T

l−1

)
A P̌l Q lv =

J∑
l=1

l−1∑
k=0

vT F T
k−1T

T
k A P̌l Q l v,

whereas, for any 0 � k < l � J , using successively (3.9) and (3.6) with wk = M−1
k P̌ T

k AFk−1v ,



Author's personal copy

A. Napov, Y. Notay / Applied Numerical Mathematics 60 (2010) 176–192 181

vT F T
k−1T

T
k A P̌l Q lv = (

vT F T
k−1A P̌kM

−1
k

)
P̌ T
k A P̌l Q lv

� γkl
(
vT Q T

l Ml Q lv
)1/2(

vT F T
k−1A P̌kM

−1
k P̌ T

k AFk−1v
)1/2

= γkl
(
vT Q T

l Ml Q lv
)1/2(

vT F T
k−1ATk Fk−1v

)1/2
.

Hence, since ‖Γ ‖ = maxy
‖Γ y‖
‖y‖ = maxx,y

xT Γ y
‖x‖‖y‖ and using the definition (3.5) of Γ , there holds

J∑
l=1

vT (
I − F T

l−1

)
A P̌l Q lv �

J∑
l=1

l−1∑
k=0

γkl
(
vT Q T

l Ml Q lv
)1/2(

vT F T
k−1ATk Fk−1v

)1/2
� ‖Γ ‖

( J∑
l=0

vT Q T
l Ml Q lv

)1/2( J∑
k=0

vT F T
k−1ATk Fk−1v

)1/2

.

Combining this latter result with (3.14), one gets

vT Av � (1+ ‖Γ ‖)
( J∑

l=0

vT Q T
l Ml Q lv

)1/2( J∑
l=0

vT F T
l−1ATl Fl−1v

)1/2

.

Taking the square of both sides, and using (3.4) (which amounts to
∑ J

l=0 v
T Q T

l Ml Q l v � K vT Av) straightforwardly leads
to (3.12), which completes the proof of (3.3).

It remains to prove (3.7). Note that ‖Γ ‖ � ‖Γ ‖F = (
∑ J

l=1

∑l−1
k=0 γ 2

kl )
1/2. Further, for any 0 � k < l � J and for any w ∈ R

n

and wk ∈ R
nk ,

wT Q T
l P̌ T

l A P̌kwk �
(
wT Q T

l P̌ T
l A P̌l Q lw

)1/2(
wT

k P̌ T
k A P̌kwk

)1/2
= (

wT Q T
l Al Q lw

)1/2(
wT

k Akwk
)1/2

� ω(ν)
(
wT Q T

l Ml Q lw
)1/2(

wT
k Mkwk

)1/2
,

showing that γkl � ω(ν) . The required result straightforwardly follows. �
Now, in this paper, we focus on bounds that can be estimated considering only two consecutive levels at a time. The

following theorem helps to see when the main constant K (ν) in Theorem 3.1 can be set in that form.

Theorem 3.2. Let P̌k and Ǧk be defined by (3.1) and (3.2) with Pk, k = 0, . . . , J − 1, and Ak, k = 0, . . . , J , satisfying the general
assumptions stated in Section 2. Then, for all v ∈ R

n

vT Av =
J∑

k=0

vT ǦT
k (I − Pk−1Gk−1)

T Ak(I − Pk−1Gk−1)Ǧkv

+ 2
J∑

k=0

vT ǦT
k−1P

T
k−1Ak(I − Pk−1Gk−1)Ǧkv (3.15)

=
J∑

k=0

vT ǦT
k (I − Pk−1Gk−1)

T Ak(I + Pk−1Gk−1)Ǧkv. (3.16)

Moreover, if Pk−1Gk−1 is a projector, then

(I − Pk−1Gk−1)
T Ak(I + Pk−1Gk−1) (3.17)

is nonnegative definite if and only if

Gk−1 = A−1
k−1P

T
k−1Ak. (3.18)

Proof. We begin, noting that vT
k Ak Pk−1Gk−1vk = (vT

k Ak Pk−1Gk−1vk)T = vT
k (Pk−1Gk−1)

T Akvk holds for all vk ∈ R
nk . Using

this relation with vk = Ǧkv , Eqs. (3.15) and (3.16) follow from
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J∑
k=0

vT ǦT
k (I + Pk−1Gk−1)

T Ak(I − Pk−1Gk−1)Ǧkv

=
J∑

k=0

vT ǦT
k P̌

T
k A P̌kǦkv − vT ǦT

k−1 P̌
T
k−1A P̌k−1Ǧk−1v = vT Av.

Next, (I − Pk−1Gk−1)
T Ak(I + Pk−1Gk−1) is nonnegative definite if and only if

vT
k (I − Pk−1Gk−1)

T Ak(I + Pk−1Gk−1)vk � 0 ∀vk ∈ R
nk

which in turn is equivalent to

vT
k Akvk � vT

k (Pk−1Gk−1)
T Ak Pk−1Gk−1vk ∀vk ∈ R

nk ,

this latter being nothing else but

‖Pk−1Gk−1‖Ak � 1.

