
Identifying Performance Bottlenecks on Modern
 Microarchitectures using an Adaptable Probe

Gorden Griem*, Leonid Oliker*, John Shalf*, and Katherine Yelick*+
*Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720

+Computer Science Division, University of California, 387 Soda Hall #1776, Berkeley, CA 94720
{ggriem, loliker, jshalf, kayelick}@lbl.gov

Abstract
 The gap between peak and delivered performance for scien-
tific applications running on microprocessor-based systems
has grown considerably in recent years. The inability to
achieve the desired performance even on a single processor is
often attributed to an inadequate memory system, but without
identification or quantification of a specific bottleneck. In this
work, we use an adaptable synthetic benchmark to isolate ap-
plication characteristics that cause a significant drop in per-
formance, giving application programmers and architects
information about possible optimizations. Our adaptable
probe, called sqmat, uses only four parameters to capture key
characteristics of scientific workloads: working-set size, com-
putational intensity, indirection, and irregularity. This paper
describes the implementation of sqmat and uses its tunable
parameters to evaluate four leading 64-bit microprocessors
that are popular building blocks for current high performance
systems: Intel Itanium2, AMD Opteron, IBM Power3, and
IBM Power4.

1. INTRODUCTION

There is a growing gap between the peak speed of micro-
processor-based systems and the delivered performance for
scientific computing applications. This gap has raised the im-
portance of developing better benchmarking methods to im-
prove performance understanding and prediction, while identi-
fying hardware and application features that work well or
poorly together. Benchmarks are typically designed with two
competing interests in mind – capturing real application work-
loads and identifying specific architectural bottlenecks that
inhibit the performance. Benchmarking suites like the NAS
Parallel Benchmarks [7] and the Standard Performance
Evaluation Corporation (SPEC) [1] emphasize the first goal of
representing real applications, but they are typically too large
to run on simulated architectures and are too complex to em-
ploy for identification of specific architectural bottlenecks.
Likewise, the complexity of these benchmarks can often end
up measuring the quality of the compiler’s optimizations as
much as it does the underlying hardware architecture. At the
other extreme, microbenchmarks such as STREAM [6] are
used to measure the performance of a specific feature of a
given computer architecture. Such synthetic benchmarks are
often easier to optimize so as to minimize the dependence on
the maturity of the compiler technology. However, the sim-
plicity and narrow focus of these codes often makes it quite
difficult to relate to real application codes. Indeed, it is rare
that such probes offer any predictive value for the perform-
ance of full-fledged scientific application.

Benchmarks, often present a narrow view of a broad, multi-
dimensional parameter space of machine characteristics. We
therefore differentiate a “probe” from a “microbenchmark” or
synthetic benchmark on the basis that the latter typically offers
a single-valued result in order to rank processor performance
consecutively – a few points of reference in a multidimen-
sional space. A probe, by contrast, is used to explore a con-
tinuous, multidimensional parameter space. The probe’s
parameterization helps the researcher uncover the peaks and
valleys in a continuum of performance characteristics and ex-
plore the ambiguities of computer architectural comparisons
that cannot be captured by a single-valued ranking.

In this paper, we introduce the sqmat probe [9], which at-
tempts to bridge the gap between these competing require-
ments. It maintains the simplicity of a microbenchmark while
offering four distinct parameters to capture different types of
application workloads: working-set size (parameter “N”),
computational intensity (parameter “M”), indirection (parame-
ter “I”), and irregularity (parameter “S”).

By varying the parameters of sqmat, one can capture the
memory system behavior of a more diverse set of algorithms
as shown in Table 1. With a high computational intensity (M),
the benchmark matches the characteristics of dense linear
solvers that can be tiled into matrix-matrix operations (the so-
called “BLAS-3” operations). For example PARATEC [10] is
a material science application that performs ab-initio quantum-
mechanical total energy calculations using pseudopotentials
and a plane wave basis set. This code relies on BLAS-3 librar-
ies with direct memory addressing, thus having a high compu-
tational intensity, little indirection, and low irregularity. How-
ever, not all dense linear algebra problems can be tiled in this
manner; instead they are organized as dense matrix-vector
(BLAS-2) or vector-vector (BLAS-1) operations, which re-
quire fewer operations on each element. This behavior is cap-
tured in sqmat by reducing the computational intensity, possi-
bly in combination with a reduced working set size (N).

Indirection, sometimes called scatter/gather style memory
access, occurs in sparse linear algebra, particle methods, and
grid-based applications with irregular domain boundaries.
Most are characterized by noncontiguous memory access; thus
placing additional stress on memory systems that rely on large
cache lines to mask memory latency. The amount of irregular-
ity varies enormously in practice. For example, sparse matri-
ces that arise in Finite Element applications often contain
small dense sub-blocks, which cause a string of consecutive
indexes in an indirect access of a sparse matrix-vector product
(SPMV). Table 1 shows an example of SPMV where one-third
of data are irregularly accessed; in general the irregularity (S)
would depend on the sparse matrix structure. Another example

of algorithmic irregularity can be found in GTC - a magnetic
fusion code that solves the gyro-averaged Vlasov-Poisson
system of equations using the particle-in-cell (PIC) approach
[11]. PIC is a sparse method for calculating particle motion
and is characterized by relatively low computational intensity,
array indirection, and high irregularity. In both cases, the
stream of memory accesses may contain sequences of con-
tiguous memory accesses broken up by random-access jumps.

In this paper, we describe the implementation of the sqmat
probe and focus on how its four parameters enable us to
evaluate the behavior of four microprocessors that are popular
building blocks for current high performance machines. The
processors are compared on a basis of the delivered percentage
of peak performance rather than absolute performance so as to
limit the bias inherent in comparisons between different gen-
erations of microprocessor implementations. We evaluate
these processors and isolate architectural features responsible
for performance bottlenecks, giving application developers
valuable hints on where to optimize their codes. Future work
will focus on correlating sqmat parameters across a spectrum
of scientific applications.

2. SQMAT OVERVIEW

The Sqmat benchmark is based on matrix multiplication and
is therefore related to the Linpack benchmark and to linear
algebra solvers in general. The Linpack benchmark is used to
rank the machines of the Top500[5] supercomputer list, al-
though the benchmark reflects only a narrow class of large
dense linear algebra applications.

The sqmat algorithm squares L matrices of size NxN. Each
matrix is squared M times, i.e., raised to the power M. By
varying M, the ratio between memory transfers and computa-
tion can be changed. In this work, we set L large enough such
that the matrix-entry array is several times bigger than the
cache size. Thus we expect consistent timings even after re-
peating the benchmark multiple times in an outer loop.

Sqmat’s matrix entries can be accessed either directly or in-
directly. In the direct case, matrices are continuously stored in
memory using row-major ordering. For the indirect case, there
is still one block of memory the values are saved in, but now
the parameter S controls the degree of irregularity: S entries
are stored contiguously, the next entry jumps to a random po-
sition in memory, followed by S-1 continuous, and so on.
Each entry owns a pointer addressing the location of the value
in memory space. Figure 1 shows an example of the memory
layout for S=4.

Squaring the matrices is performed in three steps. First, the
values of one matrix are loaded from memory into registers; if
there are more values than registers, register spills will occur.
Next, the matrix is squared M times in the registers. Finally,

the results are written back to memory. We use a Java pro-
gram to generate optimally hand-unrolled C-code [9], greatly
reducing the influence of the C-compiler’s code generation
and thereby making sure that the hardware architecture rather
than the compiler is benchmarked. The innermost loop is un-
rolled enough to ensure that all available floating-point regis-
ters are occupied by operands during each cycle of the loop.
The unrolling is not so extreme as to cause processor stalls
either due to the increased number of instructions or additional
branch-prediction penalties. If enough registers are available
on the target machine, several matrices are squared at the same
time. Since squaring the matrix cannot be done in situ, an in-
put and output matrix is needed for computation, thus a total
of 2⋅N2 registers are required per matrix.

For direct access, each double-precision floating-point value
has to be loaded and stored, creating 8 bytes memory-load and
8 bytes memory-store traffic. For indirect access, the value
and the pointer have to be loaded. As we always use 64-bit
pointers in 64-bit mode, each entry creates 16 bytes of mem-
ory-load and 8 bytes of memory-store traffic.

To allow a comparison between the different architectures,
we introduce the algorithmic peak performance (AP) metric.
The AP is defined as the performance that could be achieved
on the underlying hardware for a given algorithm if all the
floating-point units were optimally used. The AP is always
equal to or less than the machine peak performance (MP). For
example, some architectures support floating-point multiply-
add instructions (FMA) and only achieve their peak rated flop
rate when this instruction is used. However since a scalar mul-
tiply can only use the multiply-part of the instruction and not
exploit the FMA, the effective maximum flop-rate (and AP) is
only half the MP for that processor. Therefore to obtain a fair
comparison, we evaluate performance against the AP. Figure 2
shows the algorithmic peak performance using different work-
ing set sizes (N) on the four architectures examined in our
study: the Intel Itanium2, the AMD Opteron, the IBM Power3,
and the IBM Power4.

For each NxN matrix used by sqmat, updating an entry re-
quires N multiplies and (N-1) adds. Therefore if the machine
supports FMA (Itanium2, Power3, Power4), the AP is 1-
1/(2⋅N) of the MP. For architectures not capable of executing
FMAs (Opteron), the AP is equivalent to the MP.

To measure performance, we use the IBM HPMToolkit [3]
on the Power3 and Power4 under AIX. For Itanium2 and Op-
teron, we use the Performance Application Programming In-
terface (PAPI) [4] under Linux. Compilation is performed
using the IBM xlc compiler on Power3 and Power4, the Port-
land Group’s pgcc on the Opteron, and the Intel ecc on the
Itanium2. All measurements were repeated thirty times and
divided into ten runs. The normalized standard deviation be-
tween measurements was generally less than 1%. To make
sure that operating-system dependent page-faults would not

 Figure 1: Example of Sqmat indirection for S=4

Floating-point
memory array … 73 74 75 76

Pointer memory
array

3 21 4

1 2 3 4 5 6 7 8

 M N CI
orig:sqmat

S %
irreg

DAXPY 1 1 0.5:0.5 - 0%
DGEMM 1 4 3.5:3.5 - 0%
MADCAP[12] 2 4 7.5:7.0 - 0%
SPMV 1 4 3.5:3.5 3 33%
Table 1: Mapping Sqmat parameters onto algorithms

affect performance, we discard the first result of each run.
Note that the sqmat benchmark is simple enough to be exe-

cuted on existing hardware simulators, thereby allowing us to
obtain performance estimates before the actual hardware is
built. This topic will be explored in future work.