Hence, if Pk−1Gk−1 is a projector, it has to be orthogonal, and, hence, symmetric with respect to the (·,Ak·) inner product
(see [12, Section 5.13]); that is, Pk−1Gk−1 = Bk Ak for some symmetric Bk . This implies Gk−1 = Ck−1P T

k−1Ak with Ck−1
symmetric. Since Pk−1 has full rank, Pk−1Gk−1 is then a projector if and only if Ck−1 = Ak−1; hence the required result. �

Now, consider the definition (3.4) of K (ν) . To obtain an expression that can be assessed considering only two levels at
a time, the only possibility we have found is to express the denominator vT Av as a sum over all levels similar to the
sum in the numerator, and, assuming each term involved nonnegative, to bound the ratio of both these sums

∑
k ak/

∑
k bk

by the maximum of the ratios maxk(ak/bk). The first result of Theorem 3.2 tells us that such a splitting of vT Av always
exists, but the second result tells us that it is exploitable only with Gk−1 = A−1

k−1P
T
k−1Ak , since otherwise there would be

negative terms in the sum of the denominator, at least for certain v .3 Note that these Gk are such that Pk−1Gk−1 = πAk

and correspond to the so-called a-orthogonal decomposition in the original abstract theory. This choice is further analyzed
in the following theorem, where we prove in particular that one has then Γ = 0. Note that with the original formulation of
[20, Theorem 5.1], one could only prove ‖Γ ‖ � ω(ν) .

Theorem 3.3. Let the assumptions of Theorem 3.1 hold, and let Gk, k = 0, . . . , J − 1, be defined by (3.18). Then, K (ν) and Γ , defined
as in Theorem 3.1, satisfy, respectively

K (ν) = max

(
1, max

1�k� J
max

wk∈R
nk

wT
k (I − πAk )

T M(ν)

k (I − πAk )wk

wT
k (I − πAk )

T Ak(I − πAk )wk

)
(3.19)

= max

(
1, max

1�k� J
max

wk∈R
nk

wT
k (I − πAk )

T M(ν)

k (I − πAk )wk

wT
k Akwk

)
(3.20)

and

Γ = 0, (3.21)

where πAk is defined by (2.5).

Proof. We first prove (3.21). Note that (3.18) implies Ǧl = A−1
l P̌ T

l A, l = 0, . . . , J − 1. Hence, for any 0 � k < l � J and all
wk ∈ R

nk , v ∈ R
n ,

wT
k P̌ T

k A P̌l(I − Pl−1Gl−1)Ǧl v = wT
k P̌ T

k A P̌l A
−1
l P̌ T

l Av − wT
k P̌

T
k A P̌l−1A

−1
l−1 P̌

T
l−1Av

= wT
k P T

k · · · P T
l−1

(
P̌ T
l A P̌l A

−1
l

)
P̌ T
l Av

− wT
k P T

k · · · P T
l−2

(
P̌ T
l−1A P̌l−1A

−1
l−1

)
P̌ T
l−1Av

= wT
k P T

k · · · P T
l−1 P̌

T
l Av − wT

k P T
k · · · P T

l−2 P̌
T
l−1Av

= wT
k P̌ T

k Av − wT
k P̌ T

k Av

= 0;
γkl = 0 and therefore Γ = 0 readily follows.

3 Theorem 3.2 proves this under the additional assumption that PkGk is a projector, but we did not found any usable bound based on Gk for which PkGk

would not be a projector.
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We next prove (3.19) and (3.20). Using (3.16) and Pk−1Gk−1 = πAk together with (I + πAk )
T Ak(I − πAk ) = (I − πAk )

T ×
Ak(I − πAk ) in the definition (3.4) of K (ν) , one has

K (ν) = max
v∈Rn

∑ J
k=0 v

T ǦT
k (I − Pk−1Gk−1)

T M(ν)

k (I − Pk−1Gk−1)Ǧkv∑ J
k=0 v

T ǦT
k (I − Pk−1Gk−1)

T Ak(I − Pk−1Gk−1)Ǧkv

= max
v∈Rn

∑ J
k=1 v

T ǦT
k (I − πAk )

T M(ν)

k (I − πAk )Ǧkv + vT ǦT
0 A0Ǧ0v∑ J

k=1 v
T ǦT

k (I − πAk )
T Ak(I − πAk )Ǧkv + vT ǦT

0 A0Ǧ0v

� max

(
1, max

1�k� J
max

wk∈R
nk

wT
k (I − πAk )

T M(ν)

k (I − πAk )wk

wT
k (I − πAk )

T Ak(I − πAk )wk

)
. (3.22)

This proves that the right-hand side of (3.19) is an upper bound on K (ν); the right-hand side of (3.20) is a further upper
bound since

max
wk∈R

nk

wT
k (I − πAk )

T M(ν)

k (I − πAk )wk

wT
k Akwk

� max
vk∈R

nk

vT
k (I − πAk )

T M(ν)

k (I − πAk )vk

vT
k (I − πAk )

T Ak(I − πAk )vk
,

as seen by restricting the maximum in the left-hand side to wk = (I − πAk )vk (taking into account that (I − πAk )
2 =

(I − πAk )).
To prove that the right-hand sides of (3.19), (3.20) are also a lower bound on K (ν) , let, for k = 0, . . . , J , Q̌ k = (I −

Pk−1Gk−1)Ǧk . Then rewrite (3.22) as

K (ν) = max
v∈Rn

∑ J
k=0 v

T Q̌ T
k M(ν)

k Q̌ kv∑ J
k=0 v

T Q̌ T
k Ak Q̌ kv

. (3.23)

Since Gk Pk = Ink for k = 0, . . . , J − 1, Lemma B.1 in Appendix B proves that, for 0 � l,k � J with k �= l,

Q̌ l P̌ l Q̌ l = Q̌ l and Q̌ k P̌l Q̌ l = Onk×n.