3. DESCRIPTION OF THE UNDERLYING HARDWARE

In this section, we describe the key components of the four
processors in our study.

3.1. Itanium2

The Intel Itanium2 is a 64-bit processor with four floating-
point units, two capable of executing one FMA per cycle
while the other two perform other floating-point operations
such as comparisons, however only two floating-point opera-
tions can be executed in parallel. Utilizing the maximum two
FMAs per cycle using our test system running at 900 MHz,
results in peak machine performance of 3.6 GFlop/s. The Ita-
nium2 has 128 floating-point registers, so it is can accommo-
date matrices up to 8x8 (N=8) in size and can pack several 4x4
matrices into registers without spilling (N=4).

3.2. Opteron

The primary floating point horsepower of the AMD Op-
teron comes from its SIMD floating-point unit accessed via
the SSE2 instruction set extensions. The old x87 floating point
unit and associated registers have been deprecated for all prac-
tical purposes. The Opteron can execute two double-precision
floating-point operations per cycle using a single SIMD in-
struction on operands packed into 128-bit registers. Therefore
the 1.4Ghz test system offers peak performance of 2.8
GFlop/s. The 16 128-bit floating-point registers allow a single
4x4 matrix to fit in registers without spilling (N=4); however
the SIMD instructions require that two variables must be in
the same 128-bit register to be operated on simultaneously.
For a matrix-multiply, this cannot be guaranteed consistently,
thus we expect the achieved performance to be significantly
less than the algorithmic peak performance.

3.3. Power3

The IBM Power3 processor has two floating-point units ca-
pable of executing one FMA per cycle. Running at 375 MHz,
this results in a peak-performance of 1.5 GFlop/s. The proces-
sor has 32 floating-point registers with an additional 32 re-
name registers that are not directly visible to the programmer;
so one matrix of size 4x4 fits into the registers (N=4). Despite

its age and relatively meager performance, the Power3 archi-
tecture is still widely used, most notably in systems that rank
in the top ten slots of the Top500 supercomputer list [5].

0
1000
2000
3000
4000
5000

Itanium2 Opteron Pow er3 Pow er4

M
Fl

op
/s

N=1

Peak

Figure 2: Algorithmic peak performance for varying N

3.4. Power4

The IBM Power4 processor has two floating-point units ca-
pable of executing one FMA per cycle. There are two proces-
sors on a die, but our experiments focus on only one proces-
sor. Running at 1.3 GHz, the peak performance is 5.2 GFlop/s.
Of the 72 floating-point registers, only 32 are visible. The rest
are rename registers for storing intermediate asynchronously
generated results. One 4x4 matrix fits into the registers (N=4).

4. COMPUTATIONAL INTENSITY WITH UNIT STRIDE

In this section, we measure the performance of directly ac-
cessing the matrix entries on the four different architectures
using a fixed working set size of N=4. By studying the
achieved performance for a given computational intensity
(CI), we evaluate how well the architecture hides the
load/store latency to and from memory. Additionally, this met-
ric indirectly measures the effective throughput of the proces-
sor’s memory subsystem under a variety of conditions rather
than its theoretical peak bandwidth. An architecture that is
able to make effective use of its memory and cache subsystem
will require less computational intensity to achieve a high per-
centage of its algorithmic peak.

We define CI as the ratio of floating point operations to load
and store operations. For architecture supporting FMA instruc-
tions, FMAs are counted as two separate operations. Given
M⋅(2⋅N-1) operations per matrix entry and two eight-byte
memory transfers for the direct access (three eight-bytes for
indirect) results in a CI of M⋅(2⋅N-1)/2 for the direct case
(M⋅(2⋅N-1)/3 in the indirect case).

Two potential performance bottlenecks are investigated in
this section. For high M we expect performance to approach
AP; otherwise the functional units are not being used effec-
tively. This is a symptom of an inability to find sufficient in-
struction level parallelism during instruction scheduling. For
small M, especially M=1, sqmat is essentially memory bound.
Since all architectures are able to overlap computation with
data transfers, we expect the bottleneck to be almost entirely
due to data movement to and from registers.

 Figure 3 shows the achieved performance for different
computational intensities on all four architectures using N=4
(note that CI=M⋅7/2). It can clearly be seen that Power3 and
Itanium2 are the only architectures achieving nearly 100% of
algorithmic peak performance – the Opteron and Power4 trail-
ing with 72.2% and 71.2% of AP respectively. Notice that the
initial slope of the performance curves is directly proportional
to the effective memory bandwidth while sqmat is still mem-
ory bound. As the CI reaches the point where it exceeds the
effective bytes/flop ratio of the system, it levels off as
performance becomes compute-bound – constrained by the
throughput of the floating-point engine of the machine.

Notice that performance continues to improve with increas-
ing CI on the Itanium2, whereas the algorithmic peak plateaus
on the other architectures. This together with the low per-
formance for small M supports the assumption that floating-

N=2
N=4
N=8
N=16

point transfers between cache and registers are a serious
bottleneck on the Itanium2 platform. This may be attributed to
its inability to store floating-point operands in the L1 cache.

Figure 3 also shows that the Power3 is effective at hiding
the latency of cache access, while the Opteron and Power4 do
not use all floating-point units effectively. For the Opteron,
this is due to the SIMD nature of the SSE instructions that
require two symmetric floating point operations to be executed
per cycle on operands in neighboring slots of its 128-bit regis-
ters – a constraint that cannot be satisfied at all times.

The Power4 does not have the same SIMD constraint as the
Opteron, demonstrating that its superscalar execution unit was
unable to find enough independent calculations to keep its two
superscalar floating point execution units saturated. Despite
similarities to the Power3 superscalar functional units, the
Power4 has much deeper execution pipelines (12 vs. 3 stages
in the Power3) thus putting more pressure on the instruction
reordering to find instruction level parallelism (ILP). We theo-
rize that the increased pipeline depth is either inhibiting the
Power4’s ability to find sufficient ILP or is causing it to run
short on the rename registers necessary to support concurrent
execution of the microprocessor.

5. WORKING SET SIZE

In numerous applications, tiling is used to achieve better
performance – the best-known example being dense matrix-
multiply. In other applications, however, there are dependen-
cies that prevent tiling or limit the tile size. In this section, we
measure the effects of choosing different working-set (or tile)
sizes on the performance of the four processors.

In the sqmat benchmark, the parameter N controls the work-
ing-set size as it defines the size of the NxN matrix. For small
N, each matrix will fit into registers; increasing N, however,
will eventually cause a register spill to L1 cache (L2 on Ita-
nium2). Since each matrix element is accessed N times, these
register spills have a dramatic impact on runtime. Results are
measured for N=1, 2, 4, 8, and 16, with an expectation that
performance will drop when the working-set size exceeds the
number of registers on a given platform. Note that for N=1,
the matrix squaring degenerates to a scalar multiply.

We also investigate changes to the CI by varying M. For
high M, algorithmic peak performance should be achieved
when all matrix elements are in registers. The penalty for reg-
ister spilling (large N) is measured by comparing performance
with in-register (small N) at high M. If additional registers are
available for small working set sizes, several matrices are
squared concurrently, filling the pipeline with independent

calculations. These concurrent calculations are necessary to
avoid significant performance penalties; most notably, even
with the best result forwarding, only one calculation per cycle
would be possible for N=1.

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000
Computational Intensity (CI)

A
lg

or
ith

m
ic

 p
ea

k

Itanium2
Opteron
Pow er3
Pow er4

Figure 3: Achieved performance for unit stride (N=4)

This benchmark parameter allows us to answer a number of
critical questions about each machine. First, does a given ma-
chine ever reach its algorithmic peak? We will consider as
many as 256 matrix squaring operations on in-register data,
and expect ideal AP for such a high CI; otherwise instruction-
scheduling problems are primarily at fault. Second, what is the
optimal working-set size for each machine and does it corre-
spond appropriately to the number of available registers? Fi-
nally, what is the cost of register spilling for large working set
sizes? From the hardware designers’ perspective, these results
quantify the effects of the register set size and cache access
latency. From the software designers’ perspective, they show
the best working-set size, around which algorithms and com-
pilers should be designed.

5.1. Itanium2

The Itanium2 processor cannot store floating-point vari-
ables in L1 cache but only in the L2; therefore, the impact of
register spills and any failure of the compiler’s instruction
scheduling to effectively mask the latency of register loads is
higher than for the other architectures.

Figure 4(a) shows the achieved performance for varying N
and M. For small and medium N, algorithmic peak perform-
ance is achieved, showing that the Itanium2 is capable of ef-
fectively using its hardware resources.

For high N, the penalty of register spills can clearly be seen.
However, for high computational intensity, Itanium2 is still
capable of effectively hiding a certain number of register
spills: N=8 achieves 95.9% for M=256. As a result, for high
computational intensity, the working-set size can be chosen
over a broader range than on the other evaluated architectures.

For N=16, only 22.9% of AP is achieved even when M is
256. This effect is less pronounced than expected given the 7
cycles penalty to access the L2 cache, but still demonstrates
that the working-set size has to be chosen carefully to avoid
significant performance penalties.

5.2. Opteron

With 16 128-bit and 8 MMX registers, the Opteron only has
40 floating-point double-precision registers, causing register
spills when N>4. Furthermore, the probability of executing
two useful instructions per cycle is rather low, since the Op-
teron only allows one SIMD instruction per cycle, which is
executed on one 128-bit register. As a result, achieved per-
formance is significantly less than algorithmic peak.

Figure 4b shows the achieved vs. algorithmic peak perform-
ance on Opteron for varying N and M. The effects of the
SIMD instructions can clearly be seen as even in the best case
only 76% of AP is attained. For the N=16 case with M=256,
the performance is only 16% of AP. Therefore register spills
cause a dramatic slowdown (about 5x) on the Opteron system.