Restricting the maximum in (3.23) to v = P̌ l Q̌ lw for some 0 � l � J yields

K (ν) � max
w∈Rn

wT Q̌ T
l M(ν)

l Q̌ lw

wT Q̌ T
l Al Q̌ lw

= max
w∈Rn

wT ǦT
l (I − Pl−1Gl−1)

T M(ν)

l (I − Pl−1Gl−1)Ǧlw

wT ǦT
l (I − Pl−1Gl−1)

T Al(I − Pl−1Gl−1)Ǧlw

= max
wl∈R

nl

wT
l (I − Pl−1Gl−1)

T M(ν)

l (I − Pl−1Gl−1)wl

wT
l (I − Pl−1Gl−1)

T Al(I − Pl−1Gl−1)wl
,

the last equality stemming from the fact that Gl , and hence Ǧl , has full rank (from (3.18), (3.2), and because Pk has full
rank by virtue of our general assumptions). The conclusion follows because

wT
l (I − Pl−1Gl−1)

T Al(I − Pl−1Gl−1)wl = wT
l (I − πAl )

T Al(I − πAl )wl

= wT
l

(
Al − Al Pl−1A

−1
l−1P

T
l−1Al

)
wl

� wT
l Alwl. �

3.2. Hackbusch bound

The bound from [8, Theorem 7.2.2] is recalled in the following theorem. Note that this analysis requires ω(ν) = 1. This
condition is however not too restrictive since the smoother can be scaled to satisfy it. Note also that, according to (2.4),
ω(ν) = 1 always holds for ν even, and that ω(1) = 1 entails ω(ν) = 1 for all ν .

Theorem 3.4. Let E( J )
MG be defined by (2.1) with Pk, k = 0, . . . , J − 1, Ak, k = 0, . . . , J , and Rk, k = 1, . . . , J , satisfying the general

assumptions stated in Section 2. For k = 1, . . . , J , let M(ν)

k and ω(ν) be defined, respectively, by (2.2) and (2.3).
Then, if ω(ν) = 1,

ρ
(
E( J )
MG

)
�

c(ν)
A

c(ν)
A + 2

, (3.24)
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where

c(ν)
A = max

1�k� J
max
vk∈R

nk

vT
k (A−1

k − Pk−1A
−1
k−1P

T
k−1)vk

vT
k M

(ν)

k

−1
vk

. (3.25)

Moreover, if ω(1) = 1,

ρ
(
E( J )
MG

)
�

c(1)
A

c(1)
A + 2ν

. (3.26)

Note that Theorem 7.2.2 in [8] considers only (3.26). The bound (3.24) is a straightforward extension (through the
replacement of M(1)

k = Rk by M(ν)

k ) that will make easier the comparison with other approaches. It is not really useful
in practice since, as will be seen, (3.26) is always better than (3.24). Note, however, that (3.24) is more general since one
may have ω(ν) = 1 while ω(1) > 1.

Note also that in [8] some bounds based on cA are also proved for the W- and two-grid cycle, that are better than those
obtained by using just the V-cycle bound as a worst case estimate.

3.3. McCormick’s bound

We recall in the following theorem the bound obtained in [11, Lemma 2.3, Theorem 3.4 and Section 5] (see also [10], or
[15] for an alternative proof).

Theorem 3.5. Let E( J )
MG be defined by (2.1) with Pk, k = 0, . . . , J − 1, Ak, k = 0, . . . , J , and Rk, k = 1, . . . , J , satisfying the general

assumptions stated in Section 2. For k = 1, . . . , J , let M(ν)

k be defined by (2.2).
Then,

ρ
(
E( J )
MG

)
� 1− δ(ν), (3.27)

where

δ(ν) = min
1�k� J

min
vk∈R

nk

‖vk‖2Ak
− ‖(I − M(ν)

k

−1
Ak)vk‖2Ak

‖(I − πAk )vk‖2Ak

(3.28)

with πAk defined by (2.5).
Moreover,

δ(ν)−1 � 1

ν

(
δ(1)−1 + ν − 1

)
. (3.29)

4. Comparison

We first state our main result, which relates the constants K (ν) , c(ν)
A and δ(ν) .

Theorem 4.1. Let K (ν) , c(ν)
A and δ(ν) be defined respectively by (3.19), (3.25) and (3.28)where Pk, k = 0, . . . , J − 1, Ak, k = 0, . . . , J ,

and Rk, k = 1, . . . , J , satisfy the general assumptions stated in Section 2. For k = 1, . . . , J , let M(ν)

k be defined by (2.2).
Then

K (ν) = max
(
1, c(ν)

A

)
, (4.1)

and

δ(ν) = 1

c(2ν)
A

. (4.2)

Proof. Let

P̃k = A1/2
k Pk−1A

−1/2
k−1 , k = 1, . . . , J .