5.3. Power3

With 32 visible registers, register spilling occurs on the

Power3 for N>4. This architecture runs at the low frequency
of 375 MHz with a bandwidth of 3.2 (1.6) GB/s from (to) L1
cache and 1.6 GB/s to L1 cache, while returning L1 cache-hits
in one cycle; thus we expect the penalty for these spills to be
small in comparison to the other architectures in our study.

Figure 4c shows the achieved vs. algorithmic peak perform-
ance on the Power3. For N≤4, nearly 100% of algorithmic
peak performance is achieved for large CI. For larger N, the
effects of register spills can be seen, but are moderate even for
the N=16 case, where 38% of peak performance is achieved.
Power3 offers the most tolerant behavior of all architectures
reviewed in this paper, due in part to its L1 cache that is ac-
cessible in one cycle.

5.4. Power4

With 32 visible floating-point registers, spilling will occur
on Power4 for N>4. Having the same bandwidth as the
Power3 (3.2/1.6 GB/s to/from L1 cache), but running at a
higher frequency, we expect the penalty of these spills to be
significantly higher than for the Power3.

Figure 4d shows the achieved vs. algorithmic peak perform-
ance on the Power4 for varying N and M. Interestingly, the
best performance is achieved for N=2 with nearly 90% of AP.

The N=4 case only achieves 72% of AP, which is even more
surprising since we checked the generated assembly-code and
found no visible register spills. We theorize that the deeper
execution pipelines of the Power4 may exhaust rename regis-
ter resources – thereby constraining the amount of instruction
level parallelism. For N=16, only 22% of AP is achieved,
showing that the penalty for register spills is significantly
higher than on the Power3, but still better than on the other
architectures in our study.

0%
20%
40%
60%
80%

100%

N=1 N=2 N=4 N=8 N=16
(a) Itanium2

A
lg

or
ith

m
ic

pe

ak
M=1

M=256

0%
20%
40%
60%
80%

100%

N=1 N=2 N=4 N=8 N=16
(b) Opteron

A
lg

or
ith

m
ic

pe

ak

0%
20%
40%
60%
80%

100%

N=1 N=2 N=4 N=8 N=16
(c) Power3

A
lg

or
ith

m
ic

pe

ak

0%
20%
40%
60%
80%

100%

N=1 N=2 N=4 N=8 N=16
(d) Power4

A
lg

or
ith

m
ic

pe

ak

Figure 4: Effect of working set size on algorithmic peak

6. INDIRECTION

In many applications, data cannot be accessed directly but
has to be accessed indirectly via pointers. In this section, we
evaluate the third performance bottleneck by measuring the
slowdown caused by adding one layer of indirection at a fixed
working-set size of N=4.

We chose a model for indirection that mimics the com-
pressed-row format of a typical sparse-matrix multiply imple-
mentation. Note that this model offers no direct correspon-
dence to sparse algorithms that employ list or tree traversals;
however, more general conclusions can be inferred by examin-
ing the effect of irregular access frequency on the peak
throughput of these microprocessors.

 In our indirect implementation, one continuous block of
memory is allocated to store the floating-point values, while
another contiguous segment is allocated for the pointers. Each
floating-point variable owns a pointer, and all data accesses to
those values go through a level of indirection. Both pointers
and values are stored in row-major order in memory; the ma-
trices are stored continuously in memory.

The comparison between direct and indirect implementation
shows how well each architecture hides the overhead caused
by indirect access through computation. The slowdown can be
attributed to two factors. As twice the memory load traffic is
generated, the memory bandwidth may be insufficient to
effectively fill the cache-lines before they are consumed. In
addition, there is increased instruction overhead caused by
first getting the pointer and then the value. In theory, an
architecture capable of rescheduling more instructions
dynamically should be able to reduce the slowdown caused by
the second factor as pointer calculations and floating-point
arithmetic are executed in different functional units.

When comparing the direct and indirect case, performance
is examined for a fixed M. However, the indirect case requires
pointer access while the direct case does not, resulting in dif-
ferent CI for a given M. To circumvent this issue, we only use
M for comparisons in this section, but keep in mind that the
indirect CI in the indirect case is only 2/3 of the direct case.

 Figure 5 shows the slowdown of indirect versus direct ac-
cess for varying M. Opteron, Power3 and Power4 behave ap-
proximately the same, with the penalty being less than 10%
for M>8. This demonstrates that the bandwidth between cache
and processor is high enough to deliver both addresses and
values. On Power3 and Power4, this can be explained by the
fact that L1 to processor bandwidth is twice that of processor
to L1. It can also be seen that the longer rescheduling queue of
the Power4 achieves a better performance than Power3’s
shorter queue.

 Finally, on the Itanium2, indirection results in a signifi-

M=4

cantly higher penalty even for a high CI that is very difficult to
achieve in real applications. For M=1, the penalty is a factor of
5.4x; even at M=8, the slowdown remains high at 1.5x. These
results show that indirection is a significant bottleneck on
Itanium2 for reasons that we’ve thus far been unable to com-
pletely understand. This issue is currently under investigation.