One has
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c(ν)
A = max

1�k� J
max
v∈Rk

vT (A−1
k − Pk−1A

−1
k−1P

T
k−1)v

vT M(ν)

k

−1
v

= max
1�k� J

max
v∈Rk

vT (I − A1/2
k Pk−1A

−1
k−1P

T
k−1A

1/2
k )v

vT A1/2
k M(ν)

k

−1
A1/2
k v

= max
1�k� J

max
v∈Rk

vT (I − P̃k P̃ T
k )v

vT A1/2
k M(ν)

k

−1
A1/2
k v

= max
1�k� J

max
v∈Rk

vT M(ν)

k

1/2
A−1/2
k (I − P̃k P̃ T

k )2A−1/2
k M(ν)

k

1/2
v

vT v

= max
1�k� J

max
v∈Rk

vT (I − P̃k P̃ T
k )A−1/2

k M(ν)

k A−1/2
k (I − P̃k P̃ T

k )v

vT v
.

Since (I − P̃k P̃ T
k )A−1/2

k = (I − A1/2
k Pk−1A

−1
k−1P

T
k−1A

1/2
k )A−1/2

k = A−1/2
k (I − πAk )

T , this leads to

c(ν)
A = max

1�k� J
max
v∈Rk

vT (I − πAk )
T M(ν)

k (I − πAk )v

vT Akv
,

hence (4.1).
On the other hand, observing that M(2ν)

k satisfy

I − M(2ν)

k

−1
Ak = (

I − M(ν)

k

−1
Ak

)2
, k = 1, . . . , J ,

one has

δ(ν) = min
1�k� J

min
v∈Rk

‖v‖2Ak
− ‖I − M(ν)

k

−1
Akv‖2Ak

‖(I − πAk )v‖2Ak

= min
1�k� J

min
v∈Rk

vT Akv − vT (I − M(ν)

k

−1
Ak)

T Ak(I − M(ν)

k

−1
Ak)v

vT (I − πAk )
T Ak(I − πAk )v

= min
1�k� J

min
v∈Rk

vT Akv − vT Ak(I − M(ν)

k

−1
Ak)

2v

vT (I − πAk )
T Ak(I − πAk )v

= min
1�k� J

min
v∈Rk

vT Akv − vT Ak(I − M(2ν)

k

−1
Ak)v

vT (I − πAk )
T Ak(I − πAk )v

= min
1�k� J

min
v∈Rk

vT AkM
(2ν)

k

−1
Akv

vT Ak(I − πAk )v

= min
1�k� J

min
v∈Rk

vT M(2ν)

k

−1
v

vT (I − πAk )A
−1
k v

= 1

c(2ν)
A

. �

We are now ready to compare the bounds (3.3), (3.24), (3.26) and (3.27). This is done in the following theorem.

Theorem 4.2. Let E( J )
MG be defined by (2.1) with Pk, k = 0, . . . , J − 1, Ak, k = 0, . . . , J , and Rk, k = 1, . . . , J , satisfying the general

assumptions stated in Section 2. For k = 1, . . . , J , let M(ν)

k and ω(ν) be defined, respectively, by (2.2) and (2.3). Moreover, let K (ν) , c(ν)
A

and δ(ν) be defined respectively by (3.19), (3.25) and (3.28).
Then

ρ
(
E( J )
MG

)
� 1− δ(ν) � 1− 2− ω(ν)

K (ν)
. (4.3)
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Further, if ω(ν) = 1,

ρ
(
E( J )
MG

)
� 1− δ(ν) �

c(ν)
A

c(ν)
A + 2

, (4.4)

and, if ω(1) = 1,

ρ
(
E( J )
MG

)
� 1− δ(ν) �

c(1)
A

c(1)
A + 2ν

�
c(ν)
A

c(ν)
A + 2

. (4.5)

Moreover,

1− 2− ω(ν)

K (ν)
� 1− 2− ω(ν)

2
δ(ν), (4.6)

and, if ω(ν) = 1,

c(ν)
A

c(ν)
A + 2

� 1

δ(ν) + 1
= 1− δ(ν)

δ(ν) + 1
. (4.7)

Proof. Let us first prove two intermediate results:

c(ν)
A

2
� c(2ν)

A �
c(ν)
A

2− ω(ν)
(4.8)

and, if ω(µ) = 1,

c(µ)

A

ν
� c(µν)

A � 1

ν

(
c(µ)

A + ν − 1
)
, µ ∈ N

+
0 . (4.9)

The first intermediate result (4.8) follows from

M(2ν)

k = M(ν)

k

(
2M(ν)

k − Ak
)−1

M(ν)

k

combined with

2vT
k M

(ν)

k vk � 2vT
k M

(ν)

k vk − vT
k Akvk �

(
2− ω(ν)

)
vT
k M

(ν)

k vk, ∀vk ∈ R
nk .

We prove the second intermediate result (4.9) for µ = 1; its generalization to µ > 1 is performed replacing Rk by M(µ)

k
in the proof below. First, the right inequality (4.9) is a consequence of (3.29) since, using (4.2) one has

c(ν)
A = δ(ν/2)−1 � 1

ν

(
δ(1/2)−1 + ν − 1

) = 1

ν

(
c(1)
A + ν − 1

)
where δ(1/2) corresponds to the V-cycle algorithm with a smoother R̃k such that

I − R−1
k Ak = (

I − R̃−1
k Ak

)2
.

Such R̃k is indeed well defined since ω(1) = 1 entails that I − A1/2
k R−1

k A1/2
k is symmetric nonnegative definite. On the other

hand, the left inequality (4.9) is a straightforward consequence of

vT
k M

(ν)

k

−1
vk � νvT

k R
−1
k vk, ∀vk ∈ R

nk

which we prove as follows. This relation holds if and only if

vT
k A1/2

k M(ν)

k

−1
A1/2
k vk � νvT

k A1/2
k R−1

k A1/2
k vk, ∀vk ∈ R

nk

which, in view of (2.2) and when ω(1) = 1, is satisfied if

1− (1− x)ν � νx ∀x ∈ [0,1];
that is, if, ∀λ = 1− x ∈ [0,1),

1− λν

1− λ
� ν,

which is readily checked from 1−λν

1−λ
= ∑ν−1

i=0 λi < ν .
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Now, the second inequality (4.3) follows from the right inequality (4.8) combined with (4.1) and (4.2). The second
inequalities (4.4) and (4.5) are equivalent to, respectively

c(ν)
A c(2ν)

A �
(
c(ν)
A + 2

)(
c(2ν)
A − 1

)
and

c(1)
A c(2ν)

A �
(
c(1)
A + 2ν

)(
c(2ν)
A − 1

)
.

These inequalities follow from the right inequality (4.9), used with (µ,ν) = (ν,2) and (µ,ν) = (1,2ν), respectively, com-
bined with (4.2). Next, the last inequality of (4.5) is a consequence of the left inequality of (4.9) used with (µ,ν) = (1, ν).

Finally, inequalities (4.6) and (4.7) follow from the left inequality (4.8) combined with (4.2) and (4.1), because δ(ν)−1 � 1, as
may be seen from

δ(ν)−1 = c(2ν)

= max
1�k� J

max
wk∈R

nk

wT
k (I − πAk )

T M(2ν)

k (I − πAk )wk

wT
k (I − πAk )

T Ak(I − πAk )wk

� 1

ω(2ν)
max

1�k� J
max

wk∈R
nk

wT
k (I − πAk )

T M(2ν)

k (I − πAk )wk

wT
k (I − πAk )

T M(2ν)

k (I − πAk )wk

= 1. �
From (4.3), (4.4) and (4.5), one sees that McCormick’s bound is always the best one, whereas inequalities (4.6) and (4.7)

show that all approaches are nevertheless qualitatively equivalent, since they give bounds which, at worst, correspond to
McCormick’s bound with main constant smaller by a modest factor.

5. Example

We consider the linear system resulting from the 9-point finite difference discretization of the two-dimensional Poisson
problem

−	u = f in Ω = (0,1) × (0,1),

u = 0 in ∂Ω

on a uniform grid of mesh size h = 1/N J in both directions. The matrix corresponds then, up to some scaling factor, to the
following nine point stencil⎡⎣ −1 −1 −1

−1 8 −1
−1 −1 −1

⎤⎦ . (5.1)

We assume N J = 2 J N0 for some integer N0, allowing J steps of regular geometric coarsening. We consider prolongations
in form of the standard interpolation associated with bilinear finite element basis functions. The restriction P T

k corresponds
then to “full weighting”, as defined in, e.g., [16].4 With these choices, the stencil (5.1) is preserved throughout all grids (up
to some unimportant scaling factor), and c(ν)

A may be assessed by analyzing

max
wk

wT
k (I − πAk )

T M(ν)

k (I − πAk )wk

wk Akwk
(5.2)

for a matrix Ak corresponding to stencil (5.1) applied on a grid with mesh size hk = 1/Nk . Considering two successive grids
is therefore sufficient, and, to alleviate notation, we let N = Nk , A = Ak , M(ν) = M(ν)

k , P = Pk−1, Ac = Ak−1 = P T AP and
πA = πAk = P A−1

c P T A.
To assess (5.2), we resort to Fourier analysis. The eigenvectors of A are, for m, l = 1, . . . ,N − 1, the functions

u(N)

m,l = sin(mπx) sin(lπ y)

evaluated at the grid points. The eigenvalue corresponding to u(N)

m,l is

λ
(N)

m,l = 4(3sm + 3sl − 4smsl) (5.3)

4 Up to some scaling factor; the scalings of the prolongation and restriction are unimportant when using coarse grid matrices of the Galerkin type.
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where

sm = sin2(mπ/2N), sl = sin2(lπ/2N). (5.4)

The prolongation P satisfies (see, e.g., [16, p. 87])

P T

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u(N)

m,l

u(N)

N−m,N−l

−u(N)

N−m,l

−u(N)

m,N−l

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
= 4

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − sm)(1 − sl)

smsl
sm(1− sl)

(1− sm)sl

⎫⎪⎪⎪⎬⎪⎪⎪⎭u(N/2)
m,l

for 1 � m, l � N/2 − 1, with P T u(N)

m,l = 0 for m = N/2 or m = N/2. Expressed in the Fourier basis (that is, in the basis of
eigenvectors of A), I − πA is therefore block diagonal with, for 1 �m, l � N/2− 1, 4× 4 blocks

(I − πA)m,l = I4 − P̄m,l
(
Ā(c)
m,l

)−1
P̄ T
m,l Ām,l (5.5)

where

P̄ T
m,l = 4 ( (1− sm)(1 − sl) smsl sm(1− sl) (1− sm)sl ) ,

Ām,l = diag
(
λ

(N)

m,l , λ
(N)

N−m,N−l, λ
(N)

m,N−l, λ
(N)

N−m,l

)
,

Ā(c)
m,l = P̄ T

m,l Ām,l P̄m,l = 64
(
3sm(1 − sm) + 3sl(1− sl) − 16sl(1− sl)sm(1− sm)

)
.