7. IRREGULARITY

Numerous scientific applications, such as sparse matrix –
vector multiply, have certain irregular patterns in their data
accesses. The most typical sparse matrix representation is a
row-compressed format where an index array is employed to
skip over the zeros in the source matrix using indirect refer-
ences of the form SourceVector[IndexArray[I]]. We therefore
introduce the parameter S to model these access patterns for
problems that exhibit varying degrees of irregularity.

Sets of S floating-point values are stored contiguously in
memory at random starting positions. Therefore when travers-
ing the data linearly the first element is at a random position,
the next S-1 elements are directly following, then the next
element is at a random position, and so on (see Figure 1). The
pointers are pre-computed and stored contiguously in memory.
The starting address for the S contiguous floating-point values
is set to N⋅8⋅S, to align the memory layout with the cache lines
and thus minimize unnecessarily splitting of elements across
multiple cache lines. By varying S, we can change the ratio of
cache hits to cache misses. Note that performance results are
compared with indirect memory access where all elements are
stored contiguously (denoted as S=∞).

When S is not a power of 2, we observed performance deg-
radation for increasing S due to cache-line misalignment. Thus
we restrict our experiments of S to powers of two. For all ar-
chitectures, S=1,2,4,8,16 were chosen, additionally a high S of
128 is also presented. By comparing the slowdown between
decreasing S and S=∞, we measure the architecture’s tolerance
to cache-misses. This part of the benchmark primarily meas-
ures memory subsystem throughput. Bandwidth to memory,
memory access latency and the number of outstanding cache
misses an architecture can effectively handle are all key per-
formance factors in this section.

7.1. Itanium2

As Figure 6a shows, the Itanium2 performs extremely well
for irregular accesses. Even with S=1, the worst slowdown (at
M=2) is only 3.4 times worse than regular access, making the
Itanium2 the best evaluated architecture for irregularity. For
random accesses as high as 12.5% (S=8), the performance

degradation for irregular access is less than 31% even for the
smallest computational intensity.

1
2
3
4
5
6

1 2 4 8 16 32 64 128 256 512

M

Sl
ow

do
w

n
Itanium2
Opteron
Power3
Power4

Figure 5: Slowdown due to indirection (N=4)

These results can partly be explained by the fact that float-
ing-point variables only get cached in the L2, making the cost
of cache misses relatively less expensive in comparison to the
other systems. It also shows that the architecture and/or the
compiler instruction scheduler is effective at hiding the penal-
ties of cache misses in these experiments.

7.2. Opteron

Opteron performs nearly as well as the Itanium2 for totally
random accesses, as seen in Figure 6b. At M=4, the penalty
for 100% random access (S=1) is only a factor of 3.2, com-
pared to 3 on the Itanium2. As the frequency of irregular ac-
cess increases however, performance improves at a much
slower rate than for the Itanium2. Even at S=128, when only a
tiny fraction of the elements are out of unit stride (0.78%), the
performance penalty is still up to 25%.

These results demonstrate that the shorter memory access
latency enabled by the on-chip memory controller combined
with the Opteron’s ability to sustain up to eight outstanding
cache misses, allows the memory system to perform well for
irregular data accesses. However, the architecture is not as
effective as the Itanium2 in hiding latency for small numbers
of irregular accesses.

7.3. Power3

As seen in Figure 6c, the Power3 performs poorly for ir-
regular data access. For (M=1, S=1), total random access suf-
fers a 24x slowdown compared with the linear case (M=1,
S=∞); more than six times worse than the Opteron and Ita-
nium2. Even a slight irregularity of 128 consecutive accesses
in memory performs significantly slower than the S=∞ case.

The poor performance for S=1 can mostly be explained by
the 35 cycle penalty of a cache-miss combined with the fact
that the Power3 memory subsystem does not allow more than
four prefetch streams from memory to L1 cache. It is also
likely that the prefetch engines contribute to this slowdown.
The prefetch engines require a long stream of contiguous ac-
cesses in order to detect a viable prefetch stream. Even a small
amount of irregularity can confuse these relatively simple
hardware units. When the prefetch engines cannot be engaged,
the execution engine is subjected to the full round-trip mem-
ory latency as cache lines are loaded on an essentially de-
mand-driven basis. The compiler can override this behavior
with explicit prefetch directives, but there is insufficient in-
formation at compile time to make this choice.

Results show that the Power3’s memory subsystem is the
most intolerant of irregularity of the platforms we examined.
The Power3 architecture was clearly optimized to handle
dense-mode numerical kernels.

7.4. Power4

As can be seen in Figure 6d, the cost of irregular access is
high on the Power4. For (M=1, S=1), the penalty for all-
random accesses is a factor of 14.8 compared to regular ac-
cesses (M=1, S=∞). Although performing better than the

Power3, even S=128 is significantly worse than the S=∞ case.

1

2

3

4

1 2 4 8 16 32 64
M

(a) Itanium2

Sl
ow

do
w

n

1

2

3

4

1 2 4 8 16 32 64
M

(b) Opteron

S=1
S=2
S=4
S=8
S=16
S=128

0

5

10

15

20

25

1 2 4 8 16 32 64
M

(c) Power3

Sl
ow

do
w

n

0

3

6

9

12

15

1 2 4 8 16 32 64
M

(d) Power4

Figure 6: Slowdown due to irregularity (N=4)

Given the Power4’s comparatively deep instruction reorder-
ing capability – able to manage 200 instructions in flight per
cycle – one would expect a performance comparable to the
Opteron. However, such deep reordering is apparently insuffi-
cient to hide the memory latency for this level of irregularity.