For m = N/2, 1 � l � N/2 − 1 and l = N/2, 1 � m � N/2 − 1, (I − πA)m,l = I2 is a 2 × 2 identity block, whereas
(I − πA) N

2 , N
2

= 1 reduces to the scalar identity. If M(ν) in the Fourier basis has the same block diagonal structure, we

are left with the analysis of

ρm,l = ρ
(
(I − πA)Tm,l M̄

(ν)

m,l(I − πA)m,l Ā
−1
m,l

)
. (5.6)

Now, we consider more specifically damped Jacobi smoothing; that is Rk = ω−1
Jac diag(A) = ω−1

Jac 8I , with ωJac ∈ (0,4/3)

to ensure ω(1) = (3/2)ωJac < 2. Then, for any number of pre- and post-smoothing steps ν , M(ν) is diagonal in the Fourier
basis, with diagonal entries depending on the eigenvalues of A; that is (see (5.3)), depending on sm and sl . To obtain grid
independent bounds, it is then interesting to consider ρm,l = ρ(sm, sl) as a function of sm , sl , and to let these parameters vary
continuously in [0,1], excluding the corner points where sm(1 − sm) = sl(1 − sl) = 0, which correspond to singularities. For
all ν , ρ(sm, sl) has the following symmetries: ρ(sl, sm) = ρ(1−sm, ss) = ρ(sm,1 − sl) = ρ(1 − sm,1 − sl). Further, numerical
investigations reveal that the maximum on the considered domain is located at the boundary, i.e., corresponds to, e.g.,
sm = 0. Because of the symmetries it is sufficient to analyze this latter case. One may check that ρ(0, sl) is the largest
eigenvalue in modulus of

1

4

⎛⎜⎜⎜⎜⎝
slµ1+slµ4

3 0 0 − slµ1+slµ4
3

0 µ2
3−(1−sl)

0 0

0 0 µ3
3−sl

0

−µ1(1−sl)+µ4(1−sl)
3 0 0 (1−sl)µ1+(1−sl)µ4

3

⎞⎟⎟⎟⎟⎠ ,

where {µi}i=1,...,4 are the 4 diagonal entries of M(ν)

kl , given by

µi = (Am,l)i,i

1− (1− ωJac
2 (Am,l)i,i)

ν
.

Thus

ρ(0, sl) = max

(
µ3

3− sl
,

µ2

3− (1 − sl)
,
µ1 + µ4

3

)
,

and, injecting the expressions of µi ,

ρ(0, sl) = max

(
1

1− (1− ωJac
2 (3− sl))(ν)

,
1

1− (1− ωJac
2 (2 + sl))ν

,

sl

1− (1 − 3ωJac
2 sl)ν

+ 1− sl

1− (1− 3ωJac
2 (1 − sl))ν

)
.
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Table 1
Convergence factor of V-cycle (for N0 = 2 and J = 6) and the corresponding bounds for ν = 1; (*) the quantity exists, but does not correspond to the
bound, since ω(1) > 1.

ωJac ω(1) c(1)
A c(2)

A
c(1)
A

c(1)
A +2

1− 2−ω(1)

K (1) 1− δ(1) ρ(E( J)
MG )

1/2 1 2.666 1.733 0.571 0.626 0.423 0.398
2/3 1 2 1.5 0.5 0.5 0.333 0.271
1 1.5 1.333 1.666 (*) 0.5 0.387 0.251

Table 2
Convergence factor of V-cycle (for N0 = 2 and J = 6) and the corresponding bounds for ν = 2; (*) the quantity exists, but does not correspond to the
bound, since ω(1) > 1.

ωJac ω(2) c(1)
A c(2)

A c(4)
A

c(1)
A

c(1)
A +4

c(2)
A

c(2)
A +2

1− 2−ω(2)

K (2) 1− δ(2) ρ(E( J)
MG )

1/2 1 2.666 1.733 1.337 0.4 0.4 0.423 0.252 0.187
2/3 1 2 1.5 1.25 0.333 0.333 0.333 0.2 0.121
1 1 1.333 1.666 1.233 (*) 0.25 0.4 0.189 0.091

Note that for sl → 0 the third term is larger that the maximum over sl of the first and the second; hence

ρ(0, sl) � sup
sl∈(0,1)

(
sl

1− (1 − 3ωJac
2 sl)ν

+ 1− sl

1− (1 − 3ωJac
2 (1 − sl))ν

)
. (5.7)

The right-hand side of (5.7) is in fact independent of sl for ν = 1, and, for ν = 2 and ν = 4, one may check, using
elementary function analysis (see Appendix B), that the supremum is reached for sl → 0,1. Hence

c(ν)
A � 2

3νωJac
+ 1

1− (1− 3ωJac
2 )ν

, ν = 1,2,4. (5.8)

Using the relation (5.8) as an equality, we can evaluate the different bounds. This is done in Tables 1 and 2 for differ-
ent number ν of smoothing steps, where we also compare the bounds with the actual convergence factor. One sees that
McCormick’s bound is indeed the best one and, further, that it gives in the considered cases a satisfactory sharp prediction
of actual multigrid convergence.