The 512-byte L3 cache line size partially contributes to the
inefficient memory performance for highly irregular problems,
but it is insufficient to fully explain the slowdown for the
problems that exhibit a tiny degree of irregularity. It is likely
that the hardware detection of prefetch streams is involved in
this behavior. The Power4’s prefetch units require four con-
tiguous cache line references (64 double words) to ramp up to
full speed, thereby avoiding many unnecessary fetches caused
by false predictions. A single indirection will cancel that pre-
fetch stream. Thus the hardware is easily “tricked” with slight
irregularity. Future work will examine this issue in detail.

The Power4 has a “data cache block touch” (dcbt) instruc-
tion that immediately engage a hardware prefetch stream
without the ramp-up; however the compiler does not have
sufficient information to automatically insert the dcbt instruc-
tion since its benefit depends on the degree of irregularity – a
determination that can only be made at runtime. Aggressively
inserting the dcbt instruction will hurt performance considera-
bly more for cases that are highly irregular than it helps for
cases that less so. This highlights the limitations of relying on
compile-time analysis to make appropriate instruction sched-
uling decisions. The Power3 and Power4 have architectural
features that were designed specifically to benefit dense mode
numerical kernels, but unfortunately these very same features
have a deleterious effect on irregular/sparse mode algorithms.
There is clearly a need to deliver architectural enhancements
that address the needs of scientific codes that have both dense
and irregular access patterns.

8. BALANCE

In this section, we use the results of Section 7 to ask two
questions regarding architectural balance in the context of
irregularity: (a) how much irregularity can the architecture
hide at a given computational intensity, and (b) how much
computation is needed to hide the worst possible irregularity
(i.e. accessing each entry at a random position).

The answer to (a) is given in the S50 value: Let the per-
formance of the indirect unit stride access (S=∞) at a given
computational intensity be P∞. The smallest S achieving at
least 50% of P∞ (at a fixed CI) is the S50 value. Thus the S50
tells us how much irregularity can be tolerated by the architec-
ture with a 50% performance loss.

Question (b) is answered by the M50 value: Let the per-
formance of the indirect unit stride access (S=∞) at the lowest
possible computational intensity, (M=1) be P1. The smallest M
that achieves 50% of P1 given all random accesses (S=1) is the
M50 value. Thus the M50 value tells us how much computa-
tional intensity is needed to hide the irregular access to main-
tain 50% of performance.

Figure 7 shows the S50 values for computational intensity
for M=1 (CI=7/3≅2.3) and M=8 (CI=56/3≅18.7). It can clearly
be seen that Itanium2 performs extremely well, tolerating 50%
of random memory accesses at a CI of 18.7, and showing an
architectural example where the gap between internal fre-
quency and memory accesses is bridged rather successfully.

The Opteron also performs well -- tolerating 50% of ran-
dom accesses at a CI of 18.7. However, at a low CI of 2.3, the
S50 value is only 6.3%, performing significantly worse than
the Itanium2.

Power 4 only tolerates one out of 64 random accesses at a
CI of 2.3 and still needs 16 consecutive elements for a CI of
18.7. This is far worse than both Itanium2 and Opteron. These
results are consistent with Power4’s prefetch stream policy
that requires 64 consecutive word requests to engage a stream.
For low CI (M=1), more than 2% of random accesses result in
a 50% performance penalty. Even for relatively high CI
(M=8), only 6.3% of random accesses are tolerated.

Power 3 shows the worst performance, with one out of 128
elements tolerated for M=1 and one out of 32 elements toler-
ated for M=8. In other words: if less than 1% of memory ac-
cesses are not consecutive, the penalty of performance on the
Power3 can already be more than 50%! As irregularity of less
than 1%, while relevant for dense-mode BLAS-3 codes, is
unrealistic for newer scientific applications that are increas-
ingly moving towards sparse data representations.

Figure 8 presents the M50 values. The figure shows a simi-
lar behavior as the S50 figure, with Itanium2’s M50=4
(CI=9.3), Opteron’s M50=8 (CI=18.7), Power4’s M50=32
(CI=74.7), and Power3’s M50=64 (CI=149.3). Thus the
Power3 needs a computational intensity of 150 to achieve a
reasonable performance. Note that although the Power4 runs
at a much higher internal frequency than the Power3, and sub-
sequently widening the gap between memory and internal fre-
quency, it outperforms the Power3. However the Power4 still
performs far worse than the Itanium2 or Opteron.

In conclusion, this section showed that the architecture of
the Itanium2 is most forgiving for random accesses, followed

by the Opteron. The Power3 and Power4 need huge M50 and
S50 values, demonstrating that they are more suitable for
dense-mode algorithms. We believe that there is a large
movement towards sparse representations as they emphasize
time-to-solution over peak flop-rate. However, the computa-
tional intensity required to gain any advantage in moving to a
sparse representation is dauntingly large for these microarchi-
tectures. There is a clear need for architectural enhancements
to improve efficiency of sparse access patterns in order to
keep pace with leading numerical solver design trends.

1.6%

25%
6.3%

0.8%

50% 50%

3.1% 6.3%

0%

1%

10%

100%
Itanium2 Opteron Pow er3 Pow er4Irr

eg
ul

ar
ity

 a
s

1/
S5

0 M=1 (CI=2.3)
M=8 (CI=18.7)

Figure 7: Balance in terms of S50 (N=4)

9. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a new synthetic bench-
mark, called sqmat, that measures the performance of a single
processor and its memory system. With only a few parameters,
this adjustable probe is capable of giving an estimate for the
runtime of serial codes based on their working-set size, com-
putational complexity, and the irregularity of their memory
access pattern. The results are given relative to an algorithmic
peak, which allows comparisons across different floating-point
unit implementations as well as different generations of mi-
croprocessor architectures.

Probes like sqmat complement the capabilities of traditional
benchmarks as tools that enhance understanding of perform-
ance behavior of scientific codes. The probe allows searches
through a continuous parameter space of algorithm perform-
ance characteristics, thereby supporting analysis of system
architectural balance and design trade-offs for microproces-
sors. It also points out optimizations that can be made by pro-
grammers on these architectures, such as employing large CI
to compensate for irregular memory access patterns -- perhaps
necessitated by a move from explicit to implicit solvers.

It is important to take all of these results in context. The re-
sults on processors with the highest clock-rates in this study
indicate that programmers should expect the gap between
hardware peak and observed performance to continue to in-
crease; however the high clock rates may still indicate better
time-to-solution than the other machines. The decreased effi-
ciency of the Power4 versus the Power3 despite similar super-
scalar functional unit and instruction set architecture illustrates
the effect of deeper execution pipelines and the increasing
impact of memory latency on computational efficiency as
clock frequencies climb. Even a deep instruction reorder pipe-
line cannot hide the latency incurred by a cache miss during
irregular accesses.

The Opteron demonstrates that lowering the memory la-
tency using an on-board memory controller is an effective
method to attack this problem. Likewise, the Itanium2 uses a
large register set and deep explicit prefetch queues to hide this

latency. Out-of-order instruction processing appears to have
more limited effectiveness in addressing this problem. How-
ever, none of these implementation offer a sustainable path for
improvement as processor core speeds continue to outstrip
reductions in memory subsystem latency. There is a critical
need for future microprocessors to add architectural enhance-
ments for addressing the needs of applications exhibiting this
kind of memory access irregularity.

74.7

18.79.3

149.3

0

50

100

150

Itanium2 Opteron Pow er3 Pow er4

M
50

 in
 te

rm
s

of
 C

I

Figure 8: Balance in terms of M50 (N=4)

Our future plans include running the benchmark on vector
machines, especially the Cray X1, which are optimized for
irregular memory access. We are also planning to investigate
the correlation between hardware counters and achieved
performance. Our long-term goal is to isolate the architectural
bottlenecks that cause the performance degradation by looking
at the performance counter results. These new tools will
greatly assist in evaluating system architectures optimized for
scientific workloads as well as providing a better understand-
ing of code performance on existing architectures.

10. ACKNOWLEDGEMENTS

The authors would like to thank Paul Hargrove, Eric Ro-
man, Hongzhang Shan, and Parry Husbands for their thought-
ful contributions. The authors were supported by Director,
Office of Computational and Technology Research, Division
of Mathematical, Information, and Computational Sciences of
the U.S. Department of Energy under contract number DE-
AC03-76SF00098.

11. REFERENCES
[1] Standard Performance Evaluation Corporation,

http://www.specbench.org
[2] HPM Tool Kit,

http://www.alphaworks.ibm.com/tech/hpmtoolkit
[3] Performance Application Programming Interface,

http://icl.cs.utk.edu/projects/papi/
[4] 21st Top500 Supercomputer Sites, http://www.top500.org
[5] STREAM: http://www.streambench.org/
[6] NAS Parallel Benchmarks:

http://science.nas.nasa.gov/Software/NPB
[7] http://dit.lbl.gov/Bench/sqmat
[8] M.C. Payne et al., Iterative minimization techniques for ab initio

total-energy calculations: Molecular dynamics and conjugate
gradients, Rev. Mod. Phys., 64 (1993) 1045--1098.

[9] Z. Lin, S. Ethier, T.S. Hahm, and W.M. Tang. Size scaling of
turbulent transport in magnetically confined plasmas. Phys. Rev.
Lett., 88:195004, 2002.

[10] J. Borrill, ADCAP: The Microwave Anisotropy Dataset Compu-
tational Analysis Package, in: Proc. 5th European SGI/Cray MPP
Workshop astro-ph/9911389, 1999.

http://icl.cs.utk.edu/projects/papi/
http://dit.lbl.gov/Bench/sqmat

	Introduction
	Sqmat overview
	Description of the Underlying Hardware
	Itanium2
	Opteron
	Power3
	Power4

	Computational intensity with unit stride
	Working set size
	Itanium2
	Opteron
	Power3
	Power4

	Indirection
	Irregularity
	Itanium2
	Opteron
	Power3
	Power4

	Balance
	Conclusions and Future Work
	Acknowledgements
	References