Appendix A

We first show that Theorem 5.1 in [20] particularized to the matrix case (that is, applied to the case of matrix operators
in R

n with a(v, w) = (v, Aw) = vT Aw) yields the same bound as Theorem 3.1 (except for the additional refinement in
the definition of ‖Γ ‖), provided that one has Wk = R( P̌k) and Vk = R( P̌k Ǧk − P̌k−1Ǧk−1), where P̌k and Ǧk refer to the
notation in Theorem 3.1, and Wk,Vk to notation in [20].

Firstly, note that Theorem 5.1 provides a bound on the energy norm of product iteration matrices of the form (3.10),
where

Tk = B+
k Qk A, (A.1)

B+
k being a matrix corresponding to an invertible operator onto Wk , and Qk being the orthogonal projector on the subspace

Wk =R( P̌k); that is, Qk = P̌k( P̌ T
k P̌k)

−1 P̌ T
k . It then follows that the definition (A.1) matches (3.9) by setting B+

k = P̌kM
−1
k P̌ T

k .
Observe also that, ∀wk ∈Wk ,

zk = B+
k wk ⇔ wk = P̌k

(
P̌ T
k P̌k

)−1
Mk

(
P̌ T
k P̌k

)−1
P̌ T
k zk.

Hence

Bk = P̌k
(
P̌ T
k P̌k

)−1
Mk

(
P̌ T
k P̌k

)−1
P̌ T
k (A.2)

is the proper inverse of B+
k onto Wk .

Next, the bound on ‖F J‖2A in [20] is based on the decomposition of any vector v ∈ R
n as

v =
J∑

k=0

vk,

where vk ∈ Vk . With Vk =R( P̌k Ǧk − P̌k−1Ǧk−1), it means

vk = P̌k(I − Pk−1Gk−1)Ǧkv = ( P̌k Ǧk − P̌k−1Ǧk−1)v. (A.3)
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Then, the bound in [20] is

‖F J‖2A � 1− 2− ω

K1(1 + K2)2
, (A.4)

where K1 is such that

J∑
k=0

(Bkvk, vk) � K1v
T Av ∀v ∈ R

n, (A.5)

where ω satisfy

(Awk, wk) � ω(Bkwk, wk) ∀wk ∈ Wk, k = 1, . . . , J , (A.6)

and where K2 = ‖Γ̃ ‖, with Γ̃ = (γ̃kl) being the ( J + 1) × ( J + 1) matrix whose coefficients are such that

(Awk, vl) � γ̃kl(Bkwk, wk)
1/2(Blvl, vl)

1/2 ∀vk ∈ Vk, wk ∈ Wk (A.7)

for k � l, and γ̃kl = γ̃lk for k > l.
With (A.2) and (A.3), it is easy to recognize that K (ν) in (3.4) is the best constant K1 satisfying (A.5). On the other hand,

“∀wk ∈Wk” means “for all wk = P̌kw with w ∈ R
n” and “∀vk ∈ Vk” means “for all vk = P̌k(I − Pk−1Gk−1)Ǧkv with v ∈ R

n”.
Hence, for k < l, γkl in (3.6) is the best γ̃kl satisfying (A.7). Further, using the same arguments, we see that ω(ν) is the
best choice for ω. Therefore, the equivalence between the bound (A.4) in [20] and (3.3) is proved, except for the additional
refinement showing that the lower triangular part of Γ can be set to zero.

We next show that with any admissible choice of Vk , one may associate valid Gk , k = 0, . . . , J , such that Vk =R( P̌k Ǧk −
P̌k−1Ǧk−1) (setting P−1 = G−1 = On0×n0 ). In other words, any bound from Theorem 5.1 in [20] obtained using a particular
decomposition can also be obtained via (3.3) (up to some additional refinement in the definition of ‖Γ ‖) using a particular
set of matrices Gk .

We begin the proof letting

Xk = V0 ⊕ V1 ⊕ · · · ⊕ Vk.

Observe that the proposition holds if, given X0 ⊂X1 ⊂ · · · ⊂X J = R
n , one can find Gk , k = 0, . . . , J , such that

R( P̌k Ǧk) = Xk (A.8)

and

R( P̌k Ǧk − P̌k−1Ǧk−1) ∩R( P̌k−1Ǧk−1) = {0}.
The latter equality is checked if, for all v, w ∈ R

n ,

( P̌k Ǧk − P̌k−1Ǧk−1)v = P̌k−1Ǧk−1w ⇒ ( P̌kǦk − P̌k−1Ǧk−1)v = P̌k−1Ǧk−1w = 0;
that is, since P̌k has full rank, if

(I − Pk−1Gk−1)(Ǧkv) = Pk−1Gk−1(Ǧkw)

⇒ (I − Pk−1Gk−1)(Ǧkv) = Pk−1Gk−1(Ǧkw) = 0. (A.9)

This proposition is true when Pk−1Gk−1 is a projector (note that P−1G−1 = On0×n0 is a projector as well). The right equali-
ties (A.9) follow then from the multiplication of (A.9) by (I − Pk−1Gk−1) and Pk−1Gk−1, respectively.

We now assume that Ǧ j has been constructed properly for j = J , . . . ,k + 1 (which holds trivially for j = J − 1), and
show that one can construct Gk such that

R( P̌kGkǦk+1) = Xk (A.10)

while satisfying the constraint

Gk PkGk = Gk, (A.11)

yielding the required result by induction, since (A.11) implies (PkGk)
2 = PkGk .

Let mk = dim(Xk). Observe that W0 ⊂ · · · ⊂ Wk implies mk � dim(Wk) = nk . Hence (A.10) holds if Gk = R(Ǧk) is a
prescribed mk-dimensional subspace of R

nk whose image by P̌k is Xk . Let Hk be an nk ×mk matrix whose columns form a
basis of this subspace. We search for Gk of the form

Gk = Hk Zk,

where Zk is an mk × nk+1 matrix of rank mk . Then (A.10) holds if ZkǦk+1 has rank mk , which is ensured if R(Ǧk+1) con-
tains an mk-dimensional subspace complementary to N (Zk) (see [12, p. 199]). Note that dim(R(Ǧk+1)) = dim(Xk+1) �mk ,
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hence there exists at least one mk-dimensional subspace Gk of R(Ǧk+1), and we shall enforce the null space of Zk to be
complementary to Gk .

Consider now the constraint (A.11). With the given form of Gk , it is satisfied when

Zk PkHk = Imk ;
that is, according to the terminology in [2], if Zk is a {1,2}-inverse of PkHk . As shown in [2, p. 59], given any subspace Sk
complementary to Tk =R(PkHk) there exist such a {1,2}-inverse having Sk as a null space.

Hence the required result is proven if one can always find Sk complementary to both Gk and Tk . This, in turn, is true
since Gk and Tk are subspaces of the same dimension of a finite-dimensional space R

nk , see [9].

Appendix B

Lemma B.1. Let Pk, k = 0, . . . , J − 1, be nk+1 × nk matrices of rank nk with n = n J > n J−1 > · · · > n0 . Let Gk, k = 0, . . . , J − 1, be
nk+1 × nk matrices such that

Gk Pk = Ink .

Set P−1 = G−1 = On0×n0 and let, for k = 0, . . . , J , P̌k be defined by (3.1), Ǧk be defined by (3.2), and Q̌ k = (I − Pk−1Gk−1)Ǧk .
There holds, for 0 � l,k � J with k �= l,

Q̌ k P̌k Q̌ k = Q̌ k and Q̌ l P̌k Q̌ k = Onl×n.

Proof. Note that Gk Pk = Ink implies Ǧk P̌k = Ink . The first statement follows then from

(I − Pk−1Gk−1)Ǧk P̌k(I − Pk−1Gk−1) = (I − Pk−1Gk−1)(I − Pk−1Gk−1)

= I − Pk−1Gk−1.

To prove the second statement, we consider two cases. If l > k,

(I − Pl−1Gl−1)Ǧl P̌k = (I − Pl−1Gl−1)Gl · · ·G J−1P J−1 · · · Pl Pl−1 · · · Pk

= (I − Pl−1Gl−1)Pl−1 · · · Pk

= Pl−1(I − Gl−1Pl−1)Pl−2 · · · Pk

= Onl×nk ,

whereas, if l < k,

Ǧl P̌k(I − Pk−1Gk−1) = Gl · · ·Gk−1Gk · · ·G J−1P J−1 · · · Pk(I − Pk−1Gk−1)

= Gl · · ·Gk−1(I − Pk−1Gk−1)

= Gl · · ·Gk−2(I − Gk−1Pk−1)Gk−1

= Onl×nk . �
Appendix C

In this appendix we outline for even values of ν the proof of the following identity

sup
sl∈(0,1)

(
sl

1− (1− 3ωJac
2 sl)ν

+ 1− sl

1− (1− 3ωJac
2 (1− sl))ν

)
= 2

3νωJac
+ 1

1− (1− 3ωJac
2 )ν

,

with ωJac ∈ (0,4/3). More precisely, we prove that

f (sl) = sl

1− (1− 3ωJac
2 sl)ν

is a convex function for ωJac ∈ (0,4/3), and hence so is f (sl) + f (1 − sl), the prove being finished by the fact that any
convex function takes it supremum at the boundary.

Now, note that

f̃ (c) = 3ωJac

2
f
(
c(2/3)ω−1

Jac

) = (
1+ c + · · · + cν−1)−1 = g(c)−1
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is convex for c ∈ (−1,1) if and only if f (sl) is convex. However, f̃ (c) is convex if d2 f̃
dc2

> 0 for c ∈ (−1,1), that is, if
d2g
dc2

· g < 2 · ( dgdc )2. On the other hand, one can check that

d2g

dc2
· g − 2

(
dg

dc

)2

= −
ν/2−1∑
i=0

c2i−2(c2 + i(ν − 2i)(c + 1)2
)
,

this last term being negative for c ∈ (−1,1).
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